首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The last British-Irish Ice Sheet (BIIS) created a landscape with many sedimentary basins that preserve archives of paleoenvironmental and paleoclimatic change during the Last Glacial-Interglacial Transition (LGIT; ~ 18-8 ka BP). The typical lithostratigraphic succession of these archives is composed of minerogenic/allogenic sediments formed during cold climatic conditions and organic-rich/authigenic sediments during warmer climates. This paper presents a multi-core lithostratigraphy compiled from the extant lake and surrounding basin at Llangorse Lake, south Wales, a basin lying within the southernmost limits of the last BIIS. This lake contains one of the longest continuous terrestrial sediment successions in the UK. Uncertainty previously existed concerning the presence and distribution of sediments at the site related to the Windermere Interstadial (~ 14.7 to ~ 12.9 ka BP) and Loch Lomond Stadial (~ 12.9 to 11.7 ka BP). A new borehole survey demonstrates that LGIT-age sediments are present at the site with nekron mud (gyttja), corresponding to the Lateglacial Interstadial, deposited in the deeper part of the lake waters and that these deposits are equivalent in age to marl deposits found at shallower depths at the margins of the basin. These deposits are associated with warmer conditions experienced during the Windermere Interstadial and Holocene, whilst minerogenic-rich sediments were deposited during the colder climatic conditions of the Dimlington Stadial and the Loch Lomond Stadial with rangefinder radiocarbon dates confirming this attribution. A model of lake level changes shows that drainage of the Dimlington Stadial glacial lake caused the largest fall, but there was also a further, smaller lake level fall at the end of the Windermere Interstadial and/or the start of the Loch Lomond Stadial, before the level rose in the early Holocene. The lithostratigraphic results presented here form the framework for further paleoenvironmental and paleoclimatic research at Llangorse Lake.  相似文献   

2.
《Quaternary Science Reviews》2007,26(13-14):1871-1883
Multi-proxy palaeoenvironmental studies of nine sediment sequences from four areas in north-western Russia reveal significant changes in climate, lake productivity and vegetation during the Lateglacial and early Holocene that show some degree of correlation with changes reconstructed from sites throughout the North Atlantic region. At Lake Nero in the Rostov-Jaroslavl’ area, which is outside the maximum limit of the Scandinavian Ice Sheet, sedimentation recommenced shortly after 15 cal ka BP in response to increases in temperature and humidity during Greenland Interstadial 1 (GI-1; Bølling-Allerød). However, climatic amelioration during GI-1 was slow to increase lake organic productivity or trigger large-scale changes in much of northwestern Russia. In general, this region was characterised by long-lasting lake-ice cover, low lake productivity, soil erosion, and dwarf shrub and herb tundra until the end of Greenland Stadial 1 (GS-1; Younger Dryas). At some sites, distinct increases in lake organic productivity, mean summer temperatures and humidity and the expansion of forest trees coincide with rapid warming at the beginning of the Holocene and the increasing influence of warm air masses from the North Atlantic. At other sites, particularly on the Karelian Isthmus, but also in Russian Karelia, the delayed response of limnic and terrestrial environments to early Holocene warming is likely related to the cold surface waters of the Baltic Ice Lake, the proximity of the Scandinavian Ice Sheet and associated strengthened easterlies, and/or extensive permafrost and stagnant ice. These multi-proxy studies underscore the importance of local conditions in modifying the response of individual lakes and their catchments.While Lateglacial vegetation was dominated by Betula nana and Salix shrubs and various herbs, pollen and plant macrofossils suggest that Betula pubescens trees became established as early as 14–13 cal ka BP in the Rostov-Jaroslavl’ area. In general, our data sets suggest that trees migrated from the southeast to the west and then spread later to the northeast and northwest, paralleling the direction of ice retreat, with Betula pubescens immigrating first, followed by Pinus sylvestris and Picea abies. However, palaeoecological records from Lake Terebenskoye in the Valdai Highlands suggest that the arrival of Picea abies preceded other trees in that area and that it colonised tundra communities as early as 12 cal ka BP. Since Lateglacial vegetation change in north-western Russia was time-transgressive, independent measures of palaeoclimate (e.g., chironomid-based palaeotemperature estimates) are needed for this region.  相似文献   

3.
《Quaternary Science Reviews》1999,18(4-5):573-591
In the endoreic, semi-arid Konya basin on the central Anatolian plateaux, long-term hydrological evolution has left various landforms and lacustrine deposits reflecting the regional climatic evolution, as well as human influence on the local environments. This paper presents results from a cooperative programme grouping several institutes from Turkey and France, on lacustrine, marshy and aeolian sediment sequences of Upper Pleistocene and Holocene age. The detailed study of environmental evolution is based on the reconstruction as well as on the characterization of the extension and contraction phases of wetlands occupying the lowest parts of the Konya plain. A soil and a marsh layer are 14C dated ca. 28,000–25,000 yr bp. Three phases of Pleniglacial (from ca. 22,000 to 17,000 yr bp) high lake levels are distinguished. Complementary OSL dates on aeolian dunes confirm the occurrence of two drought periods: the first occurs around the start of the Late Glacial, the second after the Mid-Holocene climatic optimum, the latter being ‘in phase’ with a similar drought in other Eastern Mediterranean regions. After 17,000 yr bp, no lacustrine phase reached as high a level as the Pleniglacial lake. During the Late Glacial, a shallow freshwater lacustrine phase is identified from >12,500 to 11,000 yr bp. The Late Glacial to Holocene transition corresponds to a general absence of deposits and dateable material, thus suggesting a period of drought, to which no aeolian features have so far been related. The Holocene environmental evolution shows a period of marsh and shallow lake extansion from 6000 to 5500 yr bp; this wetter period is interrupted by the second drought (ca. 5500 yrs bp) as indicated by aeolian dune activity. During the Late Holocene, a renewal of marshes, as well as soil development on slopes, can be interpreted either as climatic changes or as impacts of human use of water and soil resources during prehistoric and historic times.  相似文献   

4.
《Quaternary Science Reviews》2003,22(5-7):541-554
The ecotone between the boreo-nemoral (hemiboreal) and the southern boreal vegetation zones constitutes the northern distributional limit of a number of thermophilous tree species in northern Europe and is, to a large extent, controlled by climatic conditions. We present a quantitative annual mean temperature reconstruction from a high-resolution pollen stratigraphy in southern boreal Finland, using a pollen-climate calibration model with a cross-validated prediction error of 0.9°C. Our model reconstructs low but steadily rising annual mean temperature from 10,700 to 9000 cal yr BP. At 8000–4500 cal yr BP reconstructed annual mean temperature reaches a period of highest values (Holocene thermal maximum) with particularly high temperatures (2.0–1.5°C higher than at present) at 8000–5800 cal yr BP. From 4500 cal yr BP to the present-day, reconstructed annual mean temperature gradually decreases by ca 1.5°C. Comparison of present results with palaeotemperature records from the Greenland ice cores, notably with the NorthGRIP δ18O record, shows marked similarities, suggesting parallel large-scale Holocene temperature trends between the North Atlantic and North European regions. The verification of the occurrence, timing, and nature of the short-term temperature fluctuations during the Holocene in the southern boreal zone in Europe requires replicate, high-resolution climate reconstructions from the region.  相似文献   

5.
The seaboard of western Scotland is a classic fjord landscape formed by glaciation over at least the last 0.5 Ma. We examine the glacial geology preserved in the fjords (or sea lochs) of the Summer Isles region of NW Scotland using high-resolution seismic data, multibeam swath bathymetry, seabed sediment cores, digital terrain models, aerial photographs, and field investigations. Detailed analyses include seismic facies and lithofacies interpretations; sedimentological and palaeoenvironmental analyses; and radiocarbon dating of selected microfauna. Our results indicate that the Pleistocene sediments of the Summer Isles region, on- and offshore, can be subdivided into several lithostratigraphic formations on the basis of seismic character, geomorphology and sedimentology. These are: subglacial tills; ice-distal and glacimarine facies; ice-proximal and ice-contact facies; moraine assemblages; and Holocene basin fill. The submarine landscape is also notable for its large-scale mass-movement events – the result of glaciodynamic, paraglacial or seismotectonic processes. Radiocarbon dating of marine shells indicate that deglaciation of this part of NW Scotland was ongoing between 14 and 13 ka BP – during the Lateglacial Interstadial (Greenland Interstadial 1) – consistent with cosmogenic surface-exposure ages from previous studies. A sequence of numerous seafloor moraine ridges charts oscillatory retreat of the last ice sheet from a buoyant calving margin in The Minch to a firmly grounded margin amongst the Summer Isles in the early part of Lateglacial Interstadial (GI-1) (pre-14 ka BP). Subsequent, punctuated, frontal retreat of the ice mass occurred in the following ~1000 years, during which time ice-cap outlet glaciers became topographically confined and restricted to the fjords. A late-stage readvance of glaciers into the inner fjords occurred soon after 13 ka BP, which calls into question the accepted limits of ice extent during the Younger Dryas Stadial (Greenland Stadial 1). We examine the wider implications of our chronostratigraphic model, discussing the implications for British Ice Sheet deglaciation, Lateglacial climate change, and the style and rates of fjord sedimentation.  相似文献   

6.
Easter Island (SE Pacific, 27°S) provides a unique opportunity to reconstruct past climate changes in the South Pacific region based on terrestrial archives. Although the general climate evolution of the south Pacific since the Last Glacial Maximum (LGM) is coherent with terrestrial records in southern South America and Polynesia, the details of the dynamics of the shifting Westerlies, the South Pacific Convergence Zone and the South Pacific Anticyclone during the glacial–interglacial transition and the Holocene, and the large scale controls on precipitation in tropical and extratropical regions remain elusive. Here we present a high-resolution reconstruction of lake dynamics, watershed processes and paleohydrology for the last 34 000 cal yrs BP based on a sedimentological and geochemical multiproxy study of 8 cores from the Raraku Lake sediments constrained by 22 AMS radiocarbon dates. This multicore strategy has reconstructed the sedimentary architecture of the lake infilling and provided a stratigraphic framework to integrate and correlate previous core and vegetation studies conducted in the lake. High lake levels and clastic input dominated sedimentation in Raraku Lake between 34 and 28 cal kyr BP. Sedimentological and geochemical evidences support previously reported pollen data showing a relatively open forest and a cold and relatively humid climate during the Glacial period. Between 28 and 17.3 cal kyr BP, including the LGM period, colder conditions contributed to a reduction of the tree coverage in the island. The coherent climate patterns in subtropical and mid latitudes of Chile and Eastern Island for the LGM (more humid conditions) suggest stronger influence of the Antarctic circumpolar current and an enhancement of the Westerlies. The end of Glacial Period occurred at 17.3 cal kyr BP and was characterized by a sharp decrease in lake level conducive to the development of major flood events and erosion of littoral sediments. Deglaciation (Termination 1) between 17.3 and 12.5 cal kyr BP was characterized by an increase in lake productivity, a decrease in the terrigenous input and a rapid lake level recovery, inaugurating a period of intermediate lake levels, dominance of organic deposition and algal lamination. The timing and duration of deglaciation events in Easter Island broadly agree with other mid- and low-latitude circum South Pacific terrestrial records. The transition to the Holocene was characterized by lower lake levels. The lake level dropped during the early Holocene (ca 9.5 cal kyr BP) and swamp and shallow lake conditions dominated till mid Holocene, partially favored by the infilling of the lacustrine basin. During the mid- to late-Holocene drought phases led to periods of persistent low water table, subaerial exposure and erosion, generating a sedimentary hiatus in the Raraku sequence, from 4.2 to 0.8 cal kyr BP. The presence of this dry mid Holocene phase, also identified in low Andean latitudes and in Patagonian mid latitudes, suggests that the shift of storm tracks caused by changes in the austral summer insolation or forced by “El Niño-like” dominant conditions have occurred at a regional scale. The palm deforestation of the Easter Island, attributed to the human impact could have started earlier, during the 4.2–0.8 cal kyr BP sedimentary gap. Our paleoclimatic data provides insights about the climate scenarios that could favor the arrival of the Polynesian people to the island. If it occurred at ca AD 800 it coincided with the warmer conditions of the Medieval Climate Anomaly, whereas if it took place at ca AD 1300 it was favored by enhanced westerlies at the onset of the Little Ice Age. Changes in land uses (farming, intensive cattle) during the last century had a large impact in the hydrology and limnology (eutrophication) of the lake.  相似文献   

7.
Four major climato-environmental phases have been identified in the Eastern Cape, Plettenberg Bay-Knysna region and Little Karoo between somewhat before ∼40 000 cal. a BP and the present: the Birnam Interstadial from before 40 000 cal. a BP until ∼24 000 cal. a BP; the Bottelnek Stadial (apparently equating with the Last Glacial Maximum) from ∼24 000 cal. a BP until before ∼18 350 cal. a BP; the Aliwal North (apparently equating with the Late Glacial) from before ∼18 350 cal. a BP until ∼11 000 cal. a BP; the Dinorben (apparently equating with the Holocene) from ∼11 000 cal. a BP until the present. The evidence for, and the characteristics of, these phases is briefly described.  相似文献   

8.
A ~6.35 m core (06SD) was retrieved from Lake Shudu, Yunnan Province, China. The sediments spanning the period ~22.6–10.5 kcal. yr BP (6.35–1.44 m) were analysed using a combination of variables including pollen, charcoal, particle size, magnetic susceptibility and loss-on-ignition. The resulting palaeorecord provides a high-resolution reconstruction of Late Pleistocene to Early Holocene climatic and environmental changes in southwestern China. Our findings indicate that from c. 22.6 to 17.7 kcal. yr BP, vegetation assemblages were primarily aligned to sparse xerophytic grassland/tundra or cold-tolerant boreal Pinus forest, indicating that climatic conditions in southwestern China were cold and dry. However, from c. 17.7 to 17.4 kcal. yr BP, the Lake Shudu record is punctuated by marked environmental changes. These include the establishment of denser vegetation cover, a marked expansion of boreal Pinus forest and enhanced hydrological activity in the catchment over centennial timescales, perhaps suggesting that stepwise variations in the Asian Monsoon were triggering fundamental environmental changes over sub-millennial timescales. Thereafter, the pollen record captures a period of environmental instability reflected in fluctuations across all of the variables, which persists until c. 17.1 kcal. yr BP. After c. 17.1 kcal. yr BP, the expansion of steppe vegetation cover and cold–cool mixed forest consisting of mesophilous vegetation such as Tsuga and Picea, thermophilous trees including Ulmus and deciduous Quercus inferred from the Lake Shudu pollen record point to the establishment of warmer, wetter and perhaps more seasonal conditions associated with a strengthening Asian Summer Monsoon during the shift from Pleistocene to Holocene climatic conditions.  相似文献   

9.
New pollen, micro-charcoal, sediment and mineral analyses of a radiocarbon-dated sediment core from the Serra Sul dos Carajás (southeast Amazonia) indicate changes between drier and wetter climatic conditions during the past 25,000 yr, reflected by fire events, expansion of savanna vegetation and no-analog Amazonian forest communities. A cool and dry last glacial maximum (LGM) and late glacial were followed by a wet phase in the early Holocene lasting for ca. 1200 yr, when tropical forest occurred under stable humid conditions. Subsequently, an increasingly warm, seasonal climate established. The onset of seasonality falls within the early Holocene warm period, with possibly longer dry seasons from 10,200 to 3400 cal yr BP, and an explicitly drier phase from 9000 to 3700 cal yr BP. Modern conditions with shorter dry seasons became established after 3400 cal yr BP. Taken together with paleoenvironmental evidence from elsewhere in the Amazon Basin, the observed changes in late Pleistocene and Holocene vegetation in the Serra Sul dos Carajás likely reflect large-scale shifts in precipitation patterns driven by the latitudinal displacement of the Inter-Tropical Convergence Zone and changes in sea-surface temperatures in the tropical Atlantic.  相似文献   

10.
The Pantanal is the world's largest tropical wetland and a biodiversity hotspot, yet its response to Quaternary environmental change is unclear. To address this problem, sediment cores from shallow lakes connected to the Upper Paraguay River (PR) were analyzed and radiocarbon dated to track changes in sedimentary environments. Stratal relations, detrital particle size, multiple biogeochemical indicators, and sponge spicules suggest fluctuating lake-level lowstand conditions between ~ 11,000 and 5300 cal yr BP, punctuated by sporadic and in some cases erosive flood flows. A hiatus has been recorded from ~ 5300 to 2600 cal yr BP, spurred by confinement of the PR within its channel during an episode of profound regional drought. Sustained PR flooding caused a transgression after ~ 2600 cal yr BP, with lake-level highstand conditions appearing during the Little Ice Age. Holocene PR flood pulse dynamics are best explained by variability in effective precipitation, likely driven by insolation and tropical sea-surface temperature gradients. Our results provide novel support for hypotheses on: (1) stratigraphic discontinuity of floodplain sedimentary archives; (2) late Holocene methane flux from Southern Hemisphere wetlands; and (3) pre-colonial indigenous ceramics traditions in western Brazil.  相似文献   

11.
《Quaternary Science Reviews》2007,26(15-16):1999-2011
A multi proxy sediment core record on the continental margin off western Svalbard, European Arctic, reflects large climatic and oceanographic oscillations at the Lateglacial–early Holocene transition. Based on studies of planktonic foraminifera, their stable oxygen and carbon isotopic composition and ice rafted debris, we have reconstructed the last 14 cal. ka BP. The period 14–13.5 cal. ka BP was characterized by highly unstable climatic conditions. Short-lived episodes of warming alternated with meltwater pulses and enhanced iceberg rafting. This period correlates to a regional warming of the northern North Atlantic. An overall decrease in meltwater took place during the deglaciation (14–10.8 cal. ka BP). The late Younger Dryas and subsequent transition into the early Holocene is characterized by a reduced flux of planktonic foraminifera and increased iceberg rafting. A major warming took place from 10.8 to 9.7 cal. ka BP, the influence of meltwater ceased and the flux of warm Atlantic Water increased. From 9.7 to 8.8 cal. ka BP, the western Svalbard margin surface waters were significantly warmer than today. This warm period, the thermal maximum, was followed by an abrupt cooling at 8.8. cal. ka BP, caused by an increased influence of Arctic Water from the Arctic Ocean. The results document that the European Arctic was very sensitive to climatic and oceanographic changes at the end of the last glacial and during the Holocene.  相似文献   

12.
Proglacial lake sediments at Goting in the Higher Central Himalaya were analyzed to reconstruct the summer monsoon variability during the Last Glacial to early Holocene. Sedimentary structures, high resolution mineral magnetic and geochemical data suggest that the lacustrine environment experienced fluctuating monsoonal conditions. Optically stimulated luminescence (OSL) dating indicates that the lake sedimentation occurred before 25 ka and continued after 13 ka. During this period, Goting basin witnessed moderate to strengthened monsoon conditions around 25 ka, 23.5 ka–22.5 ka, 22 ka–18 ka, 17 ka–16.5 ka and after14.5–13 ka. The Last Glacial phase ended with the deposition of outwash gravel dated at ~11 ka indicating glacial retreat and the onset of Holocene condition. Additionally, centennial scale fluctuations between 16.5 ka and 12.7 ka in the magnetic and geochemical data are seen.A close correspondence at the millennial scale between our data and that of continental and marine records from the Indian sub-continent suggests that Goting basin responded to periods of strengthened monsoon during the Last Glacial to early Holocene. We attribute the millennial scale monsoon variability to climatic instability in higher northern latitudes. However, centennial scale abrupt changes are attributed to the result of albedo changes on the Himalaya and Tibetan plateau.  相似文献   

13.
《Quaternary Science Reviews》2007,26(13-14):1695-1712
The impact of the 8.2 ka cooling event during the Early–Mid Holocene has not been widely observed in Southern Europe, which in contrast to Northern Europe, was already experiencing a cooler than present climate at this time. Multi-proxy analysis of sediment cores from two closed-basin saline lakes in the Central Ebro Desert (NE Spain) has allowed us to investigate the impact of climatic changes around the time of this event in more detail. Long-term changes in climate between the Early and Mid Holocene indicate a shift in winter to a more positive NAO, resulting in declining lake levels in one lake sensitive to winter groundwater recharge, and cooler winter temperatures reconstructed from pollen–climate analysis. Reconstructed summer temperatures also declined over this period while annual precipitation and forest cover increased, interpreted as a result of enhanced convection-driven summer precipitation association with a northward displacement of the sub-tropical high pressure. Around 8.2 ka, a marked increase in fire frequency is shown between ca 8.8 and 8.0 ka BP, along with an expansion of fire-tolerant evergreen oak and peak in water levels in a second storm run-off fed lake. A maximum in fire intensity occurred with the deposition of a charcoal layer at both lake sites dated to 8150±130 and 8285±135 cal BP, respectively. The increase in fire is largely attributed to a temporary return southward of the summer sub-tropical high pressure over the Mediterranean, which not only increased summer aridity, but also caused a contradictory regional warming before Hemispheric cooling set in.  相似文献   

14.
The paleoclimatic record of Juréia Paleolagoon, coastal southeastern Brazil, includes cyclic and gradual changes with different intensities and frequencies through geological time, and it is controlled by astronomical, geophysical, and geological phenomena. These variations are not due to one single cause, but they result from the interaction of several factors, which act at different temporal and spatial scales. Here, we describe paleoenvironmental evidence regarding climatic and sea level changes from the last 9400 cal yr BP at the Juréia Paleolagoon — one of the main groups of protected South Atlantic ecosystems. Geochemical evidences were used to identify anomalies from multi-proxy analyses of a paleolagoon sediment core. The anomalies of centennial scale were correlated to climate and transgression–regression cycles from the Holocene period. Decadal scale anomalous oscillations in the Quaternary paleolagoon sediments occur between 9400 and 7500 cal yr BP, correlated with long- and short-term natural events, which generated high sedimentation rates, mainly between 8385 and 8375 cal yr BP (10 cm/yr). Our results suggest that a modern-day short-duration North Atlantic climatic event, such as the 8.2 ka event, could affect the environmental equilibrium in South America and intensify the South American Summer Monsoon.  相似文献   

15.
Ras Ibn Hani peninsula, a wave-dominated tombolo (800 × 1000 m) on the Syrian coast, provides evidence for significant Holocene changes that can be linked to geological inheritance, rising post-glacial sea level, sediment supply and human impacts. Initial development of Ras Ibn Hani's coastal system began ~ 8000 years ago when shallow marine environments formed in a context of rising post-glacial sea level. Following relative sea-level stabilization ~ 6000 cal yr BP, beach facies trace the gradual formation of a wave-dominated sandbank fronted by a ~ 2300 × ~ 500 m palaeo-island whose environmental potentiality was attractive to Bronze Age societies. A particularly rapid phase of tombolo accretion is observed after ~ 3500 cal yr BP characterised by a two- to fourfold increase in sedimentation rates. This is consistent with (i) a pulse in sediment supply probably driven by Bronze Age/Iron Age soil erosion in local catchments, and (ii) positive feedback mechanisms linked to regionally attested neotectonics. Archaeological remains and radiocarbon datings confirm that the subaerial tombolo was probably in place by the Late Bronze Age. These data fit tightly with other eastern Mediterranean tombolo systems suggesting that there is a great deal of predictability to their geology and stratigraphy at the regional scale.  相似文献   

16.
Information on the ocean/atmosphere state over the period spanning the Last Glacial Maximum – from the Late Pleistocene to the Holocene – provides crucial constraints on the relationship between orbital forcing and global climate change. The Pacific Ocean is particularly important in this respect because of its dominant role in exporting heat and moisture from the tropics to higher latitudes. Through targeting groundwaters in the Mojave Desert, California, we show that noble gas derived temperatures in California averaged 4.2 ± 1.1 °C cooler in the Late Pleistocene (from ~43 to ~12 ka) compared to the Holocene (from ~10 to ~5 ka). Furthermore, the older groundwaters contain higher concentrations of excess air (entrained air bubbles) and have elevated oxygen-18/oxygen-16 ratios (δ18O) – indicators of vigorous aquifer recharge, and greater rainfall amounts and/or more intense precipitation events, respectively. Together, these paleoclimate indicators reveal that cooler and wetter conditions prevailed in the Mojave Desert from ~43 to ~12 ka. We suggest that during the Late Pleistocene, the Pacific ocean/atmosphere state was similar to present-day El Nino-like patterns, and was characterized by prolonged periods of weak trade winds, weak upwelling along the eastern Pacific margin, and increased precipitation in the southwestern U.S.  相似文献   

17.
18.
Wildfire is an important factor on carbon sequestration in the North American boreal biomes. Being globally important stocks of organic carbon, peatlands may be less sensitive to burning in comparison with upland forests, especially wet unforested ombrotrophic ecosystems as found in northeastern Canada. We aimed to determine if peatland fires have driven carbon accumulation patterns during the Holocene. To cover spatial variability, six cores from three peatlands in the Eastmain region of Quebec were analyzed for stratigraphic charcoal accumulation. Results show that regional Holocene peatland fire frequency was ~ 2.4 fires 1000 yr? 1, showing a gradually declining trend since 4000 cal yr BP, although inter- and intra-peatland variability was very high. Charcoal peak magnitudes, however, were significantly higher between 1400 and 400 cal yr BP, possibly reflecting higher charcoal production driven by differential climatic forcing aspects. Carbon accumulation rates generally declined towards the late-Holocene with minimum values of ~ 10 g m? 2 yr? 1 around 1500 cal yr BP. The absence of a clear correlation between peatland fire regimes and carbon accumulation indicates that fire regimes have not been a driving factor on carbon sequestration at the millennial time scale.  相似文献   

19.
We present chironomid and pollen records from the Huelmo site (~41°30′S), NW Patagonia, to examine in detail the timing and structure of climate changes during the Last Glacial Termination in the southern mid-latitudes. The chironomid record has the highest temporal and taxonomic resolution for this critical interval, and constitutes the first account of midge faunas at the culmination of the Last Glacial Maximum (LGM) for the region. The chironomid record suggests cold and wet conditions during the LGM, followed by deglacial warming between 17.6 and 16.8 cal kyr BP. Relatively warm conditions prevailed between ~15–14 cal kyr BP, followed by a reversal in trend with cooling pulses at ~14 and 13.5 cal kyr BP, and warming at the beginning of the Holocene. Cool-temperate conditions prevailed during the Huelmo Mascardi Cold Reversal (HMCR) which, according to chironomid data, exhibits a wet phase (13.5–12.8 cal kyr BP) followed by a conspicuous drier phase (12.8–11.5 cal kyr BP). The chironomid and pollen records from the Huelmo site indicate step-wise deglacial warming beginning at 17.6 cal kyr BP, in agreement with other paleoclimate records from NW Patagonia and isotopic signals from Antarctic ice cores. Peak warmth during the Last Glacial Termination was achieved by ~14.5 cal kyr BP, followed by a cooling trend that commenced during the Antarctic Cold Reversal, which later intensified and persisted during the HMCR (13.5–11.5 cal kyr BP). We observe a shift toward drier conditions at ~12.8 cal kyr BP superimposed upon the HMCR, coeval with intense fire activity and vegetation disturbance during Younger Dryas time.  相似文献   

20.
We have synthesized new and existing relative sea-level (RSL) data to produce a quality-controlled, spatially comprehensive database from the North Carolina coastline. The RSL database consists of 54 sea-level index points that are quantitatively related to an appropriate tide level and assigned an error estimate, and a further 33 limiting dates that confine the maximum and minimum elevations of RSL. The temporal distribution of the index points is very uneven with only five index points older than 4000 cal a BP, but the form of the Holocene sea-level trend is constrained by both terrestrial and marine limiting dates. The data illustrate RSL rapidly rising during the early and mid Holocene from an observed elevation of ?35.7 ± 1.1 m MSL at 11062–10576 cal a BP to ?4.2 m ± 0.4 m MSL at 4240–3592 cal a BP.We restricted comparisons between observations and predictions from the ICE-5G(VM2) with rotational feedback Glacial Isostatic Adjustment (GIA) model to the Late Holocene RSL (last 4000 cal a BP) because of the wealth of sea-level data during this time interval. The ICE-5G(VM2) model predicts significant spatial variations in RSL across North Carolina, thus we subdivided the observations into two regions. The model forecasts an increase in the rate of sea-level rise in Region 1 (Albemarle, Currituck, Roanoke, Croatan, and northern Pamlico sounds) compared to Region 2 (southern Pamlico, Core and Bogue sounds, and farther south to Wilmington). The observations show Late Holocene sea-level rising at 1.14 ± 0.03 mm year?1 and 0.82 ± 0.02 mm year?1 in Regions 1 and 2, respectively. The ICE-5G(VM2) predictions capture the general temporal trend of the observations, although there is an apparent misfit for index points older than 2000 cal a BP. It is presently unknown whether these misfits are caused by possible tectonic uplift associated with the mid-Carolina Platform High or a flaw in the GIA model. A comparison of local tide gauge data with the Late Holocene RSL trends from Regions 1 and 2 support the spatial variation in RSL across North Carolina, and imply an additional increase of mean sea level of greater than 2 mm year?1 during the latter half of the 20th century; this is in general agreement with historical tide gauge and satellite altimetry data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号