首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Rainfall-induced debris flows involving ash-fall pyroclastic deposits that cover steep mountain slopes surrounding the Somma-Vesuvius volcano are natural events and a source of risk for urban settlements located at footslopes in the area. This paper describes experimental methods and modelling results of shallow landslides that occurred on 5–6 May 1998 in selected areas of the Sarno Mountain Range. Stratigraphical surveys carried out in initiation areas show that ash-fall pyroclastic deposits are discontinuously distributed along slopes, with total thicknesses that vary from a maximum value on slopes inclined less than 30° to near zero thickness on slopes inclined greater than 50°. This distribution of cover thickness influences the stratigraphical setting and leads to downward thinning and the pinching out of pyroclastic horizons. Three engineering geological settings were identified, in which most of the initial landslides that triggered debris flows occurred in May 1998 can be classified as (1) knickpoints, characterised by a downward progressive thinning of the pyroclastic mantle; (2) rocky scarps that abruptly interrupt the pyroclastic mantle; and (3) road cuts in the pyroclastic mantle that occur in a critical range of slope angle. Detailed topographic and stratigraphical surveys coupled with field and laboratory tests were conducted to define geometric, hydraulic and mechanical features of pyroclastic soil horizons in the source areas and to carry out hydrological numerical modelling of hillslopes under different rainfall conditions. The slope stability for three representative cases was calculated considering the real sliding surface of the initial landslides and the pore pressures during the infiltration process. The hydrological modelling of hillslopes demonstrated localised increase of pore pressure, up to saturation, where pyroclastic horizons with higher hydraulic conductivity pinch out and the thickness of pyroclastic mantle reduces or is interrupted. These results lead to the identification of a comprehensive hydrogeomorphological model of susceptibility to initial landslides that links morphological, stratigraphical and hydrological conditions. The calculation of intensities and durations of rainfall necessary for slope instability allowed the identification of deterministic hydrological thresholds that account for uncertainty in properties and observed rainfall intensities.  相似文献   

2.
Rainfall-induced landslides are a significant hazard in many areas of loess-covered terrain in Northwest China. To investigate the response of a loess landslide to rainfall, a series of artificial rainfall experiments were conducted on a natural loess slope, located in the Bailong River Basin, in southern Gansu Province. The slope was instrumented to measure surface runoff, pore water pressure, soil water content, earth pressure, displacement, and rainfall. The hydrological response was also characterized by time-lapse electrical resistivity tomography. The results show that most of the rainfall infiltrated into the loess landslide, and that the pore water pressure and water content responded rapidly to simulated rainfall events. This indicates that rainfall infiltration on the loess landslide was significantly affected by preferential flow through fissures and macropores. Different patterns of pore water pressure and water content variations were determined by the antecedent soil moisture conditions, and by the balance between water recharge and drainage in the corresponding sections. We observed three stages of changing pore water pressure and displacement within the loess landslide during the artificial rainfall events: Increases in pore water pressure initiated movement on the slope, acceleration in movement resulting in a rapid decrease in pore water pressure, and attainment of a steady state. We infer that a negative pore water pressure feedback process may have occurred in response to shear-induced dilation of material as the slope movement accelerated. The process of shear dilatant strengthening may explain the phenomenon of semi-continuous movement of the loess landslide. Shear dilatant strengthening, caused by intermittent or continuous rainfall over long periods, can occur without triggering rapid slope failure.  相似文献   

3.
Glacial mélange in the open-cast mine at Amsdorf, central Germany, consists of several square meters of large, sorted sediment blocks embedded in till. The blocks are composed of largely intact to slightly deformed glaciofluvial and glaciolacustrine sand, silt and clay, initially deposited in a proglacial lake (2–3 km up-ice) and subsequently overridden by a glacier. The blocks typically have cuboid to subrounded outlines, are randomly distributed in the till, and the contacts with the surrounding till are distinctly sharp. Underneath the mélange are varved clays which exhibit strong deformations occasionally intervening with entirely undisturbed areas. It is suggested that the blocks were entrained into debris-rich basal-ice by bulk freeze-on when the glacier sole was lowered onto the bottom of an overridden lake. After entrainment the blocks were transported englacially and re-deposited (with far-traveled till matrix) as a melt-out till from stagnant ice. The glacier moved mainly by sliding enhanced by low-permeability varved clays in the substratum. The glacier is believed to have been of a polythermal type. These results show that bulk freeze-on can lead to entrainment of soft sediment blocks at least 20 m2 in size, and that these blocks can be englacially transported with little or no deformation for several kilometers and more. The occurrence of deformed and undeformed clays under the till mélange indicates a possible mosaic of coupled and decoupled ice, the latter caused by a thin, transient subglacial water film separating the bed from the glacier.  相似文献   

4.
Landslide-prone slopes in earthquake-affected areas commonly feature heterogeneity and high permeability due to the presence of cracks and fissures that were caused by ground shaking. Landslide reactivation in heterogeneous slope may be affected by preferential flow that was commonly occurred under heavy rainfall. Current hydro-mechanical models that are based on a single-permeability model consider soil as a homogeneous continuum, which, however, cannot explicitly represent the hydraulic properties of heterogeneous soil. The present study adopted a dual-permeability model, using two Darcy-Richards equations to simulate the infiltration processes in both matrix and preferential flow domains. The hydrological results were integrated with an infinite slope stability approach, attempting to investigate the hydro-mechanical behavior. A coarse-textured unstable slope in an earthquake-affected area was chosen for conducting artificial rainfall experiment, and in the experiment slope, failure was triggered several times under heavy rainfall. The simulated hydro-mechanical results of both single- and dual-permeability model were compared with the measurements, including soil moisture content, pore water pressure, and slope stability conditions. Under high-intensity rainfall, the measured soil moisture and pore water pressure at 1-m depth showed faster hydrological response than its simulations, which can be regarded as a typical evidence of preferential flow. We found the dual-permeability model substantially improved the quantification of hydro-mechanical processes. Such improvement could assist in obtaining more reliable landslide-triggering predication. In the light of the implementation of a dual-permeability model for slope stability analysis, a more flexible and robust early warning system for shallow landslides hazard in coarse-textured slopes could be provided.  相似文献   

5.
We model the rainfall-induced initiation of shallow landslides over a broad region using a deterministic approach, the Transient Rainfall Infiltration and Grid-based Slope-stability (TRIGRS) model that couples an infinite-slope stability analysis with a one-dimensional analytical solution for transient pore pressure response to rainfall infiltration. This model permits the evaluation of regional shallow landslide susceptibility in a Geographic Information System framework, and we use it to analyze susceptibility to shallow landslides in an area in the eastern Umbria Region of central Italy. As shown on a landslide inventory map produced by the Italian National Research Council, the area has been affected in the past by shallow landslides, many of which have transformed into debris flows. Input data for the TRIGRS model include time-varying rainfall, topographic slope, colluvial thickness, initial water table depth, and material strength and hydraulic properties. Because of a paucity of input data, we focus on parametric analyses to calibrate and test the model and show the effect of variation in material properties and initial water table conditions on the distribution of simulated instability in the study area in response to realistic rainfall. Comparing the results with the shallow landslide inventory map, we find more than 80% agreement between predicted shallow landslide susceptibility and the inventory, despite the paucity of input data.  相似文献   

6.
The assessment of land use land cover (LULC) and climate change over the hydrology of a catchment has become inevitable and is an essential aspect to understand the water resources-related problems within the catchment. For large catchments, mesoscale models such as variable infiltration capacity (VIC) model are required for appropriate hydrological assessment. In this study, Ashti Catchment (sub-catchment of Godavari Basin in India) is considered as a case study to evaluate the impacts of LULC changes and rainfall trends on the hydrological variables using VIC model. The land cover data and rainfall trends for 40 years (1971–2010) were used as driving input parameters to simulate the hydrological changes over the Ashti Catchment and the results are compared with observed runoff. The good agreement between observed and simulated streamflows emphasises that the VIC model is able to evaluate the hydrological changes within the major catchment, satisfactorily. Further, the study shows that evapotranspiration is predominantly governed by the vegetation classes. Evapotranspiration is higher for the forest cover as compared to the evapotranspiration for shrubland/grassland, as the trees with deeper roots draws the soil moisture from the deeper soil layers. The results show that the spatial extent of change in rainfall trends is small as compared to the total catchment. The hydrological response of the catchment shows that small changes in monsoon rainfall predominantly contribute to runoff, which results in higher changes in runoff as the potential evapotranspiration within the catchments is achieved. The study also emphasises that the hydrological implications of climate change are not very significant on the Ashti Catchment, during the last 40 years (1971–2010).  相似文献   

7.
雨水入渗对非饱和土坡稳定性影响的参数研究   总被引:57,自引:1,他引:56  
很多国家和地区的斜坡失稳与雨水入渗有密切关系。通过参数分析研究可以深化对这种关系的认识和理解,因而对滑坡灾害的预测和预防有重要意义。针对香港地区一种典型非饱和土斜坡,用有限元法模拟雨水入渗引起的暂态渗流场,然后将计算得到的暂态孔隙水压力分布用于斜坡的极限平衡分析。计算中采用延伸的摩尔-库伦破坏准则以便考虑基质吸力对抗剪强度的贡献,研究了降雨特征、水文地质条件及坡面防渗处理等因素对暂态渗流场和斜坡安全因数的影响。数值模拟结果表明:降雨强度、降雨历时和雨型对暂态渗流场及斜坡稳定性有明显的影响;土体的渗透系数,尤其是渗透系数各向异性的影响特别显著;斜坡中相对隔水层的存在以及斜坡防渗护面的效果等因素的影响均不容忽视。  相似文献   

8.
A severe rainstorm of high intensity occurred on 20th–21st November 2000, in the region of Pistoia, Tuscany, Italy, which triggered, within the entire province, over 50 landslides. These landslides can be broadly defined as complex earth slides—earth flows, originating as rotational slides that develop downslope into a flow. In this paper, two such landslides have been investigated by modelling the process of rainwater infiltration, the variations in both the positive and negative pore water pressures and their effect on slope stability during the storm. For both sites, results from morphometric and geotechnical analyses were used as a direct input to the numerical modelling. A modified Chu, 1978 approach was used to estimate the surface infiltration rate by adapting the original Green and Ampt, 1911 equations for unsteady rainfall intensity in conjunction with the surficial water balance. For transient conditions, a finite element analysis was used to model the fluctuations in pore water pressure during the storm, with the computed surface infiltration rate as the surface boundary condition. This was then followed by the application of the limit equilibrium Morgenstern and Price, 1965 slope-stability method, using the temporal pore water pressure distributions derived from the seepage analysis. From this methodology, a trend for the factor of safety was produced for both landslide sites. These results indicate that the most critical time step for failure was a few hours following the rainfall peak.  相似文献   

9.
Post-depositional structures in late Quaternary subaqueous outwash near St. Lazare, Québec resemble icewedge casts but are interpreted as water escape fissures. Cryogenic origin is discounted because, in contrast with ice-wedge casts, the fissures have a higher depth to width ratio, do not form an intersecting network, and do not exhibit adjacent upward turning of strata. In addition, their truncation by the sub-littoral unconformitydemonstrates formation before regression of the post-glacial Champlain Sea, under conditions in which ground ice development was highly unlikely. The fissures probably formed in response to elevated pore pressures caused by melting of remnant glacier ice or by liquefaction of deeper units. Excess pore water pressure initiated upward flow of dilute sediment-water mixtures that became concentrated in planar zones (fissures) along which they entrained and removed sediment. Slumping of the fissure walls followed, either during or after water escape. Minor faulting over cavities created by melting ice or water escape along fractures in underlying strata may have controlled the morphology of the fissures.  相似文献   

10.
黄土裂隙的漫灌效应对斜坡稳定性的影响分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以甘肃省黑方台地区滑坡为研究对象,在非饱和土特性试验基础上,根据地下水位的监测资料建立典型斜坡饱和-非饱和渗流模型,模拟斜坡灌溉作用后裂隙对斜坡渗流场的影响,研究斜坡裂隙效应对斜坡稳定性的影响。结果表明:灌溉水迅速沿裂隙下渗,形成渗流优势通道;裂隙附近土体的孔隙水压力迅速升高,导致其局部形成饱和区域;随着裂隙数量的增加,饱和区域明显增大,且裂隙的位置越靠近台塬边缘,对斜坡边缘的孔隙水压力及基质吸力影响越显著。综合斜坡稳定性分析结果可知:裂隙发育位置越靠近台塬边缘,斜坡稳定性越差;而裂隙数量的增加对于斜坡的稳定性影响更大,且裂隙对于斜坡稳定性的影响是一个短时间过程。夯填裂缝是控制滑坡发生的有效途径。  相似文献   

11.
A numerical model to predict landslide movements along pre‐existing slip surfaces from rainfall data is presented. The model comprises: a transient seepage finite‐element analysis to compute the variations of pore water pressures due to rainfall; a limit equilibrium stability analysis to compute the factors of safety along the slip surface associated with transient pore pressure conditions; an empirical relationship between the factor of safety and the rate of displacement of the slide along the slip surface; an optimization algorithm for the calibration of analyses and relationships based on available monitoring data. The model is validated with reference to a well‐monitored active slide in central Italy, characterized by very slow movements occurring within a narrow band of weathered bedrock overlaid by a clayey silt colluvial cover. The model is conveniently divided and presented in two parts: a groundwater model and a kinematic model. In the first part, monthly recorded rainfall data are used as time‐dependent flow boundary conditions of the transient seepage analysis, while piezometric levels are used to calibrate the analysis by minimizing the errors between monitoring data and computed pore pressures. In the second part, measured inclinometric movements are used to calibrate the empirical relationship between the rate of displacement along the slip surface and the factor of safety, whose variation with time is computed by a time‐dependent stability analysis. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
贾俊  朱立峰  胡炜 《地质通报》2013,32(12):1968-1975
甘肃黑方台地区常年农业灌溉导致塬边产生大量的黄土滑坡,灌溉水长期入渗引起灌区地下水位上升,因地下水作用造成水敏性黄土遇水乃至饱水后强度劣化,进而产生斜坡失稳,因黄土滑坡剪出口高悬于上缓下陡的坡体中部,其成灾模式呈现出高位剪出后高速滑动,并产生远程运移,波及范围大,致灾后果严重。以甘肃省永靖县黑方台焦家崖头滑坡为例,在现场调查和地下水动态监测的基础上,对灌溉型黄土滑坡塑流-拉裂形成机理进行分析,并运用离散元模拟方法,对地下水位上升过程中模型底部饱水黄土软弱层的形成、演化过程和滑坡运动学特征进行模拟研究。结果表明,随地下水位的上升,模型底部软弱层范围不断增大;孔隙水压力主要作用于滑坡底部软弱层饱水黄土;地下水位高程上升至标高1682m时,滑坡产生整体破坏。  相似文献   

13.
贾俊  朱立峰  胡炜 《中国区域地质》2013,(12):1968-1975
甘肃黑方台地区常年农业灌溉导致塬边产生大量的黄土滑坡,灌溉水长期入渗引起灌区地下水位上升,园地下水作用造成水敏性黄土遇水乃至饱水后强度劣化.进而产生斜坡失稳,因黄土滑坡剪出口高悬于上缓下陡的坡体中部,其成灾模式呈现出高位剪出后高速滑动.并产生远程运移,波及范围大,致灾后果严重。以甘肃省永靖县黑方台焦家崖头滑坡为例,在现场调查和地下水动态监测的基础上,对灌溉型黄土滑坡塑流-拉裂形成机理进行分析,并运用离散元模拟方法,对地下水位上升过程中模型底部饱水黄土软弱层的形成、演化过程和滑坡运动学特征进行模拟研究。结果表明,随地下水位的上升,模型底部软弱层范围不断增大:孔隙水压力主要作用于滑坡底部软弱层饱水黄土:地下水位高程上升至标高1682m时,滑坡产生整体破坏。  相似文献   

14.
In this paper, the correlation between different groundwater in the study area is analyzed by using the hydrological data from the hydrogeological test holes and the long-term observation holes based on the hydrogeological data between the Jinggangshan Road Station and the Jianianhua Station on the Qingdao Subway Line R3. The conclusions are as follows. When the drills are near the seashore (less than 50 m) and the backfilled formation has a large permeability coefficient (the backfilled components being coarse particles), the Quaternary pore water is connected with the seawater and there is correlation between the two. When the drills are far from the seashore (more than 50 m) or the backfilled formation has a small permeability coefficient, there is no correlation between the two. When the drills are near the seashore (less than 50 m) with developed bedrock fissure, the bedrock fissure water is connected with the seawater and there is correlation between the two. When the drills are far from the seashore (more than 50 m), or when the bedrock fissure is undeveloped, there is no correlation between the two. There exists an aquifer (mainly marine muddy silt clay layers and partially silt clay layers) between the Quaternary pore water and the bedrock fissure water, which blocks the connectivity between the two. Consequently, there is no correlation.  相似文献   

15.
中国黄土高原滑坡灾害频发,且大多与降雨有关,而节理构造是导致黄土滑坡发生的重要因素之一。为进一步揭示节理对黄土滑坡的影响作用,本文以节理为研究切入点,基于实地考察,开展了预设节理工况下降雨诱发滑坡的大型物理模型试验。通过实时监测模型边坡内部土体含水率和孔隙水压力等指标参数随降雨过程的阶段性变化,分析了边坡内部节理裂隙的扩张与演化趋势,以及坡体位移和形变特征,对比揭示了节理的存在对于诱发滑坡的潜在机制及坡体响应规律。试验结果表明:节理对雨水在坡体内部的入渗具有明显的加速和促进作用,预设节理侧的边坡相对于不含节理侧,其土体含水率增速更快、增幅更大且影响范围更广;位于模型边坡中部的节理裂隙的张开度最大,含节理侧坡体的裂隙张开度约为不含节理侧的2倍,滑坡发生时,含节理侧的孔隙水压力的上升幅度相对较大;土体含水率对降雨的敏感度和变化幅度与埋深成反比,坡体浅表部含水率的响应较快且波动较大,而深部则相反。研究结果可为进一步厘清黄土滑坡的成因及破坏机理提供试验依据和理论参考。  相似文献   

16.
万州西溪铺松散堆积体成因分析及稳定性评价   总被引:4,自引:1,他引:4  
根据勘探钻孔资料,对西溪铺一带松散堆积体的特征及成因进行了详细的探讨.研究结果表明:分布在基岩面高程190m以下的斜坡与基岩面高程140~150 m平台上的粉质黏土夹碎石土层是由滑坡作用形成的(即西溪铺滑坡);分布在基岩面高程190 m以上的粉质黏土夹碎石土层是由崩积、残积及坡积作用形成的;卵石砂土层是苎溪河的冲积作用形成的.对西溪铺滑坡的形态、滑动面特征、水文地质条件及形成年代等进行了论述,这些特征说明西溪铺滑坡曾发生过一次大型的堆积体滑动、多次小型的表层滑动,其是在一级阶地形成时代T1以后的几千年之内形成的.根据下伏卵石砂土层的地质结构,对西溪铺滑坡的稳定性进行了评价,评价结果表明库水位的变化对西溪铺滑坡的稳定性有巨大的影响,在滑坡的防治设计中必须引起高度的重视.  相似文献   

17.
Lvliang airport is a typical loess filling engineering located in 20.5 km north of Lvliang City in Shanxi Province, China. By the end of March 2012, 14 fissures extending more than 7.5 m were observed in a loess-filled slope, of which the longest fissure is up to 82 m. Field monitoring and laboratory tests have been performed to investigate the slope failure modes. The test program includes wetting tests on unsaturated compacted samples and stress path tests on saturated samples. Field monitoring and observations show that differential settlement caused by non-homogeneity in compacted loess density might lead to the formation of fissures in the loess-filled slope. It was founded that the wetting deformation contributed to the development of differential settlement. Fissures are the essential factor for the loess-filled slope failure. Four deformation stages exhibit in the loess-filled slope prior final failure including development of the fissures, softening of the compacted loess, creeping of the slope leading edge and fissuring of the trailing edge and formation of the through-sliding surface. Development of the sliding surface mainly includes upward and downward expansion of the fissures. Upward expansion is a wetting failure process in loading condition, while downward expansion is a load-off wetting process. In addition, development of the sliding surface is accelerated by softening of the compacted soils as a result of water infiltration. Therefore, the key for taking countermeasures against filling landslides is to monitor and control the development of differential settlement and fissures in the slope shoulders. Digging out and extra-filling the fissures are an effective way for preventing these landslides.  相似文献   

18.
Earth Fissuring and Land Subsidence in Western Saudi Arabia   总被引:4,自引:0,他引:4  
The present investigation deals with the engineering geological evaluation of earth fissuring associated with land subsidence in Wadi Al-Yutamah. The investigations include surface mapping and sampling, in situ and laboratory soil testing, water well inventory, geophysical survey, and monitoring of open fissures and the level of the wadi floor.The earth fissures in the area developed as a result of land subsidence due to man-induced water level declines caused by pumping water from the wadi aquifer above a safe yield. This situation has produced a compaction of underlying unconsolidated sediments and formed hair fissures above ridges and steps of buried surface bedrock. These hair fissures enlarged later after flood erosion and possible enhancement with hydrocompaction.The wadi soil in the study area consists mainly of silt of low plasticity, low density and high void ratio and it was classified as loess like material and collapsing soil. The settlement in the area is greatly increased by excessive wetting under constant pressures. The calculated coefficients of subsidence (collapse) show that the wadi soils were considered to pose moderate problems when wetted.Monitoring of the existing open earth fissures using extensometers indicates that the width of the fissure increases after flooding or rain falls. Monitoring of the ground level using GPS techniques, shows a good relation between the declination of the water table and the subsidence of the ground of the wadi floor.  相似文献   

19.
On the basis of observation of thin sections and 137Cs data, laminations in sediment are interpreted to be varves in Bolterskardet Lake (78°06' N, 16°01' E), Svalbard, the Arctic. Varves appear under a petrologic microscope as couplets of dark-silt and light-clay layers. The mechanism of varve formation is surmized as follows: each silt layer is the production of sediment inflow interpreted as mainly derived from snowmelt during summer; each clay layer was deposited in a stillwater environment during an ice-cover period. A light -clay layer provides an important index bed to identify the annual interface. The high accumulation rates, long period of ice cover, and topographically closed basin are probably all critical factors in forming and preserving varves. Varve thickness is known to be controlled mainly by summer temperature. The variation of varve thickness in Lake Bolterskardet can then be used to reconstruct summer temperature. The varve series show that there has been distinct decade-scale variability of summer temperature over the past 150 years. Warm periods occurred in the 1860s, around 1900, the 1930s, 1950s, and 1970s, and in the last 20 years. The varved sediments of Lake Bolterskarde preserve an ideal record for high-resolution paleoclimatic and paleoenvironmental research in this data-sparse area.  相似文献   

20.
In the last 20 years, major efforts have been made to investigate shallow flow-type landslides. Such phenomena are usually rainfall-induced and in the geological context of Campania (Southern Italy) occur in pyroclastic soils resting on steep slopes mainly constituted by carbonate or volcanic bedrock and by flysch deposits. They are generally complex landslides with an early soil slide and a subsequent flow evolution. In this paper, a database of flowslides occurring in recent years within the flysch deposits of Avellino (Campanian Apennines) is first discussed and then the case study of Bosco de’ Preti landslide on March 4, 2005, is described. The geological and geotechnical characteristics of the soils involved are described and the monitoring of the groundwater heads collected over 1 year from June 2005 to June 2006 is also shown. The last part of the paper illustrates the results of numerical modelling of the landslide triggering to gain insights into such phenomena. Slope stability analyses are preceded by hydrological modelling of the slope based on the monitoring data. Numerical analysis demonstrated that the rainfall during the 2 months preceding the event was able to fully saturate the pyroclastic cover and to establish positive pore water pressure at the depth of the surface of rupture, a soil condition never witnessed in carbonatic contexts. Hence, a combination of antecedent (predisposing factors) and single rainfall events (triggering factors) led to slope failure, as usually happens in pyroclastic soils in carbonatic and volcanic contexts. Finally, analysis of the historical landslides together with detailed investigation of the Bosco de’ Preti case study permitted comparison between flow-type landslides in pyroclastic soils on carbonatic/volcanic bedrock and those on flysch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号