首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present a, large complex radio burst and its associated fast tune structures observed on 2001 April 10 in the frequency range of 0.65-7.6 GHz. The NoRH radio image observation shows very complex radio source structures which include preexisting, newly emerging, submerging/cancelling polarities and a bipolar, a tripolar (a 'bipolar + remote unipolar'), and a quadrupolar structure. This suggests that the radio burst is generated from a very complicated loop structure. According to the spectral and image observations, we assume that the beginning of this flare was caused by a single bipolar loop configuration with a 'Y-type' re-connection structure. A composite of radio continuum and fast time structures is contained in this flare. The various fast radio emission phenomena include normal and reverse drifting type III bursts, and slowly drifting and no-drift structures. The tripolar configurations may form a double-loop with a 'three-legged' structure, which is an important source of the various types of fast time structures. The two-loop reconnection model can lead simultaneously to electron acceleration and corona heating. We have also analyzed the behaviors of coronal magnetic polarities and the emission processes of different types radio emission qualitatively. Interactions of a bipolar or multi-polar loop are consistent with our observational results. Our observations favor the magnetic reconnection configurations of the 'inverted Y-type' (bipolar) and the 'three-legged' structures (tripolar or quadrupolar).  相似文献   

3.
Three Super Active Regions in the Descending Phase of Solar Cycle 23   总被引:2,自引:0,他引:2  
We analyze the magnetic configurations of three super active regions, NOAA 10484, 10486 and 10488, observed by the Huairou Multi-Channel Solar Telescope (MCST) from 2003 October 18 to November 4. Many energetic phenomena, such as flares (including a X-28 flare) and coronal mass ejections (CMEs), occurred during this period. We think that strong shear and fast emergence of magnetic flux are the main causes of these events. The question is also of great interest why these dramatic eruptions occurred so close together in the descending phase of the solar cycle.  相似文献   

4.
Sunspots are caused by the eruption of magnetic flux tubes through the solar photosphere: current theories of the internal magnetic field of the Sun suggest that such tubes must rise relatively unscathed from the base of the convection zone. In order to understand how the structure of the magnetic field within a buoyant flux tube affects its stability as it rises, we have considered the quasi-two-dimensional rise of isolated magnetic flux tubes through an adiabatically stratified atmosphere. The magnetic field is initially helical; we have investigated a range of initial field configurations, varying the distribution and strength of the twist of the field.  相似文献   

5.
Zhixing Mei  Jun Lin   《New Astronomy》2008,13(7):526-540
The flare-related, persistent and abrupt changes in the photospheric magnetic field have been reported by many authors during recent years. These bewildering observational results pose a challenge to the current flare theories in which the photospheric magnetic field usually remains unchanged in the eruption. In this paper, changes in the photosphere magnetic field during the solar eruption are investigated based on the catastrophe model. The results indicate that the projection effect is an important source that yields the change in the observed photospheric magnetic field in the line-of-sight. Furthermore one may observe the change in the normal component of magnetic field if the spectrum line used to measure the photospheric magnetic field does not exactly come from the photospheric surface. Our results also show that the significance of selecting the correct spectral lines to study the photospheric field becomes more apparent for the magnetic configurations with complex boundary condition (or background field).  相似文献   

6.
1 INTRODUCTION Magnetic field plays an important role in solar activity. The stressing and subsequent partialrelaxation of magnetic fields in the active regions are generally accepted to be the energy sourceof solar flares. To quantitatively study the extent of stressed magnetic field as distinct from itspotential field, Hagyard et al. (1984) defined a magnetic shear angle膖he azimuth differencebetween the observed transverse magnetic field vector and the computed potential field vectorth…  相似文献   

7.
Oscillations of magnetic structures in the solar corona have often been interpreted in terms of magnetohydrodynamic waves. We study the adiabatic magnetoacoustic modes of a prominence plasma slab with a uniform longitudinal magnetic field, surrounded by a prominence – corona transition region (PCTR) and a coronal medium. Considering linear small-amplitude oscillations, we deduce the dispersion relation for the magnetoacoustic slow and fast modes by assuming evanescentlike perturbations in the coronal medium. In the system without PCTR, a classification of the oscillatory modes according to the polarisation of their eigenfunctions is made to distinguish modes with fastlike or slowlike properties. Internal and external slow modes are governed by the prominence and coronal properties, respectively, and fast modes are mostly dominated by prominence conditions for the observed wavelengths. In addition, the inclusion of an isothermal PCTR does not substantially influence the mode frequencies, but new solutions (PCTR slow modes) are present.  相似文献   

8.
1 INTRODUCTIONRecently Bao, Zhang, Ai, and Zhang (1999), using Huairou vector magnetograph data,have shown that the average current helicity (h.) or the curreflt helicity imbalance ph of activeregions change rapidly after so1ar flares. Up'an the onset of flares it tends to decrease for a fewhours and then to increase again, whereas ifQ some cases the flare promotes an increase in thecurrent helicity The observations led to tbe fol1owing conclusions: (1) raPid and substantialchanges of c…  相似文献   

9.
Guangli Huang 《Solar physics》2009,257(2):323-334
The low-cutoff energy has a strong effect on the relationship between the radiation and electron spectral indices in both nonthermal gyrosynchrotron and bremsstrahlung theories. Hence, we have to calculate or fit the low-cutoff energy together with the electron spectral index as two independent parameters. Theoretical calculations of nonthermal gyrosynchrotron and bremsstrahlung radiations suggest a new method to obtain the exact solutions of the low-cutoff energy and the electron spectral index from the observable photon spectral indices at two adjacent energy or frequency bands (double power law). One flare on 10 June 2000 was studied as an example of the hard X-ray and microwave diagnostics for the low-cutoff energy and the electron spectral index. The results showed some differences between hard X-ray and microwave diagnostics.  相似文献   

10.
Yu Liu 《Solar physics》2008,249(1):75-84
Liu et al. (Astrophys. J. 628, 1056, 2005a) described one surge – coronal mass ejection (CME) event showing a close relationship between solar chromospheric surge ejection and CME that had not been noted before. In this work, large Hα surges (>72 Mm, or 100 arcsec) are studied. Eight of these were associated with CMEs. According to their distinct morphological features, Hα surges can be classified into three types: jetlike, diffuse, and closed loop. It was found that all of the jetlike surges were associated with jetlike CMEs (with angular widths ≤30 degrees); the diffuse surges were all associated with wide-angle CMEs (e.g., halo); the closed-loop surges were not associated with CMEs. The exclusive relation between Hα surges and CMEs indicates difference in magnetic field configurations. The jetlike surges and related narrow CMEs propagate along coronal fields that are originally open. The unusual transverse mass motions in the diffuse surges are suggested to be due to magnetic reconnections in the corona that produce wide-angle CMEs. For the closed-loop surges, their paths are just outlining stable closed loops close to the solar surface. Thus no CMEs are associated with them.  相似文献   

11.
We have examined the effect on linear helioseismic inversions of correlations in data errors, taking an example from one-dimensional rotational splitting inversion. Artificial data with correlated errors were generated and then inverted with or without using the proper covariance matrix. The effects of using incorrect covariance matrices, on solutions as well as on trade-offs, are discussed. It is found that improper account of the correlations can be deleterious to the faithfulness of the inversions, and yields incorrect error estimates, which under some circumstances can lead to misleading inferences.  相似文献   

12.
Using the 3-dimensional ASH code, we have studied numerically the instabilities that occur in stellar radiation zones in presence of large-scale magnetic fields, rotation and large-scale shear. We confirm that some configurations are linearly unstable, as predicted by Tayler and collaborators, and we determine the saturation level of the instability. We find that rotation modifies the peak of the most unstable wave number of the poloidal instability but not its growth rate as much as in the case of the m = 1 toroidal instability for which it is changed to σ = /Ω. Further in the case with rotation and shear, we found no sign of the dynamo mechanism suggested recently by Spruit even though we possess the essential ingredients (Tayler's m = 1 instability and a large scale shear) supposedly at work. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Accurate measurements of solar p-mode frequencies and frequency splittings at high degree l require an adequate theoretical knowledge of the effects of mode coupling, induced by the variation with latitude of the angular velocity of the solar internal rotation. Earlier results for expansion coefficients of composite solutions (coupling coefficients) are due to Woodard. In this paper, the analysis is extended to allow for the dependence of the differential rotation on depth, and the result is expressed in terms of measurable quantities (the rotational splitting coefficients), which makes it convenient for diagnostic purposes. The analysis is based on the approach of quasi-degenerate perturbation theory, and is extended further to address possible effects of mode coupling in the observational line profiles. It is shown, using approximations applicable at high degree l , that the expected line profiles of composite modes in the observational power spectra are not distorted by mode coupling.  相似文献   

14.
Three particularly complex radio bursts (2001 October 19, 2001 April 10 and 2003 October 26) obtained with the spectrometers (0.65-7.6GHz) at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC, Beijing and Yunnan) and other in- struments (NoRH, TRACE and SXT) are presented. They each have two groups of peaks occurring in different frequency ranges (broad-band microwave and narrow-band decimeter wavelengths). We stress that the second group of burst peaks that occurred in the late phase of the flares and associated with post-flare loops may be homologous radio bursts. We think that they are driven by the post-flare loops. In contrast to the time profiles of the radio bursts and the images of coronal magnetic polarities, we are able to find that the three events are caused by the active regions including main single-bipole magnetic structures, which are associated with multipole magnetic structures during the flare evolutions. In particular, we point out that the later decimetric radio bursts are possibly the radio counterparts of the homologous flares (called "homologous radio bursts" by us), which are also driven by the single-bipole mag- netic structures. By examining the evolutions of the magnetic polarities of sources (17GHz), we could presume that the drivers of the homologous radio bursts are new and/or recurring appearances/disappearances of the magnetic polarities of radio sources, and that the triggers are the magnetic reconnections of single-bipole configurations.  相似文献   

15.
We find general relativistic solutions of equilibrium magnetic field configurations in magnetars, extending previous results of Colaiuda et al. Our method is based on the solution of the relativistic Grad–Shafranov equation, to which Maxwell's equations can be reduced. We obtain equilibrium solutions with the toroidal magnetic field component confined into a finite region inside the star, and the poloidal component extending to the exterior. These so-called twisted torus configurations have been found to be the final outcome of dynamical simulations in the framework of Newtonian gravity, and appear to be more stable than other configurations. The solutions include higher-order multipoles, which are coupled to the dominant dipolar field. We use arguments of minimal energy to constrain the ratio of the toroidal to the poloidal field.  相似文献   

16.
We investigate the secular dynamics of a planetary system composed of the parent star and two massive planets in mutually inclined orbits. The dynamics are investigated in wide ranges of semimajor axes ratios (0.1–0.667) and planetary masses ratios (0.25–2), as well as in the whole permitted ranges of the energy and total angular momentum. The secular model is constructed by semi-analytic averaging of the three-body system. We focus on equilibria of the secular Hamiltonian (periodic solutions of the full system) and we analyze their stability. We attempt to classify families of these solutions in terms of the angular momentum integral. We identified new equilibria, yet unknown in the literature. Our results are general and may be applied to a wide class of three-body systems, including configurations with a star and brown dwarfs and substellar objects. We also describe some technical aspects of the seminumerical averaging. The HD 12661 planetary system is investigated as an example configuration.  相似文献   

17.
Using Nancay Radioheliograph (NRH) imaging observations, combined with SOHO/Michelson Doppler Imager (MDI) magnetogram observations and coronal magnetic field extrapolation, we studied the magnetic nature of metric noise storms that are associated with coronal mass ejections (CMEs). Four events are selected: the events of 2000 July 14, 2001 April 26, 2002 August 16 and 2001 March 28. The identified noise storm sources cover or partially cover the active regions (ARs), but the centers of storm sources are offset from the ARs. Using extrapolated magnetic field lines, we find that the noise storm sources trace the boundary between the open and closed field lines. We demonstrate that the disappearance of noise storm source is followed by the appearance of the burst source. The burst sources spread on the solar disk and their distributions correspond to the extent of the CME in LASCO C2 field of view. All the SOHO/Extreme Ultraviolet Imaging Telescope (EIT) dimmings associ- ated with noise storm sources are located at the periphery of noise storms where the magnetic lines of force were previously closed and low-lying. When the closed field becomes partially or fully open, the basic configurations of noise storm sources are changed, then the noise storm sources are no longer observed. These observations provide the information that the variations of noise storms manifest the restructuring or reconfiguring of the coronal magnetic field.  相似文献   

18.
We consider two types of streamer structures observed in the solar atmosphere. Structures of the first type are medium-scale configurations with scale lengths comparable to the scale height in the corona, kT/mg = 100 thousand km, which appear as characteristic plasma structures in the shape of a dome surrounding the active region with thin streamers emanating from its top. In configurations of this type, gravity plays no decisive role in the mass distribution. The plasma density is constant on magnetic surfaces. Accordingly, the structure of the configurations is defined by the condition ψ = const, where ψ is the flux function of the magnetic field. Structures of the second type are large-scale configurations (coronal helmets, loops, and streamers), which differ from the above structures in that their scale lengths exceed the scale height in the corona. For them, gravity plays a decisive role; as a result, instead of the magnetic surfaces, the determining surface is BgradΦ = 0. We constructed three-dimensional images of these structures. Some of the spatial curves called “visible contours” of the Br = 0 surface are shown to be brightest in the corona. We assume that the helmet boundaries and polar plumes are such curves.  相似文献   

19.
Gough & McIntyre have suggested that the dynamics of the solar tachocline are dominated by the advection–diffusion balance between the differential rotation, a large-scale primordial field and baroclinicly driven meridional motions. This paper presents the first part of a study of the tachocline, in which a model of the rotation profile below the convection zone is constructed along the lines suggested by Gough & McIntyre and solved numerically. In this first part, a reduced model of the tachocline is derived in which the effects of compressibility and energy transport on the system are neglected; the meridional motions are driven instead by Ekman–Hartmann pumping. Through this simplification, the interaction of the fluid flow and the magnetic field can be isolated and is studied through non-linear numerical analysis for various field strengths and diffusivities. It is shown that there exists only a narrow range of magnetic field strengths for which the system can achieve a nearly uniform rotation. The results are discussed with respect to observations and to the limitations of this initial approach. A following paper combines the effects of realistic baroclinic driving and stratification with a model that closely follows the lines of work of Gough & McIntyre.  相似文献   

20.
We consider a conventional stellar  α2ω  -dynamo with dynamo generators localized in two spherical shells separated by a passive layer. The signs of the α-effect as well as rotational shear in the dynamo active layers can be chosen to give dynamo waves that propagate in opposite directions (poleward and equatorward) if the layers are considered separately in the framework of the Parker migratory dynamo. In a sequence of numerical experiments we show that the variety of dynamo-generated magnetic configurations in the system under discussion is quite rich. We identify the possibility of almost independent dynamo waves existing in the two layers as well as enslavement of one layer by the other, and of activity waves generated by a joint action of the two layers. We suggest some qualitative explanations of the behaviour and discuss also the limited nature of these explanations. This variety of phenomena suggests previously underexploited freedoms to understand how predictions of dynamo theory may accommodate the observed solar and stellar activity phenomenology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号