首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The topography and geomorphology of the sand dunes and interdunal valleys in the Nebraska Sand Hills play important roles in regional water cycle by influencing groundwater recharge and evapotranspiration (ET). In this study, groundwater recharge, associated with precipitation and ET as well as soil hydraulics, and its spatial variations owing to the topography of dunes and valleys are examined. A method is developed to describe the recharge as a function of the storage capacity of dunes of various heights. After the method is tested using observations from a network of wells in the Sand Hills, it is used in the MODFLOW model to simulate and describe recharge effects on groundwater table depth at two different dune-valley sites. Analysis of modeled groundwater budget shows that the groundwater table depth in the interdunal valleys is critically influenced by vertical groundwater flows from surrounding dunes. At the site of higher dunes there are steadier and larger vertical groundwater flows in the dunes from their previous storage of precipitation. These vertical flows change to be horizontal converging groundwater flows and create upwelling in the interdunal valleys, where larger ET loss at the surface further enhances groundwater upwelling. Such interdunal valley is the major concentration area of the surface water and groundwater flow in the Sand Hills. At the site of shallow dunes and a broad interdunal valley the supply of groundwater from the dunes is trivial and inadequate to support upwelling of groundwater in the valley. The groundwater flows downward in the valley, and the valley surface is dry. Weak ET loss at the surface has a smaller effect on the groundwater storage than the precipitation recharge, making such area a source for groundwater.  相似文献   

2.
Although the ingestion of vanadium (V) in drinking water may have possible adverse health effects, there have been relatively few studies of V in groundwater. Given the importance of groundwater as a source of drinking water in many areas of the world, this study examines the potential sources and geochemical processes that control the distribution of V in groundwater on a regional scale. Potential sources of V to groundwater include dissolution of V rich rocks, and waste streams from industrial processes. Geochemical processes such as adsorption/desorption, precipitation/dissolution, and chemical transformations control V concentrations in groundwater. Based on thermodynamic data and laboratory studies, V concentrations are expected to be highest in samples collected from oxic and alkaline groundwater. However, the extent to which thermodynamic data and laboratory results apply to the actual distribution of V in groundwater is not well understood. More than 8400 groundwater samples collected in California were used in this study. Of these samples, high (≥50 µg/L) and moderate (25 to 49 µg/L) V concentrations were most frequently detected in regions where both source rock and favorable geochemical conditions occurred. The distribution of V concentrations in groundwater samples suggests that significant sources of V are mafic and andesitic rock. Anthropogenic activities do not appear to be a significant contributor of V to groundwater in this study. High V concentrations in groundwater samples analyzed in this study were almost always associated with oxic and alkaline groundwater conditions, which is consistent with predictions based on thermodynamic data.  相似文献   

3.
We examined the contributions of bedrock groundwater to the upscaling of storm‐runoff generation processes in weathered granitic headwater catchments by conducting detailed hydrochemical observations in five catchments that ranged from zero to second order. End‐member mixing analysis (EMMA) was performed to identify the geographical sources of stream water. Throughfall, hillslope groundwater, shallow bedrock groundwater, and deep bedrock groundwater were identified as end members. The contribution of each end member to storm runoff differed among the catchments because of the differing quantities of riparian groundwater, which was recharged by the bedrock groundwater prior to rainfall events. Among the five catchments, the contribution of throughfall was highest during both baseflow and storm flow in a zero‐order catchment with little contribution from the bedrock groundwater to the riparian reservoir. In zero‐order catchments with some contribution from bedrock groundwater, stream water was dominated by shallow bedrock groundwater during baseflow, but it was significantly influenced by hillslope groundwater during storms. In the first‐order catchment, stream water was dominated by shallow bedrock groundwater during storms as well as baseflow periods. In the second‐order catchment, deeper bedrock groundwater than that found in the zero‐order and first‐order catchments contributed to stream water in all periods, except during large storm events. These results suggest that bedrock groundwater influences the upscaling of storm‐runoff generation processes by affecting the linkages of geomorphic units such as hillslopes, riparian zones, and stream channels. Our results highlight the need for a three‐dimensional approach that considers bedrock groundwater flow when studying the upscaling of storm‐runoff generation processes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Nitrate transport in the unsaturated zone of a riverbank filtration (RBF) system in Karany, Czech Republic, was studied. Previous study of the system estimated RBF recharge as 60% riverbank filtrate and 40% local groundwater contaminated by nitrates. Nitrate concentrations observed in RBF recently cannot be explained by simple groundwater contamination and a new conception of groundwater recharge is suggested. A two‐component model based on water 18O data modelled recharge of local groundwater. One component of groundwater recharge is rainfall and irrigation water moving through the unsaturated zone of the Quaternary sediments in piston flow. The second component is groundwater from the Cretaceous deposits with a free water table. Both the components of groundwater recharge have different nitrate concentrations, and resulting contamination of groundwater depends on the participation of water from Quaternary and Cretaceous deposits. Nitrates' origins and their mixing in the subsurface were traced by 15N data. Nitrate transport from the unsaturated zone is important and time variable source of groundwater contamination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The drastic expansion of cities and the rapid economic growth in Korea have caused dramatic increases to demand from groundwater supplies for drinking, domestic, agricultural and industrial water usage. The Ministry of Construction and Transportation and the Korea Water Resources Corporation have constructed and operated the National Groundwater Monitoring Network (NGMN) throughout the country since 1995. The NGMN, an official project establishing a total of 320 groundwater monitoring stations, was completed in 2005. Each national groundwater monitoring station serves as a baseline and primary station to monitor long‐term general trends in water‐level fluctuations and in groundwater quality. The present NGMN and its monitoring capabilities were evaluated to enhance the efficiency of groundwater monitoring and to meet the new societal conditions. Based on reviews and evaluations, some suggestions and recommendations are made with regard to improvements of the national network, including the installation of rainfall gauges in groundwater monitoring stations, gathering groundwater data every hour instead of every 6 h as at present, involving major cations and anions in the regular and periodic chemical analyses, regular periodic analyses of collected groundwater data, and construction of 199 additional groundwater monitoring stations to supplement the existing groundwater monitoring network. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

Many oases are experiencing severe groundwater depletion due to increased population, expanding agriculture and economic development. For sustainable development, quantifying groundwater recharge resources are fundamentally important. In this study, stable isotope techniques were employed to identify recharge sources of groundwater and quantitatively evaluate their contribution ratios in the Dunhuang Oasis, northwest China. Our findings indicate that heavy isotopes in shallow groundwater are more negative than those in deep groundwater, which is attributed to shallow groundwater that was modern and deep groundwater that was old. Irrigated return water and lateral groundwater flow from the Qilian Mountains are considered as the two main sources of shallow groundwater, accounting for 35% and 65% of the total recharge, respectively. Thus, as the main groundwater source of the Dunhuang Oasis, the Qilian Mountain Front should be protected against over-exploitation. Our results provide not only fundamental knowledge for groundwater management of aquifers of the Oasis, but also valuable water management information for other similar arid oases worldwide.  相似文献   

7.
The groundwater regime in the north‐western part of the Visakhapatnam urban area was polluted as early as 1981 by discharge of untreated industrial effluent from a Hindustan Polymers Limited (HPL) plant. A total dissolved solids (TDS) concentration of surficial effluent up to 6500 mg/l and of groundwater in the range 3000–4200 mg/l has been reported in the environs of the HPL plant during May 1992. Groundwater occurs under water table conditions. The groundwater flow model was simulated as a single layer aquifer, using MODFLOW and FLOWPATH computer models. Aquifer parameters were estimated and the value of effective porosity assumed. The water table configuration was mapped in May 1981 using 33 observation wells. The calibrated hydraulic head distribution was used to compute the velocity field using the effective porosity values. The flow paths of groundwater migration from the source locations up to 2002 AD were predicted. Pathlines of particles in the groundwater indicated a predominant north‐east and south‐west migration of groundwater pollution in the area. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Two small experimental catchments were established in the south-west of Western Australia to study the effects of logging and subsequent regeneration on the mechanism of streamflow generation. Following a six year pre-treatment calibration period (1976–1981), one catchment (March Road) was logged and reforested in 1982 and the other (April Road South) remained as a control. Logging resulted in an increase in groundwater levels and subsequently groundwater discharge area. The deep, permanent groundwater levels in the valley and upslope areas rose until 1986 and then began to decline. The maximum rise was 5 m in the upslope areas. The duration of shallow, intermittent groundwater system, perched on underlying clay, was extended from 2–3 months in winter before logging to 5–6 months after logging. The shallow groundwater level rose in the valley and began to discharge at the ground surface in 1986. Logging resulted in an increase in streamflow. The maximum increase (≈18% of annual rainfall) was in 1983, one year after logging. The increase in streamflow was due to a substantial decrease in interception and evapotranspiration, increased recharge to the shallow groundwater system, decreased soil moisture deficit and consequently an increase in throughflow. The increase in base flow was about twice that of quick flow. The changes in streamflow and its components in the subsequent years were closely related to the groundwater discharge area. Most of the quick flow was generated as saturation excess overland flow from the groundwater discharge area in the valley. The expansion of the groundwater discharge area, increased soil moisture content, higher groundwater level and the presence of the shallow groundwater system for the extended periods were responsible for the process of streamflow generation.  相似文献   

9.
地下流体宏观异常变化中气体作用初探   总被引:9,自引:0,他引:9  
通过大量实例讨论了气体在地震地下流体宏观异常中的作用。地下水中气体成分及含量的变化, 可以引起一系列的物理、化学反应, 是产生流体宏观异常的一个重要原因。因气体参与的化学反应, 引起一部分元素的迁移或析出, 可导致地下水发浑变色。气体逸出可引起地下水流量、水位和温度的显著变化。震前地下水中气体的释放可以达到较大的数量与规模。  相似文献   

10.
The groundwater in shallow loess aquifers in high mountain–hills in the western Loess Plateau in China is almost the sole water resource for local residents. However, the question about how the loess groundwater naturally circulates in these high mountain–hills, characterized by low precipitation and high potential evaporation, remains unclear. The objectives of this study are to evaluate the application of hydrogen and oxygen isotopes to (1) examine temporal variations of the isotopic composition of precipitation and shallow groundwater and (2) uncover the mechanism of groundwater recharge in high mountain–hills. Results from 2 years of monitoring data show a difference in the stable isotopes for groundwater and local precipitation between the winter and summer periods. Similar to precipitation, stable isotopes in groundwater are observed to be depleted in winter and enriched in summer, particularly in oxygen isotope. A prominent characteristic is that H and O isotopes of groundwater show a very clear response to strong precipitation in the rainy season in 2013. The results highlight that local precipitation is the likely recharge source for groundwater in shallow loess aquifers. Annual recharge from local precipitation maintains the groundwater resource in the shallower loess aquifer. The mechanisms governing shallow loess groundwater recharge in high mountain–hills were evaluated. In addition to possible vertical slow percolation of soil water through the unsaturated zone, rapid groundwater recharge mechanisms have been identified as temporal preferential infiltration through sinkholes, slip surface or landslide surface and through the interface of loess layer and palaeo‐soils. Most groundwater can be recharged after a heavy rainy season. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In deeply weathered laterite catchments of the Darling Range in south-western Australia, the direct contribution (i.e., discharge) of permanent groundwater to streamflow has long been considered as minor. Instead, downslope shallow throughflow was thought to dominate, generating more than 90% of streamflow. We used a chemical hydrograph separation approach to estimate annual groundwater discharge for three catchments over periods of up to 39 years, and found that direct groundwater contributions to streamflow were far more variable across catchments and through time than has previously been acknowledged. The estimated proportion of annual streamflow sourced directly from groundwater ranged from 0 to 93% and was related linearly to the size of the groundwater discharge area in the catchment valley floor. In contrast, contributions from shallow sources including shallow throughflow varied primarily and linearly with annual rainfall. However, the response to rainfall was “amplified” in a predictable way by the size of the groundwater discharge area, consistent with the variable source area concept. We derived a functional relationship between catchment annual rainfall-runoff ratio and groundwater discharge area and successfully applied this to a further four catchments, inferring that the results were broadly applicable across the Darling Range. The implications for an improved understanding of streamflow generating processes in the study region, and for laterite catchments generally, are discussed.  相似文献   

12.
This paper describes the application of environmental isotopes and injected tracer techniques in estimating the contribution of storms as well as annual precipitation to groundwater recharge and its circulation, in the semi‐arid region of Bagepalli, Kolar district, Karnataka. Environmental isotopes 2H, 18O and 3H were used to study the effect of storms on the hydrological system, and an isotope balance was used to compute the contribution of a storm component to the groundwater. Some of the groundwater samples collected during the post‐storm periods were highly depleted in stable isotope content with higher deuterium excess relative to groundwater from the pre‐storm periods. Significant variation in deuterium excess in groundwater from the same area, collected in two different periods, indicates the different origin of air masses. The estimated recharge component of a storm event of 600 mm to the groundwater was found to be in the range of 117–165 mm. There was no significant variation in environmental tritium content of post‐storm and pre‐storm groundwater, indicating the fast circulation of groundwater in the system. After completion of the environmental isotope work, an injected radiotracer 3H technique was applied to estimate the direct recharge of total precipitation to the groundwater. The estimated recharge to the groundwater is 33 mm of the 550 mm annual precipitation during 1992. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Regional behaviour of the groundwater flow system in the Cochabamba Valley, Bolivia, is evaluated through the interpretation of tritium (3H) distributions in groundwater samples from wells and springs. In order to interpret groundwater 3H concentrations in Cochabamba Valley, where no historical record of 3H concentrations in rainfall exists, a reconstructed 3H precipitation record is developed. The record of 3H concentrations in precipitation is fairly extensive in the Amazon Basin and this record was extrapolated to the neighbouring Cochabamba Valley. Tritium concentrations in rainfall have been observed to increase under natural conditions with increasing latitude and with increasing distance from the ocean. By considering these trends, a linear relationship for increasing 3H concentration in precipitation is developed, based on data from the Amazon Basin, that realistically predicts regional 3H distributions from the northeast Brazilian coast to Cuzco, Peru. This 3H precipitation record is then extrapolated to the Cochabamba Valley and, after correction for radiogenic decay, is used to interpret trends in groundwater 3H concentrations within the valley.

The groundwater flow system in one of the principal alluvial fans, which serves as an important groundwater resource for the city, is studied in detail. Tritium concentrations drop from approximately 8–10 tritium units (TU) in the recharge area to concentrations below the detection limit of 0.8 TU further out in the valley. Groundwater velocities of approximately 0.3 to 0.9 m d−1 are estimated from distributions of groundwater 3H concentrations along the alluvial fan with the use of the reconstructed precipitation 3H record. Regional characteristics of the groundwater flow system are discussed with respect to future development and protection of the groundwater resources.  相似文献   


14.
中高频带地下水位对气压和固体潮的响应特征分析   总被引:1,自引:0,他引:1  
来贵娟  黄辅琼 《地震》2010,30(2):80-88
我国前兆观测网络数字化改造的完成, 使得对地震地下水位观测的孕震信息提取和干扰因素排除的研究拓宽至更广的频率范围, 而对原有一些认识的重新考察也成为可能。 本文从中国地震前兆台网挑选出数据质量较好的10个台站, 分析各个台站2008年1月1日至5月11日的地下水位和气压资料及理论重力固体潮的频谱及其频域相关性特征, 并分析了地下水位对气压响应的时移。 结果表明, 中高频带地下水位对气压的响应没有低频带好, 两者相关性随周期的减小而减弱; 含水层岩性对中高频带地下水位的气压和固体潮响应特征有较大影响, 部分灰岩井在高频频段存在地下水位对气压响应异常的现象; 时移效应对水位的气压响应整体特征影响不大, 体现出两种信号自身的复杂性。  相似文献   

15.
Antibiotics are widely used, and there is a serious concern about its adverse impacts on the environment and human health. To our knowledge, prior to this work, there was no evidence of the potential presence of antibiotics in groundwater in China, despite populous speculations. This study reported the detection of 35 target antibiotics of 6 groups (chloramphenicois, lincosamides, marcrolides, quinolones, sulfonamides, and tetracyclines), in shallow groundwater samples collected in northern and southwestern China. Thirty‐four of thirty‐five target antibiotics were detected in the groundwater samples; 73 of 74 monitoring wells contained at least one antibiotic; and at least two antibiotics were detected in 72 of the 74 wells. Ofloxacin (1199.7 ng/L), lincomycin (860.7 ng/L), and norfloxacin (441.9 ng/L) as well as antibiotics with the highest detection frequency such as sulfapyridine (70%), norfloxacin (69%), and lincomycin (64%) were detected at elevated concentrations. The highest detection frequency and concentration of lincosamides were observed in those groundwater samples, but no clear distribution patterns were observed for the six antibiotic groups. Moreover, shallow groundwater in southwestern China seemed to contain most antibiotics, likely due to the high antibiotics discharge and frequent exchange of groundwater with surface matrices. The findings from this work suggest that groundwater in China has been widely contaminated by antibiotics, and presumably other pharmaceutical compounds that have not been investigated to date.  相似文献   

16.
Intense agricultural and industrial activities in any area are likely to make groundwater vulnerable with respect to its quality. In one such area which is a part of Sabarmati river basin of Gujarat, factors influencing the groundwater hydrochemistry in pre‐ and post‐monsoon season were evaluated. Groundwater samples were collected from 5 km × 5 km grids on the basis of spectral signature of vegetation and soil, observed on satellite image. Integration of Conventional graphical plots, Piper plot, saturation index values (estimated using PHREEQC) and GIS was helpful not only to create the database for analysis of spatial variation in respective water quality parameters but also to decipher the hydrogeochemical process occurring in such a large area. USSL diagram and % sodium were used to characterise the suitability of groundwater for irrigation. It was observed that leaching of wastes disposed from anthropogenic activities and agrichemicals is the major factor influencing the groundwater quality, in addition to the natural processes such as weathering, dissolution and ion exchange. Sea water relics are also impacting the groundwater quality. Control of indiscriminate and unplanned exploitation of groundwater, application of fertilizers and disposal of industrial wastes in the affected areas can possibly ensure groundwater protection from further pollution and depletion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Discharge of groundwater from a limestone aquifer through floodplain sediments is associated with a large decrease in the nitrate concentration of the water. Results are presented to show that only a small amount of this reduction is caused by dilution of groundwater by water already present within the floodplain sediments; most of the effect is an active reduction process, most probably biological denitrification. The nitrate reduction process appears to operate independently of surface vegetation type and tends to be focused in specific regions of the floodplain where sediments are anaerobic and carbon-rich. The results suggest that active denitrification can operate throughout the winter, when nitrate concentrations in groundwater are at their highest and that the process remains effective even during periods of maximum run-off. The results show that undrained floodplains can be used as buffer zones to protect surface waters from groundwater polluted with agriculturally derived nitrate.  相似文献   

18.
ABSTRACT

Groundwater temperature at an arbitrary depth and at an arbitrary point is determined not only by heat transported by conduction but also by advection caused either by infiltration of rain, snowmelt or irrigated water, or by seepage from surface water bodies. Therefore, characteristic changes of groundwater temperature are observed in recharging and discharging areas within a groundwater flow system. The changes may be one-, two-, or three-dimensional, depending on individual situations. Since heat is a conservative quantity in the subsurface environment, groundwater temperature can be used as a tracer to reveal the regional structure of a groundwater flow system. A case study showing the importance of groundwater temperature in a regional groundwater survey is presented taking Nagaoka plain, Japan, as an example. The groundwater temperatures were measured in observation wells with diameters of 65 to 250 mm and depths of 20 m or more. Marked seasonal changes in temperature depth profiles showing advective effects in the horizontal direction from the Shinano River, and in the vertical direction from upper and lower aquifers, were observed. The temperature depth profiles were classified into six types. The distribution of these types does not contradict the regional structure of the groundwater flow system revealed by the potential distribution. As groundwater temperature is an easily measureable element in a hydrological survey, the method described in the present paper is appropriate for a field study in an uninstrumented groundwater basin.  相似文献   

19.
The present study is to explore the feasibility of GRACE-based estimation of a groundwater storage change in a data-poor region using a case study of the Ngadda catchment in the Lake Chad Basin. Although the Ngadda catchment has only one set of in situ time series data of groundwater from 2006 to 2009 and a limited number of groundwater measurements in 2005 and 2009, GRACE-based groundwater storage change can be evaluated against the in situ groundwater measurements combined with specific yield data. The cross-correlation analysis in the Ngadda catchment shows that maximum rainfall reached in July and August, whereas both the maximum total water storage anomaly and the maximum groundwater storage anomaly occurred 2months later. Whereas the mean annual amplitude of total water storage anomaly is about 17cm from both the average total water storage anomaly from three mascon products and the one from three spherical harmonic products, the mean annual amplitude of soil moisture storage anomaly is substantially varied from 5.58cm for CLM to about 14cm for NOAH and Mosaic. The goodness-of-fit tests show that CLM soil moisture produces the closest estimation of groundwater storage anomaly to the in situ groundwater measurements. The present study shows that GRACE-based estimation for groundwater storage anomaly can be a cost-effective and alternative tool to observe how groundwater changes in a basin scale under the limitation of modelling and in situ data availability.  相似文献   

20.
Groundwater is an important component of the water supply, and overexploitation has triggered many problems in the Beijing Plain. The South‐to‐North Water Transfer Project has been proposed as a promising solution to alleviate these problems. Evaluation of different scenarios of groundwater management after the implementation of the South‐to‐North Water Transfer Project is necessarily required. In this study, a numerical model of groundwater flow was established using FEFLOW software and was well calibrated by parameter optimization and groundwater withdrawal inversion in the Beijing Plain. Sixteen scenarios that considered groundwater exploitation, artificial recharge, and precipitation were designed to simulate the groundwater dynamics after 11 years of the project. The results showed that the groundwater level in the study area would recover to various degrees due to the reductions of groundwater withdrawal and the increments of infiltration; additionally, it was concluded that groundwater was significantly affected by precipitation. Generally, in the designed scenarios, the groundwater‐level increment in the upper streams of the model area was higher than that in the lower streams. The groundwater level would obviously increase from artificial recharge in the immediate and adjacent areas. In addition, modes of reducing exploitation had no significant influence on the change in groundwater level during the 11‐year study period. The developed model offers a reliable and effective way to improve groundwater management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号