首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The grain‐size distribution of aeolian dune sands in the Thar Desert, India was analyzed and compared with three model distributions – log‐normal, log‐hyberbolic and log‐skew‐Laplace – to determine the best‐fit statistical model. In total, 51 samples were collected along a single transect over a transverse dune, of which 15 were from the stoss side, 12 from the crest and 24 from the lee side. Samples were collected during a calm period in the afternoon of a winter's day. It was observed that of these 51 samples, 33 fit best to a log‐hyperbolic distribution, 14 fit best to a normal distribution and only four fit best to a Laplace distribution. However, it was further observed that of 24 samples from the lee side, 13 fit best to a normal distribution, eight fit best to a hyperbolic distribution, and three fit best to a Laplace distribution. Of 12 samples from the crest of the dune, 11 fit best to the log‐hyperbolic distribution, only one to the Laplace distribution but none to a normal distribution. Of 15 samples from the stoss side of the dune, only one sample best‐fits a normal distribution, 14 fit best to a log‐hyperbolic distribution, and none best fit to a Laplace distribution. During sample collection a calm period prevailed and there was no dusty wind. It was therefore assumed that in the initial stage a mixture of coarse, medium and fine sands was laid down on the stoss side of the dune. As wind speeds increased and saltation started, the coarser fractions were segregated and lagged behind on the stoss slope. In the final stage when the remaining intermediate and finer fractions reached the dune crest, the finer fractions were winnowed away to suspension from the crest of the dune. As a result, a narrow range of intermediate sized sediments was deposited by rolling down the lee side to explain the development of log‐normality. In such a situation, both the coarser and finer fractions, to which the skewed distributions can be attributed, are separated from the initial mixture of coarse, intermediate and fine fractions. Hence the main criteria for the development of a normal distribution is the lack of skewed fractions and the concentration of the narrow, intermediate size fractions in the final grain size distribution. This is also corroborated with the index of symmetry, which is a measure of the difference between the angle of two slopes of the hyperbolic distribution as represented by the coarser and finer fractions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
1 INTRODUCTIONThe exact mechanism of accumulation of sediments in point bars is not clearly known. Many scientistsinvestigated the problem. In the river Klaralven, Sundborg (1956) observed the development of sometransverse bars in the initial stage of the point bar formation. These transverse bars tend to becomelongitudinal as they extend close to the stream bed. Martvall and Nilsson (1972) investigated the problemof point bar formation experimentally in a laboratory flume. The flume st…  相似文献   

3.
Quantification of river bedform variability and complexity is important for sediment transport modeling as well as for characterization of river morphology. Alluvial bedforms are shown to exhibit highly nonlinear dynamics across a range of scales, affect local bed roughness, and vary with local hydraulic, hydrologic, and geomorphic properties. This paper examines sediment sorting on the crest and trough of gravel bedforms and relates it to bed elevation statistics. The data analysed here are the spatial and temporal series of bed elevation, grain size distribution of surface and subsurface bed materials, and sediment transport rates from flume experiments. We describe surface topography through bedform variability in height and wavelength and multiscale analysis of bed elevations as a function of discharge. We further relate bedform migration to preferential distribution of coarse and fine sediments on the troughs and crests, respectively, measuring directly surface and subsurface grain size distributions, and indirectly the small scale roughness variations as estimated from high resolution topographic scans.  相似文献   

4.
Detailed echo‐sounder and acoustic Doppler velocimeter measurements are used to assess the temporal and spatial structure of turbulent flow over a mobile dune in a wide, low‐gradient, alluvial reach of the Green River. Based on the geometric position of the sensor over the bedforms, measurements were taken in the wake, in transitional flow at the bedform crest, and in the internal boundary layer. Spatial distributions of Reynolds shear stress, turbulent kinetic energy, turbulence intensity, and correlation coefficient are qualitatively consistent with those over fixed, two‐dimensional bedforms in laboratory flows. Spectral and cospectral analysis demonstrates that energy levels in the lee of the crest (i.e. wake) are two to four times greater than over the crest itself, with minima over the stoss slope (within the developing internal boundary layer). The frequency structure in the wake is sharply defined with single, dominant peaks. Peak and total spectral and cross‐spectral energies vary over the bedform in a manner consistent with wave‐like perturbations that ‘break’ or ‘roll up’ into vortices that amalgamate, grow in size, and eventually diffuse as they are advected downstream. Fluid oscillations in the lee of the dune demonstrate Strouhal similarity between laboratory and field environments, and correspondence between the peak frequencies of these oscillations and the periodicity of surface boils was observed in the field. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
One explanation for bedform patterns is self‐organization in which the pattern emerges because of interactions among the bedforms themselves. Models, remote images, field studies and lab experiments have identified bedform interactions that involve whole bedforms, only bedform defects, or that are remote interactions between bedforms. It is proposed that bedform interactions form a spectrum from constructive to regenerative in pattern development. Constructive interactions, including merging, lateral linking, cannibalization, and remote transfer of sediment, push the system toward fewer, larger, more widely spaced bedforms. Regenerative interactions, including bedform splitting, defect creation and calving, push the system back toward a more initial state. Other interactions, including off‐center collision, defect migration, and bedform and defect repulsion, cause pattern change, but may not be strongly constructive or regenerative. Although bedform interactions are ubiquitous to any field of bedforms, their dynamics, flow‐field modification, and impact upon measurable pattern parameters are yet poorly understood. Most bedform interactions span bedform types and fluids, supporting the hypothesis that pattern emerges from dynamics at the bedform level in a hierarchy that includes lower levels of bedform‐flow and grain–fluid interactions. Bedform interactions alone, however, cannot account for the rich diversity of bedform patterns in nature. It is proposed that field diversity arises because of boundary conditions, which are the environmental variables within which a field evolves. Conceptually, boundary conditions modify the shape of the attractor toward which a field evolves, possibly by altering the type and frequency of bedform interactions. Boundary conditions are broadly similar within system types, but are unique for each bedform field so that no two are ever exactly alike. Although aeolian and fluvial systems share some types of boundary conditions, flow depth is a unique boundary condition in shallow fluvial systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The effect exerted by the seabed morphology on the flow is commonly expressed by the hydraulic roughness, a fundamental parameter in the understanding and simulation of hydro- and sediment dynamics in coastal areas. This study quantifies the hydraulic roughness of large compound bedforms throughout a tidal cycle and investigates its relationship to averaged bedform dimensions. Consecutive measurements with an acoustic Doppler current profiler and a multibeam echosounder were carried out in the Jade tidal channel (North Sea, Germany) along large compound bedforms comprising ebb-oriented primary bedforms with superimposed smaller secondary bedforms. Spatially averaged velocity profiles produced log-linear relationships which were used to calculate roughness lengths. During the flood phase, the velocity profiles were best described by a single log-linear fit related to the roughness created by the secondary bedforms. During the ebb phase, the velocity profiles were segmented, showing the existence of at least two boundary layers: a lower one scaling with the superimposed secondary bedforms and an upper one scaling with the ebb-oriented primary bedforms. The drag induced by the primary bedform during the ebb phase is suggested to be related to flow expansion, separation, and recirculation on the downstream side of the bedform. Three existing formulas were tested to predict roughness lengths from the local bedform dimensions. All three predicted the right order of magnitude for the average roughness length but failed to predict its variation over the tidal cycle.  相似文献   

7.
This study, using an experimental approach, focuses on the effect of downward seepage on a threshold alluvial channel morphology and corresponding turbulent flow characteristics. In all the experiments, we observed that the streamwise time‐averaged velocities and Reynolds shear stresses were increased under the influence of downward seepage. Scales of eddy length and eddy turnover time were significantly increased with the application of downward seepage, leading to sediment transport and initiation of bedforms along the channel length. As the amount of seepage discharge increased, eddy length and turnover time were further increased, causing the development of larger bedforms. It was revealed that the geometry of bedforms was linked with the size of eddies. In this work, statistics of bedform dynamics are presented in terms of multi‐scalar bedforms in the presence of seepage. These multi‐scalar ubiquitous bedforms cast a potential impact on flow turbulence as well as stream bed morphology in channels. We used wavelet to analyse temporally lagged spatial bed elevation profiles that were obtained from a set of laboratory experiments and synchronized the wavelet coefficients with bed elevation fluctuations at different length scales. A spatial cross‐correlation analysis, based on the wavelet coefficients, was performed on these bed elevation datasets to observe the effect of downward seepage on the dynamic behaviour of bedforms at different length scales. It was found that celerity of bedforms reduced with increase in seepage percentage. Bedform celerity was best approximated by a probability density function such as Rayleigh distribution under varying downward seepage. Further, statistical analysis of physical parameters of bedforms ascertained that the reduction in bedform celerity was a result of increased bedform size. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents results of a field study designed to examine the structure of flow over mobile and fixed bedforms in a natural stream and to compare the results with findings of previous laboratory studies within the framework of double time–space averaging approach. Measurements of turbulence were obtained in a small river in Illinois, USA, over a fine spatial grid of sampling points above a mobile sandy bedform and its artificially moulded replica. Flow structure over the artificial bedform is similar to that observed in laboratory studies, but is markedly different from the flow structure over natural bedforms. These differences are most pronounced in the roughness sublayer, whereas flow in the logarithmic layer over natural and artificial sand waves is fairly similar and exhibits spatial uniformity. The double time–space averaged distributions of turbulence statistics conform to the multilayer model of flow structure over bedforms. Mean velocity distributions indicate neither classical flow recirculation nor substantial reduction of velocities in the lee of bedform crests. However, vertical patterns of turbulence statistics over depth suggest that stacked wakes similar to those observed in laboratory studies exist above the bedforms. Thus, despite the absence of flow separation, wake development seems to be induced by the systematic influence of upstream bedforms on the vertical structure of turbulence. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Sediment data were analyzed to determine grain‐size dependant factors affecting sediment transport in a low‐ordered, ephemeral watershed. Sediment and flow samples were collected during 22 flow events at the outlet of a 4·53 ha sub‐watershed within the Walnut Gulch Experimental Watershed in south‐eastern Arizona. Measured concentrations ranged from 4191 to 115 045 mg l?1 and included grain sizes up to 8·0 mm in diameter. Two grain‐size dependent transport patterns were observed, that of the finer grain‐size fraction (approximately < 0·25 mm) and that of a coarser grain‐size fraction (approximately ≥ 0·25 mm). The concentration of the fine fraction decreased with flow duration, peaking near the beginning of a flow event and declining thereafter. The concentration of the fine fraction showed slight trends with season and recovery period. The concentration of the coarse fraction displayed a slight negative trend with instantaneous discharge and was not correlated with event duration. These patterns typically produced a condition where the majority of the fine fraction of the sediment yield was evacuated out of the watershed before the hydrograph peak while the majority of the coarser sediment was evacuated during the falling limb of the hydrograph. Each grain‐size dependent transport pattern was likely influenced by the source of the associated sediment. At the flow event time scale, the fines were primarily wash load, supplied from the hillslopes and the coarser grains were entrained from the channel bed. Because transport patterns differ based on grain size, attempts to define the total sediment concentration and sediment yield by the behavior of a single grain‐size fraction may lead to erroneous results, especially when a large range of sediment grain sizes are present. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Laboratory observations and computational results for the response of bedform fields to rapid variations in discharge are compared and discussed. The simple case considered here begins with a relatively low discharge over a flat bed on which bedforms are initiated, followed by a short high‐flow period with double the original discharge, during which the morphology of the bedforms adjusts, followed in turn by a relatively long period of the original low discharge. For the grain size and hydraulic conditions selected, the Froude number remains subcritical during the experiment, and sediment moves predominantly as bedload. Observations show rapid development of quasi‐two‐dimensional bedforms during the initial period of low flow with increasing wavelength and height over the initial low‐flow period. When the flow increases, the bedforms rapidly increase in wavelength and height, as expected from other empirical results. When the flow decreases back to the original discharge, the height of the bedforms quickly decreases in response, but the wavelength decreases much more slowly. Computational results using an unsteady two‐dimensional flow model coupled to a disequilibrium bedload transport model for the same conditions simulate the formation and initial growth of the bedforms fairly accurately and also predict an increase in dimensions during the high‐flow period. However, the computational model predicts a much slower rate of wavelength increase, and also performs less accurately during the final low‐flow period, where the wavelength remains essentially constant, rather than decreasing. In addition, the numerical results show less variability in bedform wavelength and height than the measured values; the bedform shape is also somewhat different. Based on observations, these discrepancies may result from the simplified model for sediment particle step lengths used in the computational approach. Experiments show that the particle step length varies spatially and temporally over the bedforms during the evolution process. Assuming a constant value for the step length neglects the role of flow alterations in the bedload sediment‐transport process, which appears to result in predicted bedform wavelength changes smaller than those observed. However, observations also suggest that three‐dimensional effects play at least some role in the decrease of bedform wavelength, so incorporating better models for particle hop lengths alone may not be sufficient to improve model predictions. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

11.
This paper summarizes measurements of velocity along three reaches of a small mountain channel with step–pool bedforms. A one‐dimensional electromagnetic current meter was used to record velocity fluctuations at 37 fixed measurement points during five measurement intervals spanning the peak of the annual snowmelt hydrograph. Measurement cross‐sections were located upstream from a bed‐step, at the step lip, downstream from the step, and in a uniform‐gradient run. Data analyses focused on characteristics of velocity profiles, and on correlations between velocity characteristics and the potential control variables bedform type, reach gradient and flow depth. To test the hypothesis that velocity characteristics are related to channel bedform types, ANOVA and ANCOVA tests were performed for the average velocity and coefficient of variation of point velocity data. Results indicate that high frequency velocity variations correlate to some degree with both channel characteristics and discharge. Velocity became more variable as stage increased, particularly at low‐gradient reaches with less variable bed roughness. Velocity profiles suggest that locations immediately downstream from bed‐steps are dominated by wake turbulence from mid‐profile shear layers. Locations immediately upstream from steps, at step lips, and in runs are dominated by bed‐generated turbulence. Adverse pressure gradients upstream and downstream from steps may be enhancing turbulence generation, whereas favourable pressure gradients at steps are suppressing turbulence. The bed‐generated turbulence and skin friction of runs appear to be less effective energy dissipators than the wake‐generated turbulence and form drag of step–pool bedforms. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
This study adopts a fresh approach to find the similarities between river planforms in contrast to many previous studies that have presented distinguishing characteristics and thresholds. This new approach links textural and morphological attributes of bedforms, termed morpho‐texture, with process and hydrological regime thereby indicated. The study was carried out in depositional features of ephemeral rivers having a range of planforms and located in the Judean Desert. High‐resolution terrestrial laser scanning was undertaken to extract morphological and textural (roughness) characteristics. Results strongly indicate that bars are statistically coarser grained than the adjacent thalweg or anabranches where depositional processes occur. This suggests universal processes within ephemeral rivers regardless of their planform, where rapid flow recession causes the coarse tail of the bedload to be deposited as bars whereas the finer fractions deposit in the thalweg and thereby prevent the development of bed armour.  相似文献   

13.
Unsteady bedload transport was measured in two c. 5 m wide anabranches of a gravel‐bed braided stream draining the Haut Glacier d'Arolla, Switzerland, during the 1998 and 1999 melt seasons. Bedload was directly sampled using 152 mm square Helley–Smith type samplers deployed from a portable measuring bridge, and independent transport rate estimates for the coarser size fractions were obtained from the dispersion of magnetically tagged tracer pebbles. Bedload transport time series show pulsing behaviour under both marginal (1998) and partial (1999) transport regimes. There are generally weak correlations between transport rates and shear stresses determined from velocity data recorded at the measuring bridge. Characteristic parameters of the bedload grain‐size distributions (D50, D84) are weakly correlated with transport rates. Analysis of full bedload grain‐size distributions reveals greater structure, with a tendency for transport to become less size selective at higher transport rates. The bedload time series show autoregressive behaviour but are dif?cult to distinguish by this method. State–space plots, and associated measures of time‐series separation, reveal the structure of the time series more clearly. The measured pulses have distinctly different time‐series characteristics from those modelled using a one‐dimensional sediment routing model in which bed shear stress and grain size are varied randomly. These results suggest a mechanism of pulse generation based on irregular low‐amplitude bedforms, that may be generated in‐channel or may represent the advection of material supplied by bank erosion events. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Organic carbon (OC) associated with fluvial bed sediment plays an important role in biotic and abiotic processes operating within drainage basins. Increasingly, there is a need to characterize storage and spatial distributions of OC in aquatic sediments, particularly under-sampled areas like tropical streams. The objectives of this study were to examine in detail the variation of OC concentration with bed sediment grain size, to characterize the influence of grain size variation on relative OC mass storage, and to compare weighted OC values to those in other aquatic sediments worldwide. The study area selected was a third-order dendritic drainage basin developed in a basaltic complex. Bed sediments along a 6 km section of Manoa Stream were systematically sampled every 50 m for a total of 113 sample site locations. Sediments were partitioned into six size fractions (< 2·0 mm) and OC was determined by dry combustion. Data indicate that the OC concentration increases with decreasing grain size, with the greatest values in the < 0·063 mm (silt + clay) fraction, approximately 4·6 times greater than the very coarse sand fraction (1·00–2·00 mm). Robust smoothing techniques illustrated a general decrease in OC concentration downstream for the size fractions < 0·25 mm. Bed sediments were dominated by size fractions coarser than 0·5 mm (80 per cent of the total distribution) and only about 2 per cent in the fractions less than 0·13 mm. Combining information on OC concentration per size fraction and the mass contribution of each fraction to the whole sample, it was observed that fractions coarser than 0·5 mm had eight to 12 times the storage of OC per kilogram of bed sediments than the fractions finer than 0·13 mm. Weighted OC values for Manoa Stream were on average 6·7 g-OC kg−1, and these were similar to those reported in the literature for a variety of sediments in aquatic environments, both freshwater and marine. These data provide important information on the relative mass storage of OC in bed sediments and their longitudinal patterns in a tropical fluvial environment. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
16.
The purpose of the present study is to investigate experimentally the development of bedforms in a configuration where the sediment supply is limited. The experimental setup is a rectangular closed duct combining an innovative system to control the rate of sediment supply Qin , and a digitizing system to measure in real time the 3D bedform topography. We carried out different sets of experiments with two sediment sizes (100 µm and 500 µm) varying both the sediment supply and the water flow rate to obtain a total of 46 different configurations. After a transient phase, steady sub‐centimeter bedforms of various shapes have been observed: barchans dunes, straight transverse dune, linguoid transverse dunes and bedload sheets. Height, spacing, migration speed, and mean bed elevation of the equilibrium bedforms were measured. For a given flow rate, two regimes were identified with fine sediment: (i) a monotonic increasing regime where the equilibrium bedform height and velocity increase with the sediment supply rate Qin and (ii) an invariant regime for which both parameters are almost independent of Qin. For coarse sediment, only the first regime is observed. We interpret the saturation of height and velocity for fine sediment bedforms as the transition from a supply‐limited regime to a transport‐limited regime in which the bedload flux has reached its maximum value under the prevailing flow conditions. We also demonstrate that all experiments can be rescaled if the migration speed and height of the bedforms are, respectively, divided and multiplied by the cube of the shear velocity. This normalization is independent of grain size and of bedform morphology. These experimental results provide a new quantification of the factors controlling equilibrium height and migration speed of bedforms in supply‐limited conditions against which theoretical and numerical models can be tested.  相似文献   

17.
The artificial gravel augmentation of river channels is increasingly being used to mitigate the adverse effects of river regulation and sediment starvation. A systematic framework for designing and assessing such gravel augmentations is still lacking, notably on large rivers. Monitoring is required to quantify the movement of augmented gravel, measure bedform changes, assess potential habitat enhancement, and reduce the uncertainty in sediment management. Here we present the results of an experiment conducted in the Rhine River (French and German border). In 2010, 23 000 m3 of sediments (approximately the mean annual bedload transport capacity) were supplied in a by‐passed reach downstream of the Kembs dam to test the feasibility of enhancing sediment transport and bedform changes. A 620‐m‐long and 12‐m‐wide gravel deposit was created 8 km downstream from the dam. Monitoring included topo‐bathymetric surveys, radio‐frequency particle tracking using passive integrated transponder (PIT) tags, bed grain size measurement, and airborne imagery. Six surveys performed since 2009 have been described (before and after gravel augmentation, and after Q2 and Q15 floods). The key findings are that (i) the augmented gravel was partially dispersed by the first flood event of December 2010 (Q1); (ii) PIT tags were found up to 3200 m downstream of the gravel augmentation site after four years, but the effects of gravel augmentation could not be clearly distinguished from the effects of floods and internal remobilization on more than 3500 m downstream; (iii) linear and log‐linear relationships linking bedload transport, particle mobility, and grain size were established; and (iv) combined bathymetry and PIT tag surveys were useful for evaluating potential environmental risks and the first morpho‐ecological responses. This confirmed the complementary nature of such techniques in the monitoring of gravel augmentation in large rivers. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
The influence of wave–bedform feedbacks on both the initial formation of shoreface-connected sand ridges (sfcr) and on grain size sorting over these ridges on micro-tidal inner shelves is studied. Also, the effect of sediment sorting on the growth and the migration of sfcr is investigated. This is done by applying a linear stability analysis to an idealized process-based morphodynamic model, which simulates the initial growth of sfcr due to the positive coupling between waves, currents, and an erodible bed. The sediment consists of sand grains with two different sizes. New elements with respect to earlier studies on grain sorting over sfcr are that wave-topography interactions are explicitly accounted for, entrainment of sediment depends on bottom roughness, and transport of suspended sediment involves settling lag effects. The results of the model indicate that sediment sorting causes a reduction of the growth rate and migration speed of sfcr, whereas the wavelength is only slightly affected. In the case where the entrainment of suspended sediment depends on bottom roughness, the coarsest sediment is found in the troughs; otherwise, the finest sediment occurs in the troughs. Compared to previous work, modeled maximum variations in the mean grain size over the topography are in better agreement with field observations. Settling lag effects are important for the damping of high-wavenumber mode instabilities such that a preferred wavelength of the bedforms is obtained.  相似文献   

19.
20.
Suspended sediment has been identified as a vector for nutrient and contaminant transport in the fluvial environment. A time‐integrated sampler (the Phillips sampler), which emerged over a decade ago as a cost‐effective tool for in situ suspended sediment collection, is increasingly being used to collect samples for the analysis of sediment properties such as particle size composition, and nutrient and contaminant concentrations. This study evaluates the sampler under both flume and field conditions for efficiency in the mass and grain size of the suspended sediment collected. The sampler was tested in a flume using both kaolinite and sediment samples (sieved to < 180 µm) collected from the Quesnel River, British Columbia, Canada. In the kaolinite trails, the sampler preferentially collected coarser grain sizes compared to the original sediment, probably due to finer sediment remaining in suspension and therefore passing through the sampler, and also possibly due to flocculation of the kaolinite upon introduction to the flume. Conversely, the sampler collected river sediment that was finer than the original sediment, probably due to some settling of coarser sediment observed at the bottom of the flume. Once allowance was made for these operational issues associated with the flume, maximum sediment mass efficiency for kaolinite and river sediment was 43% and 87%, respectively. Sediment collected by the time‐integrated sampler during field deployment and adjacent channel bed sediment were also compared. The sampler collected sediment with a representative grain size distribution. However, there were differences in the geochemical (arsenic and selenium) concentrations of channel bed sediment and sediment collected by the Phillips sampler which may be a function of differences in the behavior of geochemical elements associated with the two types of sediment. This work suggests that further research is needed to evaluate the role of the Phillips sampler in collecting sediment for contaminant and nutrient analysis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号