首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shapes of sills and laccolithic intrusions and associated host rock deformation were studied at several locations on the flanks of the Henry Mountains. Diorite sills range from 0.5 to 10 m in thickness, are less than 1 km2 in areal extent, and have blunt terminations. The laccolithic intrusions range from 10 to 200 m in thickness, and from 1 to 3 km2 in areal extent. The host rock, principally sandstone and shale, is deformed along closely spaced cataclastic shear planes. This deformation is concentrated at contacts, especially near sill terminations and over laccolith peripheries. The diorite contains plagioclase phenocrysts which are usually sheared in a thin zone adjacent to each contact. Field observations suggest that sills are the forerunners of laccolithic intrusions which form only after magma has spread far enough laterally (greater than about 1 km2 in the Henry Mountains) to gain leverage to bend the overburden upward. Further injection of magma results in laccolithic peripheries or terminations with one of three distinct cross-sectional forms: (1) blunt termination of the diorite accompanied by bending and minor faulting of the host rock; (2) termination at a peripheral diorite dike cutting upward across the host rock; or (3) abrupt termination of the diorite against a nearly vertical fault zone.In order to study some of the processes of sill and laccolith intrusion, mechanical models for the driving pressure, physical properties, and flow behavior of the diorite magma are derived and discussed. A static driving pressure (equal to the difference between total magma pressure and lithostatic pressure) of up to 700 bar is estimated. The rheological behavior of the magma in the Henry Mountains is unknown. However, flow behavior is calculated assuming three of the more common models for fluids: Newtonian viscous, pseudoplastic, and Bingham. Suspended crystals probably contributed to the finite strength of the magma (estimated to be at least 103 dyn/cm2 for the Henry Mountains magma) which enables it to support dense zenoliths and also fixes maximum limits on the lengths of sills or dikes. Pressure in magma flowing along tabular intrusions of uniform thickness drops linearly in the flow direction for all three rheological materials. Thickening of tabular intrusions tends to make the pressure drop less rapidly, but pressure drops more rapidly in the tapered region near a termination. Pressure distributions under these and other conditions are derived in order to use them in the models of host rock deformation presented in Part II.  相似文献   

2.
Laccolith intrusion has been investigated by centrifuge modelling. Silicone putty, representing magma with Bingham rheology, is intruded by overburden pressure through a circular conduit into a stack of paraffin wax layers, which represent sedimentary strata. The model intrusions evolve through a sequence of geometric forms similar to those exhibited by natural laccoliths; the results are also in accord with published mathematical analyses of laccolith formation. The model magma first flows laterally between overburden layers to form a sill. As the sill increases in area, the cover strata are arched upwards into a sinusoidal, ‘bending’ form. Subsequently, the overburden fails abruptly by kinking above the periphery of the intrusion, and the form changes to a cupola separated from surrounding horizontal strata by a sharp inflection in the layering. Finally, strata on the flanks of the cupola undergo a second episode of localized failure. The top of the dome becomes flat, and the dipping flanks become a monoclinal flexure surrounding this ‘kink’ form.A number of variables influence this evolution. Increased overburden strength, thickness of overburden strata, and total thickness of overburden all prolong the bending form to larger intrusion size, delay the localized failure which marks the cupola and kink stages, and reduce the aspect ratio of the intrusion at all stages. Effectively bonded overburden interfaces have a similar effect, but interfaces with sharply defined yield strengths enhance development of the monoclinal flexure. Magmatic driving pressure affects the rate of intrusion, but not the evolution of its form. Intrusion rate is also influenced by magma flow properties, and probably by the form of the feeder conduit. The range of final forms preserved by natural laccoliths probably results from competition between rate of intrusion, controlled by driving pressure and conduit geometry, and rate of chilling of magma in the laccoliths. The model laccoliths form in times that scale to between one and a few tens of years, in agreement with available estimates for natural laccoliths.  相似文献   

3.
珠江口盆地白云凹陷内发育大量早中新世(约15.5 Ma)浅成岩浆侵入体(侵入深度<3 km).目前对其形态特征、相互关系以及岩浆侵入诱发的强制褶皱等尚缺乏系统研究.通过利用高精度三维地震资料,细致刻画了侵入体的形态、岩浆运移通道以及岩床复合体内各岩床的空间关系,定量分析了强制褶皱与侵入体的几何关系.白云凹陷内岩浆侵入体...  相似文献   

4.
新疆塔里木盆地东北缘库鲁克塔格地区的中寒武统莫合尔山组沉积地层中发现三条形成于二叠纪末到中三叠世的基性岩床。三条岩床沿沉积岩层面顺层侵入,按照从下到上的顺序,分别为辉绿岩床(厚3m)、辉长岩床(厚20m)和粗玄岩床(厚2.5m)。三条岩床的地球化学特征相似,稀土含量高(∑REE=210×10-6~297×10-6),轻稀土元素富集((La/Yb)N =13.54~17.96),Eu负异常不明显(δEu=0.97~1.21),Ce稍具正异常(δCe=1.11~1.25)。大离子亲石元素(Rb、Ba、Th、Sr)富集,Sr具明显正异常; Ta、Nb和Hf具负异常。低氧化度(0.13~0.40)。三条岩床为同源岩浆活动的产物,岩浆源于上地幔或下地壳,但有下陆壳成分混染。三个样品的MgO含量在4%~6%之间,Mg#值在37.6~55.6之间,固结指数SI值位于18.7~29.3之间,反映原始的岩浆经历了比较明显的分异作用。粗玄岩床K-Ar年龄为255.2±7.3Ma,辉绿岩床K-Ar年龄为242.8±5.7Ma,辉长岩床Ar-Ar年龄为229.7±3.7Ma。本次岩浆侵入事件发生在南天山洋闭合之后,构造背景为造山后碰撞伸展环境。  相似文献   

5.
Sedimentary strata on top of some laccolithic intrusions are nearly horizontal and little deformed, but are bent into steeply dipping monoclinal flexures over the peripheries of these intrusions. This form of bending is not explained by previous theories of laccolithic intrusion, which predict either horizontal undeformed strata over the center and faulted strata around the periphery, or strata bent continuously into a dome. However, a slight generalization of these theories accomodates the observed form and contains the previous forms as special cases. A critical assumption is that the strength of contacts within a multilayered overburden is overcome locally by layer-parallel shear. If this strength is less than the strength of the layers themselves, then layers over the center remain bonded together and display negligible bending, whereas layers over the periphery slip over one another and are readily bent into a monoclinal flexure.  相似文献   

6.
Toward more realistic formulations for the analysis of laccoliths   总被引:1,自引:0,他引:1  
The published laccolith analyses are based on the linear plate bending theory and the a priori assumption that the width of the laccolith is fixed. This is not the case in an actual situation. The dimension of the laccolith in the horizontal plane has to result from an additional matching condition at the separation lines. The published analyses are generalized by dropping the a priori assumption that the width of the laccolith is prescribed, by assuming that the magmatic pressure is not constant, and by taking into consideration the vertical compressibility of the overburden “plate” and base in the contact region. In order to determine the magnitude of the magmatic pressure, a condition is postulated that equates the measured volume of the intruded magma in a laccolith with the corresponding analytical expression for the volume. The obtained closed-form solution appears to satisfy many of the intuitive expectations. It was evaluated numerically and the results are presented as graphs. It may be concluded that even very small laccoliths may exist, provided the magmatic pressure is sufficiently larger than the overburden weight. We also show the dependence of the laccolith size on its stratigraphic position; the thicker the overburden h the larger the size of the laccolith, for an overburden plate of given thickness, the larger the volume V of the intruded magma, the larger the laccolith width 2a and its height. The paper concludes by discussing a published analysis for laccolith with flexible underburden and overburden. It is shown that this analysis is based on a formulation that is of questionable validity.  相似文献   

7.
岩浆活动在沉积盆地中是非常广泛的.随着油气勘探领域的扩展,对沉积盆地火成岩及相关构造的研究愈加重要.沉积盆地火成构造是指在沉积盆地中由岩浆侵入或喷发作用形成的岩浆和围岩及上覆层变形构造的总和.当前,利用三维地震数据研究岩席的几何学与侵位机制取得了重要进展,开启了沉积盆地火成构造研究的新时代.三维地震分析是沉积盆地火成构...  相似文献   

8.
Finite volumes of magma moving in confinement, store hydraulic potential energy for the generation,control and transmission of power. The Pascal's principle in a hydraulic jack arrangement is used to model the vertical and lateral growth of sills. The small input piston of the hydraulic jack is equivalent to the feeder dike, the upper large expansible piston equivalent to the magmatic chamber and the inertial force of the magma in the dike is the input force. This arrangement is particularly relevant to the case of sills expanding with blunt tips, for which rapid fracture propagation is inhibited. Hydraulic models concur with experimental data that show that lateral expansion of magma into a sill is promoted when the vertical ascent of magma through a feeder dike reaches the bottom contact with an overlying, flat rigid-layer. At this point, the magma is forced to decelerate, triggering a pressure wave through the conduit caused by the continued ascent of magma further down(fluid-hammer effect). This pressure wave can provide overpressure enough to trigger the initial hydraulic lateral expansion of magma into an incipient sill, and still have enough input inertial force left to continue feeding the hydraulic system. The lateral expansion underneath the strong impeding layer, causes an area increase and thus, further hydraulic amplification of the input inertial force on the sides and roof of the incipient sill, triggering further expansion in a self-reinforcing process. Initially, the lateral pressure increase is larger than that in the roof allowing the sill to expand. However, expansion eventually increases the total integrated force on the roof allowing its uplift into either a laccolith, if the roof preserves continuity, or into a piston bounded by a circular set of fractures. Hydraulic models for shallow magmatic chambers, also suggest that laccolith-like intrusions require the existence of a self-supported chamber roof. In contrast, if the roof of magmatic chambers loses the self-supporting capacity, lopoliths and calderas should be expected for more or less dense magmas, respectively, owing to the growing influence of the density contrast between the host rock and the magma.  相似文献   

9.
The Koktokay pegmatite-type rare-metal-bearing ore district in the Altai orogen is famous for both its large scale and its diversity of rare metals. However, the emplacement mechanisms of the ore-bearing pegmatite intrusions in the Koktokay ore district are still unclear. Based on field observations, the emplacement of the ore-bearing pegmatite intrusions falls into two types. The first type is typical of the formation of dykes and sills, whereby they intruded into fan shaped, moderate dipping, joints within plutonic rocks. The second type involves the formation of a punched laccolith that was fed by a pegmatite sill. Magmatic stoping is the main mechanism of the laccolith emplacement. The peripheral faults played an important role in helping the emplacement of the laccolith. The trend of dykes and sills indicate two potential prospecting areas, which are located in the western and northern regions of the Koktokay ore district.  相似文献   

10.
The tholeiitic Basistoppen sill was intruded into the upper part of the Skaergaard complex shortly after the Skaergaard magma had solidified. Heat from the cooling Basistoppen magma caused disequilibrium partial melting in the adjacent Skaergaard ferrogabbros. Olivine, ferrobustamite, and magnetite were selectively melted and removed from the rock as an iron-rich melagabbro magma. Plagioclase acted as a refractory phase during partial melting and was left behind as an anorthositic gabbro restite. Modal and grain-size layering formed rheomorphically in the previously solidified host rocks as a result of partial melting and recrystallization. The rheomorphic layers are distinct from those found elsewhere in the intrusion.The extreme degree of contact metamorphism adjacent to the Basistoppen sill is a consequence of the intrusion of the sill into host rocks that were already near their melting temperature. It is suggested that the slow reaction rates between plagioclase and magma inhibited the dissolution of plagioclase relative to olivine, pyroxene, and opaque oxides and resulted in disequilibrium partial melting. The presence of anorthositic gabbro blocks within the Middle Zone of the Skaergaard intrusion indicates that disequilibrium partial melting may also occur during the assimilation of gabbroic xenoliths by magmas.  相似文献   

11.
An extensive suite of igneous sills was intruded into the Tertiary sedimentary section of the Jiaojiang sag,East China Sea.This suite has been well imaged offshore through 2D and 3D seismic surveys,showing a close relationship with CO2 content in nearby gas discoveries.A new observational model,which incorporates simple upward propagation,simple horizontal propagation,and transgressive propagation,was proposed to interpret these sill intrusions.In this model,the source magma of the saucer-shaped sills was injected from their lowest points near the center.The transgressive propagation can be interpreted as a combination of the vertical and horizontal propagation.Most shallow sub-volcanic intrusions in the Jiaojiang sag exhibit fingered characteristics,both vertically and horizontally.The vertical fingered propagation produced saucer-shaped sills arranged in the flower style.Along the brims of lower sills could usually be found the upper sills,which are interpreted to have formed simultaneously with or later than the lower feeder sills.In the second type,the chilled paths of the older sills were reutilized by subsequent intrusions.The horizontal fingered propagation formed sheet intrusions that exhibit groove,lobate,tubular,and crevasse splaylike geometry in plan view.In 3D view,the sheet intrusions have still preserved the lower center and higher rim that similar with the sub-rounded saucer-shaped sills.Although fracture propagation may be important,flow inflation was the key mechanism of magma intrusion.Further consideration of the mechanisms underlying sill formation may help explain the fingered characteristics of sill propagation.  相似文献   

12.
In the Yangliu Mine in Huaibei Coalfield, violent magma intrusion produced two layers of the igneous cover sills and the annular dike and caused the ejection of gas and water in the bed splitting from the surface well that destroyed the gas extraction system on the surface. The source, flow characteristics and hazard of the gas in bed splitting under igneous sills were researched via laboratory experiments, theoretical analyses and numerical simulations. The experimental results indicate that the shorter the distance from the igneous sill and the larger the thickness of the igneous sill, the greater will be the amount of the thermal evolution, the pyrolysis stoma, the coal adsorption and desorption ability and the risk of outburst, six coal samples collected at different distances from the igneous sill. The first breaking length of the igneous sill, the volume of the bed splitting, the gas pressure and flow rate in the bed splitting and the accumulative volume of the gas ejected from the surface well #2 were theoretically calculated. The laws of the bed splitting development under the igneous sills were simulated, consistent with the theoretical calculation results. The regional control and prevention technologies for coal seam gas under igneous sills were proposed and applied. Then the safety of the first-mining seam production and the gas extraction in the adjacent seam and bed splitting via the surface well was ensured, and no accidental gas and water ejection occurred.  相似文献   

13.
Deformation structures in the wall rocks of igneous intrusions emplaced at shallow crustal depths preserve an important record of how space was created for magma in the host rocks. Trachyte Mesa, a small Oligocene age intrusion in the Henry Mountains, Utah, is composed of a series of stacked tabular, sheet-like intrusions emplaced at 3–3.5 km depth into sandstone-dominated sedimentary sequences of late Palaeozoic–Mesozoic age. New structural analysis of the spatial distribution, geometry, kinematics and relative timings of deformation structures in the host rocks of the intrusion has enabled the recognition of distinct pre-, syn-, and late-stage-emplacement deformation phases. Our observations suggest a two-stage growth mechanism for individual sheets where radial growth of a thin sheet was followed by vertical inflation. Dip-slip faults formed during vertical inflation; they are restricted to the tips of individual sheets due to strain localisation, with magma preferentially exploiting these faults, initiating sill (sheet) climbing. The order in which sheets are stacked impacts on the intrusion geometry and associated deformation of wall rocks. Our results offer new insights into the incremental intrusion geometries of shallow-level magmatic bodies and the potential impact of their emplacement on surrounding host rocks.  相似文献   

14.
This study presents a numerical investigation of the effect of volatilization and the supercritical state of pore water on maturation of organic matter in host rocks based on the heat flow models assuming the instantaneous and finite-time intrusion mechanisms of magma. A 15 m thick, well-dated basic sill in the DSDP 41-368 hole near Cape Verde Rise, eastern Atlantic is selected as an example due to the sufficient thermophysical parameters of rocks and the definite burial and thermal history of the shale host rocks. Results indicate: (1) The effect of the temperature-dependent thermal properties of pore water at a hydrostatic pressure of 414 bar on the predicted vitrinite reflectance (Rr) is less than 0.1% no matter which intrusion mechanism of magma is assumed and can hence be ignored reasonably; (2) The consideration of volatilization of pore water can reduce the predicted Rr of host rocks significantly. In case of the instantaneous intrusion mechanism, the maximum deviation of the predicted Rr caused by pore-water volatilization reaches 1.3% at the location of half the sill thickness away from the contact (i.e. X/D = 0.5), and the deviation above 0.5% can occur in the region from 0.3 to 1.0 in the form of X/D. In case of the finite-time intrusion mechanism, the maximum deviation of the predicted Rr due to pore-water volatilization attains 1.15% at X/D = 0.25, and the region where the deviation is larger than 0.5% lies between 0.15 and 0.6 in the form of X/D; (3) If hydrothermal convection in the host rocks is allowed for, the predicted Rr of the overlying host rocks is less than that of the underlying host rocks at the same X/D in the inner region of the contact aureole of igneous intrusions, whereas the phenomenon is converse in the outer region. In contrast, the measured Rr profile shows that at the same X/D, Rr of the overlying host rocks is totally higher than that of the underlying host rocks. Thus, it is not the hydrothermal convection in the overlying host rocks that resulted in the asymmetry of the current Rr profiles below and above the sill; (4) The predicted Rr based on the heat conduction model assuming the finite-time intrusion mechanism and pore-water volatilization matches well with the measured one out of the region where the Rr geothermometer is unreliable due to the effect of volatilization of pore water. This demonstrates that the finite-time intrusion mechanism of magma, together with pore-water volatilization, possibly represents natural conditions.  相似文献   

15.
The stratigraphy and geological position of the eastern compartment of the Bushveld Complex are described. A mechanical model for the initiation and growth of the eastern compartment of the Bushveld intrusion has been developed using thin elastic plate theory, assuming linked conical magma chambers. It is shown that the contribution to the pressure at the base of a cell by the restitutional force exerted by the roof of Rooiberg felsites is 104 times as great as that of the layers of host in the cone. Both are minimal compared to the lithostatic pressure exerted by the magma pile. Roof deformation is therefore seen to be a more important process than sagging of the floor during intrusion—a feature which probably occurred during cooling, solidification and isostatic readjustment of the area.A stratigraphie model is proposed in which the intrusion of basic rocks into the Transvaal sequence is discussed in the light of continuous basin subsidence. Early submarine sedimentation in an irregularly-floored basin some 620 km in diameter situated on the Archaean craton gave rise to a 7.7 km thick sedimentary pile, to which was added some 7 km of subaerial basalts and felsites. Depression of the floor of the basin into the regime of maximum horizontal compression induced favourable conditions for the intrusion of a total of 2.5 km of diabase sills which further assisted the subsidence. The 9 km thick Bushveld Complex was intruded into the basal sections at points along a 010° trend in a regime characterised by shear failure. Early magma influxes gave rise to a laminated marginal zone forming a shallow cone, with associated sill activity, whilst continued later influxes filled the conical cell, transgressed the floor and uparched the roof. Partial melting in the regions beneath the Complex, exacerbated by continued crustal depression, gave rise to the late Bushveld granites.  相似文献   

16.
由于蕴含着潜在的油气勘探和资源储藏信息,岩床复合体在全球范围内被广泛研究。本文基于南海北部三维地震资料以及南极罗斯海地区二维多道地震资料,对岩床复合体的形态特征及分布进行分析,对两个地区岩床复合体的形成时间进行判断,阐述岩床复合体的侵位机制。研究发现,岩床复合体代表性产状除了菱形、碟形及复合型外,还存在沿着层位平行侵入的板状,推测它可能是夭折了的岩床侵入体,以及由几个小型岩床堆叠而成的透镜状岩床复合体。分布上,南海北部岩床主要发育于珠江口盆地白云凹陷三维工区西部,东部只零星可见;南极西罗斯海岩床主要发育于西北角的阿黛尔盆地内。根据岩床上覆的强制褶皱结合区域构造背景,推测南海北部岩床复合体的形成时间为早中新世(15.5 Ma),海底扩张结束之时。残余岩浆将盆地内裂谷时期形成的断层作为岩浆运移的通道,并最终在断层终点处即下中新统近海相砂泥岩地层中实现侵位。南极西罗斯海岩床复合体的形成时间则非常晚,不早于5.5 Ma。该区这期岩浆活动可能与构造作用无关,而是受到冰川消融的影响。研究发现岩床复合体内部的岩床个体互相供给,即深部的大岩床为上覆浅层的小岩床提供岩浆供给,并且互相组合,形成大的岩床复合体。然而,每个岩床复合体则可能由不同的岩浆供给发育而成。  相似文献   

17.
The emplacement of the Mesoproterozoic G?temar Pluton into Paleoproterozoic granitoid host rocks of the Transscandinavian Igneous Belt is re-examined by microfabric analysis, including cathodoluminescence microscopy. Field data on the pluton-host rock system are used to strengthen the model. The G?temar Pluton, situated on the Baltic Shield of SE Sweden, is a horizontally zoned tabular structure that was constructed by the intrusion of successive pulses of magma with different crystal/melt ratios, at an estimated crustal depth of 4–8?km. Initial pluton formation involved magma ascent along a vertical dike, which was arrested at a mechanical discontinuity within the granitoid host rocks; this led to the formation of an initial sill. Subsequent sill stacking and their constant inflation resulted in deformation and reheating of existing magma bodies, which also raised the pluton roof. This multi-stage emplacement scenario is indicated by complex dike relationships and the occurrence of several generations of quartz (Si-metasomatism). The sills were charged by different domains of a heterogeneous magma chamber with varying crystal/melt ratios. Ascent or emplacement of magma with a high crystal/melt ratio is indicated by syn-magmatic deformation of phenocrysts. Complex crystallization fabrics (e.g. oscillatory growth zoning caused by high crystal defect density, overgrowth and replacement features, resorbed and corroded crystal cores, rapakivi structure) are mostly related to processes within the main chamber, that is repeated magma mixing or water influx.  相似文献   

18.
Major and trace element data for the Tertiary, Shiant IslesMain Sill, NW Scotland, are used to discuss its complex internaldifferentiation. Vertical sections through the sill exhibitsharp breaks in chemistry that coincide with changes in texture,grain size and mineralogy. These breaks are paired, top andbottom, and correspond to the boundaries of intrusive units,confirming a four-phase multiple-intrusion model based on fieldrelations, petrography, mineralogy and isotopes. Whole-rockchemistry is consistent with this model and necessitates onlyminor revisions to the intrusive and differentiation mechanismspreviously proposed. The rocks contain strongly zoned minerals(e.g. olivine Fo70–5, clinopyroxene Mg# = 75–5,plagioclase An75–5) indicating almost perfect fractionalcrystallization, but whole-rock compositions do not show suchextreme variations. Thus, while residual liquids became highlyevolved in situ, they mainly became trapped within the crystalnetwork and did not undergo wholesale inward migration. Someinward (mainly upward) concentration of residual liquids didoccur to form a ‘sandwich horizon’, but the morevolatile-rich, late-stage liquids that did not crystallize insitu appear to have migrated to higher levels in the sill toform pegmatitic horizons. Parental liquid compositions are modelledfor the intrusive units and it is concluded that the originalparent magma formed by partial melting of upper mantle thatwas more depleted in LREE than the sources of most ScottishTertiary basaltic rocks. Incompatible trace elements in thepicrodolerite–crinanite intrusive unit support isotopeevidence that its parent magma was contaminated by crustal material.Attempts to reconcile the chemical characteristics of the sillwith a recently proposed petrogenetic model based on a singleintrusion of magma differentiated by novel, but controversial,processes fail comprehensively. It is predicted that the complexpetrogenetic history of the Shiant Isles sill is not unusualand could become the model for other large (>50 m thick)sills. KEY WORDS: alkali basalt; differentiation; geochemistry; multiple intrusion; Shiant Isles; sill  相似文献   

19.
A two-dimensional mechanical model for sheet intrusions based on the elastic deformation around a pressurized elliptical hole is derived. After evaluating the effects of irregularities in contact shape, possible magma pressure distributions, regional boundary conditions, host rock properties, and interference from adjacent intrusions the model can be applied with confidence to understand many features associated with dike or sill emplacement. Three mechanisms for sheet intrusion propagation are extension fracturing, brittle faulting, and ductile faulting. This deformation is concentrated at the intrusion termination, the site of large principal stress differences and large stress gradients. In both brittle and ductile host rock the magma pressure needs only barely to exceed the regional stress acting normal to the intrusion's length for propagation to occur. Propagation direction is controlled by the regional stress orientation, interference from adjacent intrusions, planar discontinuities, and changes in host rock properties. The classic method of distinguishing dilational from non-dilational intrusions may not work because contacts are not planar or parallel and displacements are not everywhere perpendicular to the intrusion's length. Equations are derived for calculating the magma pressure for intrusions in relatively simple tectonic settings.  相似文献   

20.
Tholeiitic rocks of the Ferrar Large Igneous Province (FLIP) occur in a linear belt from the Theron Mountains to Horn Bluff in the Transantarctic Mountains and extend into southeastern Australasia. The FLIP was emplaced during the initial stages of Gondwana break-up from a source suggested to be in the proto-Weddell Sea region. Magma transport from its source (Weddell triple junction) was controlled by an Early Jurassic zone of extension. The FLIP comprises the Dufek intrusion, Ferrar Dolerite sills and dykes (sheet intrusions), and extrusive rocks consisting of pyroclastic strata overlain by Kirkpatrick Basalt lavas. The Dufek intrusion occurs in deformed supracrustal rocks of the foldbelt along the paleo-Pacific Gondwana margin. A few sills were emplaced in basement rocks, but the majority of the sheet intrusions occur in flat-lying Devonian to Triassic Beacon strata. Only in the central Transantarctic Mountains (CTM) and south and north Victoria Land (SVL, NVL) are extrusive rocks preserved overlying Beacon strata. The greatest cumulative thicknesses of magmatic rocks (ca. 2 km) occur in areas where lavas are preserved (CTM and SVL). Sheet intrusions have complex relationships. Dyke swarms (sensu stricto) are unknown and dykes cutting basement rocks are uncommon. Nevertheless, these dykes, including a 30-m-wide dyke in SVL, suggest that some magmas locally migrated up through basement rocks. In CTM and NVL the outcrop belt has a width of about 160 km. Sills originally extended farther toward the plate margin but have been cut out by erosion and Cenozoic faulting, most clearly in CTM; geophysical data suggest extension under the East Antarctic ice sheet for at least 100 km. Although Early Jurassic extension is documented in CTM, major rift-bounding faults have not been observed. Models for magma emplacement include transport along the axis of the Transantarctic Mountains and off-axis transport from major rift-bounding faults. Contrasts in geochemistry between lavas of NVL (MgO=67%) and CTM (MgO=24%) and the presence of massive dolerite bodies (CTM, SVL) suggest discrete episodes and locations of magma emplacement, and that there was no long range interconnection along the mountain range in supracrustal rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号