首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
River discharge forms a major freshwater input into the Arctic Ocean, and as such it has the potential to influence the oceanic circulation. As the hydrology of Arctic river basins is dominated by cryospheric processes such as snow accumulation and snowmelt, it may also be highly sensitive to a change in climate. Estimating the water balance of these river basins is therefore important, but it is complicated by the sparseness of observations and the large uncertainties related to the measurement of snowfalls. This study aims at simulating the water balance of the Barents Sea drainage basin in Northern Europe under present and future climate conditions. We used a regional climate model to drive a large-scale hydrological model of the area. Using simulated precipitation derived from a climate model led to an overestimation of the annual discharge in most river basins, but not in all. Under the B2 scenario of climate change, the model simulated a 25% increase in freshwater runoff, which is proportionally larger than the projected precipitation increase. As the snow season is 30–50 day shorter, the spring discharge peak is shifted by about 2–3 weeks, but the hydrological regime of the rivers remains dominated by snowmelt.  相似文献   

2.
Here we investigate simulated changes in the precipitation climate over the Baltic Sea and surrounding land areas for the period 2071–2100 as compared to 1961–1990. We analyze precipitation in 10 regional climate models taking part in the European PRUDENCE project. Forced by the same global driving climate model, the mean of the regional climate model simulations captures the observed climatological precipitation over the Baltic Sea runoff land area to within 15% in each month, while single regional models have errors up to 25%. In the future climate, the precipitation is projected to increase in the Baltic Sea area, especially during winter. During summer increased precipitation in the north is contrasted with a decrease in the south of this region. Over the Baltic Sea itself the future change in the seasonal cycle of precipitation is markedly different in the regional climate model simulations. We show that the sea surface temperatures have a profound impact on the simulated hydrological cycle over the Baltic Sea. The driving global climate model used in the common experiment projects a very strong regional increase in summertime sea surface temperature, leading to a significant increase in precipitation. In addition to the common experiment some regional models have been forced by either a different set of Baltic Sea surface temperatures, lateral boundary conditions from another global climate model, a different emission scenario, or different initial conditions. We make use of the large number of experiments in the PRUDENCE project, providing an ensemble consisting of more than 25 realizations of climate change, to illustrate sources of uncertainties in climate change projections.  相似文献   

3.
Compared to other phytoplankton groups, nitrogen-fixing cyanobacteria generally prefer high water temperatures for growth and are therefore expected to benefit from global warming. We use a coupled biological-physical model with an advanced cyanobacteria life cycle model to compare the abundance of cyanobacteria in the Baltic Sea during two different time periods (1969–1998; 2069–2098). For the latter, we find prolonged growth and a more than twofold increase in the climatologically (30 years) averaged cyanobacteria biomass and nitrogen fixation. Additional sensitivity experiments indicate that the biological-physical feedback mechanism through light absorption becomes more important with global warming. In general, we find a nonlinear response of cyanobacteria to changes in the atmospheric forcing fields as a result of life-cycle related feedback mechanisms. Overall, the sensitivity of the cyanobacteria-driven system suggests that biological-physical and life-cycle related feedback mechanisms are important and must therefore be included in future projection studies.  相似文献   

4.
Storm surges in the Western Baltic Sea: the present and a possible future   总被引:3,自引:1,他引:2  
Globally-coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature or mean sea level. However, the global models do not perform as well on regional/local scales. Here, we present results from four 100-year ocean model experiments for the Western Baltic Sea. In order to simulate storm surges in this region, we have used the General Estuarine Transport Model (GETM) as a high-resolution local model (spatial resolution ≈ 1?km), nested into a regional atmospheric and regional oceanic model in a fully baroclinic downscaling approach. The downscaling is based on the global model ECHAM5/MPI-OM. The projections are imbedded into two greenhouse-gas emission scenarios, A1B and B1, for the period 2000–2100, each with two realisations. Two control runs from 1960 to 2000 are used for validation. We use this modelling system to statistically reproduce the present distribution of surge extremes. The usage of the high-resolution local model leads to an improvement in surge heights of at least 10% compared to the driving model. To quantify uncertainties associated with climate projections, we investigate the impact of enhanced wind velocities and changes in mean sea levels. The analysis revealed a linear dependence of surge height and mean sea level, although the slope parameter is spatially varying. Furthermore, the modelling system is used to project possible changes within the next century. The results show that the sea level rise has greater potential to increase surge levels than does increased wind speed. The simulations further indicate that the changes in storm surge height in the scenarios can be consistently explained by the increase in mean sea level and variation in wind speed.  相似文献   

5.
Projections of a drier, warmer climate in the U.S. Southwest would complicate management of the Colorado River system—yet these projections, often based on coarse resolution global climate models, are quite uncertain. We present an approach to understanding future Colorado River discharge based on land surface characterizations that map the Colorado River basin’s hydrologic sensitivities (e.g., changes in streamflow magnitude) to annual and seasonal temperature and precipitation changes. The approach uses a process-based macroscale land surface model (LSM; in this case, the Variable Infiltration Capacity hydrologic model, although methods are applicable to any LSM) to develop sensitivity maps (equivalent to a simple empirical model), and uses these maps to evaluate long-term annual streamflow responses to future precipitation and temperature change. We show that global climate model projections combined with estimates of hydrologic sensitivities, estimated for different seasons and at different change increments, can provide a basis for approximating cumulative distribution functions of streamflow changes similar to more common, computationally intensive full-simulation approaches that force the hydrologic model with downscaled future climate scenarios. For purposes of assessing risk, we argue that the sensitivity-based approach produces viable first-order estimates that can be easily applied to newly released climate information to assess underlying drivers of change and bound, at least approximately, the range of future streamflow uncertainties for water resource planners.  相似文献   

6.
This study considers the possible use of different kinds of forcing datasets in Baltic Sea ocean climate modelling on centennial time scales, in particular for the past half millennium. We demonstrate that high-quality station data of the past century and gridded multi-proxy reconstructions for the past 500 years can be used with great success but with various levels of detail. We also demonstrate that output data from the state-of-the-art global climate model EcHo-G are not suitable for modelling the Baltic Sea ocean climate. Two climate properties were studied: the annual maximum ice extent (MIB) and the vertically and horizontally integrated annual water temperature. Centennial time scale results indicate that the seventeenth and nineteenth centuries were the coldest centuries, while the 1690s were the coldest decade and 1695 the coldest year in the last 500 years. The results also indicate that the twentieth century was the warmest century with the least MIB of the last 500 years. On a decadal time scale, the 1990s, 1930s and 1730s were the warmest decades and comparable in terms of both water temperature and MIB. The year 1989 had the minimum observed MIB of only 52,000 km2, implying that the Baltic Sea has been partly ice covered in all winters of the past half millennium. Even though different climate forcing mechanisms may operate on the climate system today compared to over the last half millennium, this study cannot clearly state that the region is experiencing climate change outside the natural limits of the past 500 years.  相似文献   

7.
A regional ocean circulation model was used to project Baltic Sea climate at the end of the twenty-first century. A set of four scenario simulations was performed utilizing two global models and two forcing scenarios. To reduce model biases and to spin up future salinity the so-called Δ-change approach was applied. Using a regional coupled atmosphere–ocean model 30-year climatological monthly mean changes of atmospheric surface data and river discharge into the Baltic Sea were calculated from previously conducted time slice experiments. These changes were added to reconstructed atmospheric surface fields and runoff for the period 1903–1998. The total freshwater supply (runoff and net precipitation) is projected to increase between 0 and 21%. Due to increased westerlies in winter the annual mean wind speed will be between 2 and 13% larger compared to present climate. Both changes will cause a reduction of the average salinity of the Baltic Sea between 8 and 50%. Although salinity in the entire Baltic might be significantly lower at the end of the twenty-first century, deep water ventilation will very likely only slightly change. The largest change is projected for the secondary maximum of sea water age within the halocline. Further, the average temperature will increase between 1.9 and 3.2°C. The temperature response to atmospheric changes lags several months. Future annual maximum sea ice extent will decrease between 46 and 77% in accordance to earlier studies. However, in contrast to earlier results in the warmest scenario simulation one ice-free winter out of 96 seasons was found. Although wind speed changes are uniform, extreme sea levels may increase more than the mean sea level. In two out of four projections significant changes of 100-year surge heights were found.  相似文献   

8.
Climate indices facilitate the interpretation of expected climate change impacts for many sectors in society, economy, and ecology. The new localized data set of climatic change signals for temperature and precipitation presented by Zubler et al. (Clim Change, 2013) is applied for an analysis of frequently used climate indices in Switzerland. The indices considered are: number of summer days and tropical nights, growing season length, number of frost days and ice days, heating and cooling degree days, and the number of days with fresh snow. For the future periods 2020-49, 2045-74 and 2070–2099 the indices are computed using a delta-change approach based on the reference period 1980–2009 for the emission scenarios A1B, A2, and RCP3PD. The scenario data suggest the following relevant findings: (1) a doubling of the number of summer days by the end of the century under the scenarios A1B and A2, (2) an appearance of tropical nights even above 1500 m asl, (3) a possible reduction of the number of frost days by more than 3 months at altitudes higher than 2500 m asl, (4) a decline of heating degree days by about 30 % until the end of the century, and (5) the near disappearance of days with fresh snow at low altitudes. It is also shown that the end-of-the-century projections of all indices strongly depend on the chosen emission scenario.  相似文献   

9.
黄河流域未来气候-水文变化的模拟研究   总被引:3,自引:0,他引:3  
将大尺度半分布式水文模型VIC应用到黄河上中游流域(花园口水文断面以上),并利用区域气候模式RegCM4.0单向嵌套全球气候模式BCC_CSM1.1,动力降尺度到黄河流域的模拟结果驱动VIC模型,开展在新的典型浓度路径下(RCP4.5和RCP8.5)黄河流域未来气候和水文变化的离线模拟。模拟结果显示,在RCP4.5和RCP8.5排放情景下,黄河流域21世纪平均地表气温相对于1971—2000年均呈显著上升趋势,2019—2048年上升1.2—1.5℃,2069—2098年上升2.19—3.9℃。未来年平均降水量有微弱的增大,2019—2048年增幅为6%左右,2069—2098年增幅为1.4%—5.6%。未来蒸发量增大明显,2069—2098年年平均蒸发量最大可增加9.6%。2019—2048年花园口水文站的年平均径流量增大3.4%—7.4%,2069—2098年年平均径流量转为减少,减幅为3.3%—5.3%。黄河上游地区未来气候和水文变化趋势与黄河流域基本一致,但未来年径流量变幅低于黄河流域,相对比较稳定。  相似文献   

10.
11.
Sea ice variability in the Barents Sea and its impact on climate are analyzed using a 465-year control integration of a global coupled atmosphere–ocean–sea ice model. Sensitivity simulations are performed to investigate the response to an isolated sea ice anomaly in the Barents Sea. The interannual variability of sea ice volume in the Barents Sea is mainly determined by variations in sea ice import into Barents Sea from the Central Arctic. This import is primarily driven by the local wind field. Horizontal oceanic heat transport into the Barents Sea is of minor importance for interannual sea ice variations but is important on longer time scales. Events with strong positive sea ice anomalies in the Barents Sea are due to accumulation of sea ice by enhanced sea ice imports and related NAO-like pressure conditions in the years before the event. Sea ice volume and concentration stay above normal in the Barents Sea for about 2 years after an event. This strongly increases the albedo and reduces the ocean heat release to the atmosphere. Consequently, air temperature is much colder than usual in the Barents Sea and surrounding areas. Precipitation is decreased and sea level pressure in the Barents Sea is anomalously high. The large-scale atmospheric response is limited with the main impact being a reduced pressure over Scandinavia in the year after a large ice volume occurs in the Barents Sea. Furthermore, high sea ice volume in the Barents Sea leads to increased sea ice melting and hence reduced surface salinity. Generally, the climate response is smallest in summer and largest in winter and spring.  相似文献   

12.
Exploring the characteristic of the extreme climatic events, especially future projection is considerably important in assessing the impacts of climatic change on hydrology and water resources system. We investigate the future patterns of climate extremes (2001–2099) in the Haihe River Basin (HRB) derived from Coupled General Circulation Model (CGCM) multimodel ensemble projections using the Bayesian Model Average (BMA) approach, under a range of emission scenarios. The extremes are depicted by three extreme temperature indices (i.e., frost days (FD), growing season length (GSL), and T min >90th percentile (TN90)) and five extreme precipitation indices (i.e., consecutive dry days (CDD), precipitation ≥10 mm (R10), maximum 5-day precipitation total (R5D), precipitation >95th percentile (R95T), and simple daily intensity index (SDII)). The results indicate frost days display negative trend over the HRB in the 21st century, particularly in the southern basin. Moreover, a greater season length and more frequent warm nights are also projected in the basin. The decreasing CDD, together with the increasing R10, R5D, R95T, and SDII in the 21st century indicate that the extreme precipitation events will increase in their intensity and frequency in the basin. Meanwhile, the changes of all eight extremes climate indices under A2 and A1B scenarios are more pronounced than in B1. The results will be of practical significance in mitigation of the detrimental effects of variations of climatic extremes and improve the regional strategy for water resource and eco-environment management, particularly for the HRB characterized by the severe water shortages and fragile ecological environment.  相似文献   

13.
The future changes of atmospheric blocking over the Euro-Atlantic sector, diagnosed from an ensemble of 17 global-climate simulations obtained with the ECHAM5/MPI-OM model, are shown to be largely explainable from the change of the 500 hPa mean zonal circulation and its variance. The reduction of the blocking frequency over the Atlantic and the increased frequency of easterly upper-level flow poleward of 60°N are well explained by the changes of mean zonal circulation. In winter and autumn an additional downstream shift of the frequency maximum is simulated. This is also seen in a subset of the CMIP5 models with RCP8.5. To explain this downstream shift requires the inclusion of the changing variance. It is suggested that the increased downstream variance is caused by the stronger, more eastward extending future jet, which promotes Rossby wave breaking and blocking to occur further downstream. The same relation between jet-strength and central-blocking longitude is found in the variability of the current climate.  相似文献   

14.
For two consecutive days during spring 1997, the windfield over the Baltic Sea has been studied. Thestrength of the geostrophic wind speed is the majordifference in synoptic conditions between these twodays. During both days, the mesoscale wind field overmost of the Baltic Sea is quite heterogeneous; themodifications primarily being caused by the land-seacontrasts. On the day with the weaker wind speed,sea-breeze circulations develop. As a consequence, thewind direction at lower levels is more or lessopposite to the geostrophic over large areas of theBaltic Sea and the surface wind speed decreases withoffshore distance. Wind speed maxima caused by the seabreezes are found along the east coasts in the studiedarea. For the other day, the slow growth of a stableinternal boundary layer over the sea also gives asurface wind speed decrease with offshore distancefrom the coast.  相似文献   

15.
The surface ocean explains a considerable part of the inter-annual Tropical Atlantic variability. The present work makes use of observational datasets to investigate the effect of freshwater flow on sea surface salinity (SSS) and temperature (SST) in the Gulf of Guinea. In particular, the Congo River discharges a huge amount of freshwater into the ocean, affecting SSS in the Eastern Equatorial Atlantic (EEA) and stratifying the surface layers. The hypothesis is that an excess of river runoff emphasize stratification, influencing the ocean temperature. In fact, our findings show that SSTs in the Gulf of Guinea are warmer in summers following an anomalously high Congo spring discharge. Vice versa, when the river discharges low freshwater, a cold anomaly appears in the Gulf. The response of SST is not linear: temperature anomalies are considerable and long-lasting in the event of large freshwater flow, while in dry years they are less remarkable, although still significant. An excess of freshwater seems able to form a barrier layer, which inhibits vertical mixing and the entrainment of the cold thermocline water into the surface. Other processes may contribute to SST variability, among which the net input of atmospheric freshwater falling over EEA. Likewise the case of continental runoff from Congo River, warm anomalies occur after anomalously rainy seasons and low temperatures follow dry seasons, confirming the effect of freshwater on SST. However, the two sources of freshwater anomaly are not in phase, so that it is possible to split between atypical SST following continental freshwater anomalies and rainfall anomalies. Also, variations in air-sea fluxes can produce heating and cooling of the Gulf of Guinea. Nevertheless, atypical SSTs cannot be ascribed to fluxes, since the temperature variation induced by them is not sufficient to explain the SST anomalies appearing in the Gulf after anomalous peak discharges. The interaction processes between river runoff, sea surface salinity and temperature play an effective role in the interannual variability in the EEA region. Our results add a new source of variability in the area, which was often neglected by previous studies.  相似文献   

16.
He  Yi  Wang  Fei  Mu  Xingmin  Guo  Lanqin  Gao  Peng  Zhao  Guangju 《Theoretical and Applied Climatology》2017,129(1-2):645-654
Theoretical and Applied Climatology - We analyze the variability of sediment discharge and runoff in the Hekou–Longmen segment in the middle reaches of the Yellow River, China. Our analysis...  相似文献   

17.
18.
Extra-tropical cyclones in the present and future climate: a review   总被引:5,自引:0,他引:5  
Based on the availability of hemispheric gridded data sets from observations, analysis and global climate models, objective cyclone identification methods were developed and applied to these data sets. Due to the large amount of investigation methods combined with the variety of different datasets, a multitude of results exist, not only for the recent climate period but also for the next century, assuming anthropogenic changed conditions. Different thresholds, different physical quantities, and considerations of different atmospheric vertical levels add to a picture that is difficult to combine into a common view of cyclones, their variability and trends, in the real world and in GCM studies. Thus, this paper will give a comprehensive review of the actual knowledge on climatologies of mid-latitude cyclones for the Northern and Southern Hemisphere for the present climate and for its possible changes under anthropogenic climate conditions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号