首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report for the first time the evidence for prograde high-pressure (HP) metamorphism preceding a peak ultrahigh-temperature (UHT) event in the northernmost part of the Madurai Block in southern India. Mg–Al-rich Grt–Ged rocks from Komateri in Karur district contain poikiloblastic garnet with numerous multi-phase inclusions. Although most of the inclusion assemblages are composed of gedrite, quartz, and secondary biotite, rare staurolite + sapphirine and spinel + quartz are also present. The XMg (=Mg/[Fe+Mg]) of staurolite (0.45–0.49) is almost consistent with that reported previously from Namakkal district in the Palghat–Cauvery Shear Zone system (XMg = 0.51–0.52), north of the Madurai Block. The HP event was followed by peak UHT metamorphism at T = 880–1040 °C and P = 9.8–12.5 kbar as indicated by thermobarometric computations in the Grt–Ged rock and associated mafic granulite. Symplectic intergrowth of spinel (XMg = 0.50–0.59, ZnO < 1.7 wt.%) and quartz, a diagnostic indicator of UHT metamorphism, probably formed by decompression at UHT conditions. The rocks subsequently underwent retrograde metamorphism at T = 720–760 °C and P = 4.2–5.1 kbar. The PT conditions and clockwise exhumation trajectory of the Komateri rocks, comparable to similar features recorded from the Palghat–Cauvery Shear Zone system, suggest that the Madurai Block and the Palghat–Cauvery Shear Zone system underwent similar HP and UHT metamorphic history probably related to the continent–continent collision during the final stage of amalgamation of Gondwana supercontinent.  相似文献   

2.
The Madurai Block in southern India is considered to represent the eroded roots of an arc-accretionary complex that developed during the subduction–collision tectonics associated with the closure of the Mozambique Ocean and final suturing of the crustal fragments within the Gondwana supercontinent in the Late Neoproterozoic–Cambrian. Here we present a magnetotelluric (MT) model covering the main collisional suture (Palghat–Cauvery Suture Zone) in the north into the central part of the Madurai Block in the south comprising data from 11 stations. Together with a synthesis of the available seismic reflection data along a N–S transect further south within the Madurai Block, we evaluate the crustal architecture and its implications on the tectonic development of this region. According to our model, the predominantly south dipping seismic reflectors beneath the Madurai Block define a prominent south-dipping lithological layering with northward vergence resembling a thrust sequence. We interpret these stacked layers as imbricate structures or mega duplexes developed during subduction–accretion tectonics. The layered nature and stacking of contrasting velocity domains as imaged from the seismic profile, and the presence of thick (>20 km) low resistivity layers ‘floating’ within high resistivity domains as seen from MT model, suggest the subduction of a moderately thick oceanic crust. We identify several low resistivity domains beneath the Madurai Block from the MT model which probably represent eclogitised remnants of oceanic lithosphere. Their metamorphosed and exhumed equivalents in association with ultrahigh-temperature metamorphic orogens have been identified from surface geological studies. Both seismic reflections and MT model confirm a southward subduction polarity with a progressive accretion history during the northward migration of the trench prior to the final collisional assembly of the crustal blocks along the Palghat–Cauvery Suture Zone, the trace of the Gondwana suture in southern India.  相似文献   

3.
The Panrimalai area constitutes part of the granulite-facies rocks of the Madurai block in the Southern Granulite Terrain (SGT), India. Garnet-bearing mafic granulites in Panrimalai occur as small enclaves within charnockite. The common stable assemblage during peak metamorphism contains hornblende, garnet, orthopyroxene, clinopyroxene, quartz and plagioclase. The resorption of garnet in various reaction textures and the development of spectacular orthopyroxene–plagioclase and hornblende–plagioclase symplectites characterize the subsequent stages of metamorphism. Application of multi-equilibrium calculation procedures for mineral core compositions of the early assemblage yields near peak conditions at   900 °C at 9 kbar. These estimates are the highest yet reported in mafic granulites from the Madurai block. The post-peak PT path is constructed for the mafic granulites based on observed microstructural relations and thermobarometric results is characterized by a steep clockwise decompressional PT segment from   9 to  < 4.5 kbar. Constraints from model Nd ages provide evidence for Paleoproterozoic magmatism restricted to the Madurai block in the Southern Granulite Terrain. The early part of the crustal evolution of the Panrimalai granulites could be coeval with the Paleoproterozoic event. Subsequent development of symplectitic assemblages via near-isothermal decompression can be ascribed to a distinctly later tectonic event. Available U–Pb and Sm–Nd mineral dates suggest a widespread Pan-African tectonothermal event in the SGT. Given the general recognition of ultrahigh-temperature (UHT) and isothermal decompression (ITD) in Pan-African age metamorphism in the East-African–Antarctic Orogen (EAAO) , the Panrimalai UHT history is considered to be part of this record.  相似文献   

4.
《Gondwana Research》2016,29(4):1310-1328
The Southern Granulite Terrane in southern India preserves evidence for regional-scale high to ultrahigh temperature metamorphism related to the amalgamation of the supercontinent Gondwana. Here we present accessory mineral (zircon and monazite) geochronological and geochemical datasets linked to the petrological evolution of the rocks as determined by phase equilibria modelling. The results constrain the duration of high to ultrahigh temperature (> 900 °C) metamorphism in the Madurai Block to be c. 40 Ma with peak conditions achieved c. 60 Ma after the formation of an orogenic plateau related to the collision of the microcontinent Azania with East Africa at c. 610 Ma. A 1D numerical model demonstrates that the attainment of temperatures > 900 °C requires that the crust be moderately enriched in heat producing elements and that the duration of the orogenic event is sufficiently long to allow conductive heating through radioactive decay. Both of these conditions are met by the available data for the Madurai Block. Our results constrain the length of time it takes for the crust to evolve from collision to peak P–T (i.e. the prograde heating phase) then back to the solidus during retrogression. This evolution illustrates that not all metamorphic ages date sutures.  相似文献   

5.
The Salvador–Curaçá Belt, located in São Francisco Craton, Brazil, was subjected to granulite facies metamorphism during the Paleoproterozoic orogeny (c. 2.0 Ga). Well preserved in enclaves of silica-undersaturated sapphirine-bearing granulite occur in a charnockite outcrop located along a kilometric-scale shear zone. The sapphirine-bearing granulite preserves domains with distinct mineral assemblages that record interactions between melt and peritectic phases (orthopyroxene1 + spinel1 + biotite1). Sapphirine was crystallized in the Si-poor cores of the enclaves, sillimanite and spinel–cordierite symplectites in the intermediate Si-rich domains between cores and margins, and garnet and quartz-bearing cordierite/biotite symplectites in Si-rich margins of the enclaves. Melt-rock interactions and metamorphism occurred at ultrahigh temperatures of 900–950 °C at 7.0–8.0 kbar pressures. The mineralogical evolution of the domains reflects not only the influence of changes in bulk composition in the equilibrium volume of the reactions but also PT changes during orogeny evolution. Electron microprobe dating of monazite both in the sapphirine-bearing granulite and charnockite indicates UHT metamorphism timing at c. 2.08–2.05 Ga that is related to global Paleoproterozoic UHT metamorphic events that occurred during the Columbia supercontinent assembly.  相似文献   

6.
Several metabasite lenses in Ganghe, Central Dabie, that were previously described as pillow lavas are studied by elemental, Sr–Nd–Pb isotopic, and mineral oxygen isotopic analysis as well as zircon SHRIMP U–Pb dating. Zircon U–Pb geochronology results indicate that the protolith emplacement age of these metabasites is approximately 717 ± 38 Ma, consistent with the age of the volcanoclastic rocks in the same unit, and that they experienced the Triassic HP eclogite-facies retrograde metamorphism at 221 ± 2 Ma during exhumation after subduction to mantle depth and peak ultra-high pressure metamorphism. The low δ18O values of −5.5‰ to −2.0‰ indicate that the protoliths underwent high temperature meteoric-hydrothermal alteration before subduction but had no seawater interaction. These metabasites had similar formation processes, water–rock interactions and metamorphisms as other eclogite-facies rocks cropped out in the Central Dabie terrain. They showed negative abnormalities in Nb, Sr, and Ti content and positive abnormalities in Ba, Th, and Pb content; they also showed LREE enrichment. The insusceptible Sm–Nd isotopes during metamorphism yielded εNd (t) = −12 to −10 and TDM = 2.2–2.8 Ga for samples from lenses #1 to #3 and −7 to −6 and 2.1–2.2 Ga for lens #4; the samples also showed low radiogenic Pb isotope compositions of (206Pb/204Pb)i = 15.34–16.50, (207Pb/204Pb)i = 15.23–15.32, and (208Pb/204Pb)i = 35.93–37.04. The data suggest that the protolith sources of the metabasites were contaminated to variable degrees by old crustal materials during formation. Unlike the Maowu layered intrusions, which were contaminated by upper crust, the magmas of the metabasites were contaminated by lower crust in the magma chamber and during eruption. It can be concluded that the protoliths of these metabasites were derived from old crustal-contaminated mantle sources and initially emplaced in the crust at the Neoproterozoic and that they were altered by meteoric water at high temperatures. In this respect, they might be similar to the Neoproterozoic mafic intrusions in the North Huaiyang terrain. However, the studied metabasites experienced the Permo-Triassic subduction and metamorphism, whereas the North Huaiyang Neoproterozoic mafic intrusions did not.  相似文献   

7.
Oxidised metasediments in the western Gawler Craton southern Australia record late Paleoproterozoic high-temperature (HT) to ultrahigh-temperature (UHT) metamorphism. The HT-UHT rocks are magnetite-rich and come from drill core in an unexposed region of the Gawler Craton. Coarse-grained cordierite-bearing assemblages that potentially contained osumilite are overprinted by orthopyroxene-sillimanite-bearing assemblages, which in turn are overprinted by garnet. This microstructural record indicates a metamorphic evolution involving early high-T, low-P conditions that were overprinted by lower thermal gradient assemblages. In situ LA–ICP–MS monazite U-Pb age dating yields a range of ages between 1850 and 1530 Ma with large populations at ca 1690–1650 Ma and ca 1600 Ma. Elsewhere in the Gawler Craton HT and UHT metamorphism occurred in the earliest Mesoproterozoic (ca 1580 Ma). The timing of the Australian UHT events coincides with several other documented examples and occurred during the postulated existence of the Columbia supercontinent. If arguments that link the formation of UHT belts to supercontinental amalgamation are valid, then the existence of ca 1700 to 1600 Ma UHT metamorphism may place additional constraints on the timing of Columbian assembly.  相似文献   

8.
This is the first report of osumilite occurring as fine isolated inclusions within garnet porphyroblasts, as observed in garnet–sillimanite gneiss from Rundvågshetta, Lützow-Holm Complex, East Antarctica. The osumilite is characterized by high Si content (10.60 and 10.95 atoms based on 30 oxygens per formula unit), low Al content (2.99 and 3.82), a high content of M site-occupying cations (2.51 and 3.03), and high XMg values (about 0.81). We also report a spinel + quartz association found as inclusions within garnet porphyroblasts. Spinel grains, which are in direct contact with quartz and are spatially associated with sillimanite, show extremely high Zn contents (XZnSpl = 0.33 ? 0.46) and high XMg values (0.45–0.54). The garnet is rimmed by sillimanite, K-feldspar, plagioclase, and quartz. Biotite and cordierite are found only as inclusions within garnet porphyroblasts, where biotite coexists with spinel–quartz or with rutile. Porphyroblastic garnet contains rutile needles and has low XMg values (about 0.36). The sillimanite contains a high Fe content (about 1.2 wt.% Fe2O3).The occurrence of osumilite and spinel + quartz indicates a clockwise pressure–temperature path of ultrahigh-temperature metamorphism, involving the following events: (1) the Rundvågshetta granulites suffered prograde metamorphism within the kyanite and sapphirine + quartz fields; (2) subsequent retrograde metamorphism, involving near-isothermal decompression, occurred in the orthopyroxene + sillimanite + quartz field; (3) the granulites passed through the garnet + cordierite + sillimanite + quartz field during decreasing temperature; (4) the granulites entered the osumilite stability field at around 8 kbar and 950 °C; and (5) the granulites retain a final record of retrograde metamorphism within the biotite + sillimanite + K-feldspar and quartz field at 6.1 kbar and about 830 °C.  相似文献   

9.
Highly anhydrous granulites from Río Santa Rosa in the eastern Sierras Pampeanas of Argentina occur as a thick lens surrounded by melt-depleted migmatites. Grt–Crd granulite composed of Qtz+Pl+Grt+Crd+Ilm±Spl±Ath±Phl is the dominant rock, whereas Opx–Grt granulite appears as discontinuous lenses in the center of the granulite body. Grt–Crd granulite includes blocks of metabasite that are relics of refractory lithologic beds interlayered in the supracrustal sequence. A distinct assemblage composed of Qtz, Pl, Grt, Crd, Opx, Spl, Crn, Sil, Bt, Phl, Ath, and Fe–Ti oxides in different combinations was generated in a reaction zone between Grt–Crd granulites and metabasites at peak metamorphism (850–900 °C and 7.6±0.5 kbar). The PT trajectory of Grt–Crd granulites suggests an early prograde garnet-forming stage followed by nearly isothermal decompression that caused garnet breakdown. Melting and melt draining accompanying garnet growth was active during heating (to 900 °C) at intermediate pressures (∼7.6 kbar). Peak PT estimates for Opx–Grt granulites are similar to those obtained with Grt–Crd granulites, which indicates that both granulites passed through the highest thermal stage. These results constrain the late evolution of Opx–Grt granulite to a garnet-consuming stage. Furthermore, they imply that garnet formation in Opx–Grt granulite happened at an early prograde PT trajectory. Garnet growth in Opx–Grt granulite cannot result from heating at high pressure, which would lead to an apparent contradiction in the prograde PT paths of the two granulites. This discrepancy may be solved by demonstrating that Opx–Grt granulite is the product of synmetamorphic mafic magmatism that was contaminated while cooling. The Río Santa Rosa granulites are inferred to have formed in a thickened crust in which mafic magmatic activity providing a local heat input.  相似文献   

10.
Almora Nappe in Uttarakhand, India, is a Lesser Himalayan representative of the Himalayan Metamorphic Belt that was tectonically transported over the Main Central Thrust (MCT) from Higher Himalaya. The Basal Shear zone of Almora Nappe shows complicated structural pattern of polyphase deformation and metamorphism. The rocks exposed along the northern and southern margins of this nappe are highly mylonitized while the degree of mylonitization decreases towards the central part where the rocks eventually grade into unmylonitized metamorphics.Mylonitized rocks near the roof of the Basal Shear zone show dynamic metamorphism (M2) reaching upto greenschist facies (~450 °C/4 kbar). In the central part of nappe the unmylonitized schists and gneisses are affected by regional metamorphism (M1) reaching upper amphibolite facies (~4.0–7.9 kbar and ~500–709 °C). Four zones of regional metamorphism progressing from chlorite–biotite to sillimanite–K-feldspar zone demarcated by specific reaction isograds have been identified. These metamorphic zones show a repetition suggesting that the zones are involved in tight F2 – folding which has affected the metamorphics. South of the Almora town, the regionally metamorphosed rocks have been intruded by Almora Granite (560 ± 20 Ma) resulting in contact metamorphism. The contact metamorphic signatures overprint the regional S2 foliation. It is inferred that the dominant regional metamorphism in Almora Nappe is highly likely to be of pre-Himalayan (Precambrian!) age.  相似文献   

11.
Thick horizons of iron formations including Banded Iron Formations (BIFs) and Banded Silicate Formations (BSFs) occur as E–W trending bands in the eastern part of Cauvery Suture Zone (CSZ) in the Sothern Granulite Terrane of India. Some of these occur in close association with the Neoarchean-Neoproterozoic suprasubduction zone complexes, where as some others are associated with metamorphosed accretionary sequences including pyroxene granulites and other high grade rocks. The iron formations are highly deformed and metamorphosed under amphibolite to granulite facies conditions and are composed of quartz–magnetite–hematite–goethite–garnet–pyrite together with grunerite and pyroxene. Here we report the geochemical characteristics of twenty representative samples from the iron formations that reveal a widely varying composition with Fe2O3(t) (22–65 wt.% as total iron) total- Fe2O3/TiO2 (205–6532), MnO/TiO2 (0.25–12.66) and SiO2 (33–85 wt.%), broadly representing the two types of iron formations. These formations also show very low Al/(Al + Fe + Mn) ratio (0.001–0.01), Al2O3 (0.07–0.76 wt.%), Al2O3/TiO2 ratio (2.7–21), MgO (0.01–4.41 wt.%), CaO (0.1–1.24 wt.%), Na2O (0.01–0.05 wt.%) and K2O (0.01 wt.%) together with low total REE (3.38–31.63 ppm). The trace and REE elemental distributions show wide variation with high Ni (274 ppm), and Zn contents (up to 87 ppm) when compared to mafic volcanics of the adjoining areas. Tectonic discrimination plots indicate that the iron formations of the Cauvery Suture Zone are of hydrothermal origin. Their chondrite normalized patterns show slight positive Eu anomaly (Eu/Eu* = up to 1.77) and relatively less fractionation of REE with slight LREE enrichment compared to HREE. However, the PAAS (Post Archean Average of Australian Sediments) normalized REE patterns display significant positive Eu anomaly (Eu/Eu* up to 2.32) with well represented negative Ce anomalies (Ce/Ce* = 0.66–1.28). The above results together with petrological characteristics and available geochronology of the associated lithologies suggest that the iron formations can be correlated to Algoma-type. The Fe and Si were largely supplied by medium to high temperature sub-marine hydrothermal systems in Neoarchean and Neoproterozoic convergent margin settings.  相似文献   

12.
Southern Indian shield represents a mosaic comprised of several smaller structural domains separated by discrete shear zones. Here we present a horizontal Bouguer gravity gradient map of the Indian shield, south of 14 °N, to define a continental mosaic of gravity trends domains akin to structural domains. The gravity gradient image is based on 7862 newly collected observations merged with 6359 old gravity data. This combined dataset delineates structural boundaries of the five gravity domains related to the Eastern Dharwar Craton, the Eastern Ghats Mobile Belt, the extended Eastern Ghats Mobile Belt, the Southern Granulite Terrain, and the Western Dharwar Craton. Other belts of significant gravity gradients are found associated with the Eastern and the Western coasts. The loci of Closepet granite and Kolar schist belts do not manifest themselves as boundary zones between two distinct gravity domains of the Eastern Dharwar Craton. Lack of a gravity gradient across Karur–Oddanchatram–Kodaikanal and Karur–Kambam–Painavu–Trichur Shear Zones may be attributed to a lack of gravity measurements caused by difficulties in collecting data in topographically difficult terrain. The subdued gravity gradient across the Palghat–Cauvery Shear Zone and a weak gradient across the Achankovil Shear Zone indicates a lithological and/or morphological boundary rather than a terrane boundary. Alternatively, structural domains encompassing Palghat–Cauvery and Achankovil Shear Zones may have been in a neighbouring position during the Gondwana assembly, when Pan-African thermal perturbation reactivated the structures and reworked partly or totally obliterating earlier crustal fabric.  相似文献   

13.
The Mercara Shear Zone is sandwiched between the Western Dharwar Craton and the Coorg Block in the Southern Granulite Terrain of India, and is marked by steep gravity gradients interpreted to suggest the presence of underplated high-density material in the lower crust. Here we present geological, petrological and geochemical data, together with zircon U–Pb ages and Lu–Hf isotopes from a suite of metaigneous (TTG-related gneisses, charnockite, metagabbro, mafic granulite) and metasedimentary (quartz mica schist, khondalite, garnet biotite gneiss, kyanite–sillimanite bearing metapelite) rocks from this zone. Geochemical data on the magmatic suite suggests formation through subduction-related arc magmatism, whereas the metasediments represent volcano-sedimentary trench sequences. Phase equilibrium modeling of mafic granulites from the Mercara Shear Zone suggests P–T range of 10–12 kbar at 700 °C to 900 °C. The zircon data yield weighted mean 207Pb/206Pb ages of 3229 ± 80 Ma for metagabbro, 3168 ± 25 Ma for the charnockite, and 3181 ± 20 Ma for the mafic granulite. Ages ranging from 3248 ± 28 Ma to 3506 ± 26 Ma were obtained from zircons in the kyanite/sillimanite bearing metapelite, 3335 ± 44 Ma from khondalite, 3135 ± 14 Ma from garnet biotite gneiss, 3145 ± 17 Ma to 3292 ± 57 Ma from quartz mica schist and 3153 ± 15 Ma to 3252 ± 36 from TTG gneiss. The tightly defined ages of 3.1 to 3.2 Ga from igneous zircons in the magmatic suite suggest prominent Mesoarchean convergent margin magmatism. The timing of high grade metamorphism as constrained from metamorphic overgrowths in zircons is ca. 3.0 Ga which might mark the collisional event between the Western Dharwar Craton and the Coorg Block. Hf isotope features suggest magma derivation mostly from juvenile sources and the Lu–Hf model ages indicate that the crust building might have also involved partial recycling of basement rocks as old as ca. 3.8 Ga. Our study defines the Mercara Shear Zone as a terrane boundary, and possible Mesoarchean suture along which the Coorg Block was accreted to the Western Dharwar Craton. The accretion of these continental fragments might have coincided with the birth of the oldest supercontinent “Ur”.  相似文献   

14.
Jurassic to Cretaceous red sandstones were sampled at 33 sites from the Khlong Min and Lam Thap formations of the Trang Syncline (7.6°N, 99.6°E), the Peninsular Thailand. Rock magnetic experiments generally revealed hematite as a carrier of natural remanent magnetization. Stepwise thermal demagnetization isolates remanent components with unblocking temperatures of 620–690 °C. An easterly deflected declination (D = 31.1°, I = 12.2°, α95 = 13.9°, N = 9, in stratigraphic coordinates) is observed as pre-folding remanent magnetization from North Trang Syncline, whereas westerly deflected declination (D = 342.8°, I = 22.3°, α95 = 12.7°, N = 13 in geographic coordinates) appears in the post-folding remanent magnetization from West Trang Syncline. These observations suggest an occurrence of two opposite tectonic rotations in the Trang area, which as a part of Thai–Malay Peninsula received clockwise rotation after Jurassic together with Shan-Thai and Indochina blocks. Between the Late Cretaceous and Middle Miocene, this area as a part of southern Sundaland Block experienced up to 24.5° ± 11.5° counter-clockwise rotation with respect to South China Block. This post-Cretaceous tectonic rotation in Trang area is considered as a part of large scale counter-clockwise rotation experienced by the southern Sundaland Block (including the Peninsular Malaysia, Borneo and south Sulawesi areas) as a result of Australian Plate collision with southeast Asia. Within the framework of Sundaland Block, the northern boundary of counter-clockwise rotated zone lies between the Trang area and the Khorat Basin.  相似文献   

15.
The northern Banda Arc, eastern Indonesia, exposes upper mantle/lower crustal complexes comprising lherzolites and granulite facies migmatites of the ‘Kobipoto Complex’. Residual garnet–sillimanite granulites, which contain spinel + quartz inclusions within garnet, experienced ultrahigh-temperature (UHT; > 900 °C) conditions at 16 Ma due to heat supplied by lherzolites exhumed during slab rollback in the Banda Arc. Here, we present U–Pb zircon ages and new whole-rock geochemical analyses that document a protracted history of high-T metamorphism, melting, and acid magmatism of a common sedimentary protolith. Detrital zircons from the Kobipoto Complex migmatites, with ages between 3.4 Ga and 216 Ma, show that their protolith was derived from both West Papua and the Archean of Western Australia, and that metamorphism of these rocks on Seram could not have occurred until the Late Triassic. Zircons within the granulites then experienced three subsequent episodes of growth – at 215–173 Ma, 25–20 Ma, and at c. 16 Ma. The population of zircon rims with ages between 215 and 173 Ma document significant metamorphic (± partial melting) events that we attribute to subduction beneath the Bird's Head peninsula and Sula Spur, which occurred until the Banda and Argo continental blocks were rifted from the NW Australian margin of Gondwana in the Late Jurassic (from c. 160 Ma). Late Oligocene-Early Miocene collision between Australia (the Sula Spur) and SE Asia (northern Sulawesi) was then recorded by crystallisation of several 25–20 Ma zircon rims. Thereafter, a large population of c. 16 Ma zircon rims grew during subsequent and extensive Middle Miocene metamorphism and melting of the Kobipoto complex rocks beneath Seram under high- to ultrahigh-temperature (HT–UHT) conditions. Lherzolites located adjacent to the granulite-facies migmatites in central Seram equilibrated at 1280–1300 °C upon their exhumation to 1 GPa (~ 37 km) depth, whereupon they supplied sufficient heat to have metamorphosed adjacent Kobipoto Complex migmatites under UHT conditions at 16 Ma. Calculations suggesting slight (~ 10 vol%) mantle melting are consistent with observations of minor gabbroic intrusions and scarce harzburgites. Subsequent extension during continued slab rollback exhumed both the lherzolites and adjacent granulite-facies migmatites beneath extensional detachment faults in western Seram at 6.0–5.5 Ma, and on Ambon at 3.5 Ma, as recorded by subsequent zircon growth and 40Ar/39Ar ages in these regions. Ambonites, cordierite- and garnet-bearing dacites sourced predominantly from melts generated in the Kobipoto Complex migmatites, were later erupted on Ambon from 3.0 to 1.9 Ma.  相似文献   

16.
The precise constraints on the timing of metamorphism of the Changhai metamorphic complex is of great importance considering the prolonged controversial issue of the north margin and the extension of the Sulu–Dabie HP–UHP Belt. While the monazite U–Th–Pb and muscovite 40Ar/39Ar techniques are widely accepted as two of the most powerful dating tools for revealing the thermal histories of medium–low grade metamorphic rocks and precisely constraining the timing of metamorphism. The Changhai metamorphic complex at the SE Jiao–Liao–Ji Belt, North China Craton consists of a variety of pelitic schist and Grt–Ky-bearing paragneiss, and minor quartzite and marble. Analyses of mineral inclusions and back-scattered electric (BSE) images of monazites, combined with LA–ICP–MS U–Th–Pb ages for monazites and 40Ar/39Ar ages for muscovites, provide evidence of the origin and metamorphic age of the Changhai metamorphic complex. Monazites separates from various Grt–Mus schists and Grt–Ky–St–Mus paragneisses exhibit homogeneous BSE images from cores to rims, and contain inclusion assemblages of Grt + Mus + Qtz ± Ctd ± Ky in schist, and Grt + Ky + St + Mus + Pl + Kfs + Qtz inclusions in paragneiss. These inclusion assemblages are very similar to matrix minerals of host rocks, indicating they are metamorphic rather than inherited or detrital in origin. LA–ICP–MS U–Th–Pb dating reveals that monazites of schist and paragneiss have consistent 206Pb/238U ages ranging from 228.1 ± 3.8 to 218.2 ± 3.7 Ma. In contrast, muscovites from various schists show slightly older 40Ar/39Ar plateau ages of 236.1 ± 1.5 to 230.2 ± 1.2 Ma. These geochronological and petrological data conclude that the pelitic sediments have experienced a metamorphic event at the Mid–Late Triassic (236.1–218.2 Ma) rather than the Paleoproterozoic (1950–1850 Ma), commonly regarded as the Precambrian basement for the Jiao–Liao–Ji Belt. Hence, the Changhai metamorphic complex should be considered as a discrete lithotectonic group.This newly recognized Mid–Late Triassic metamorphic event (236.1–218.2 Ma) for the Changhai metamorphic complex is coeval with the HP–UHP metamorphic event (235–220 Ma) for Sulu–Dabie rocks. This leads us to speculate that the metamorphism of the Changhai complex belt along the SE margin of the North China Craton was genetically related to the Mid–Late Triassic collision of the North China and South China cratons. By the same token, the Sulu–Dabie HP–UHP Belt may have extended through Yantai, and the southern Yellow Sea, and to the southern side of the Changhai metamorphic complex.  相似文献   

17.
Several metamorphic complexes in Southeast Asia have been interpreted as Precambrian basement, characterized by amphibolite to granulite facies metamorphism. In this paper, we re-evaluate the timing of this thermal event based on the large-scale geochronology and compositional variation of monazites from amphibolite to granulite facies metamorphic terranes in central Vietnam. Most of the samples in this study are from metamorphic rocks (n = 38) and granitoids (n = 11) in the Kontum Massif. Gneisses (n = 6) and granitoids (n = 5) from the Hai Van Migmatite Complex and the Truong Son Belt, located to the north of the massif, were also studied. Two distinct thermal episodes (245–230 Ma and 460–430 Ma) affected Kontum Massif gneisses, while a single dominant event at 240–220 Ma is recorded in the gneisses from the Hai Van Complex and the Truong Son Belt. Monazites from granitoids commonly yield an age of 240–220 Ma. Mesoproterozoic ages (1530–1340 Ma) were obtained only from monazite cores that are surrounded by c. 440 Ma overgrowths. Thermobarometric results, combined with concentrations of Y2O3, Ce2O3, and heavy rare earth elements in monazite, and recently reported pressure–temperature paths suggest that Triassic ages correspond to retrograde metamorphism following decompression from high- to medium-pressure/temperature conditions. Ordovician–Silurian ages reflect low-pressure/temperature metamorphism accompanied by isobaric heating during prograde metamorphism. Some samples were affected by both metamorphic events. We conclude that high-grade metamorphism observed in so-called Precambrian basement terranes in central Vietnam occurred during both the Permian–Triassic and the Ordovician–Silurian, while peraluminous granitoid magmatism is Triassic. Additionally, our preliminary analyses for U–Pb zircon age and whole-rock chemistry of granitic gneisses from the Truong Song Belt suggests the presence of the Ordovician–Silurian volcanic arc magmatism in the region. Based on the pressure–temperature–time–protolith evolutions, metamorphic rocks from central Vietnam provide a continuous record of subduction–accretion–collision tectonics between the South China and Indochina blocks: in the Ordovician–Silurian, the region was characterized by active continental margin tectonics, followed by continental collision during the Late Permian to Early Triassic and subsequent exhumation during the Late Triassic. The results also suggest that the timing of metamorphism and protolith formation as well as the geochemical features in other Southeast Asian terranes should be verified to achieve a better understanding of the Precambrian to Early Mesozoic tectonic history in Asia.  相似文献   

18.
The Jiangshan–Shaoxing Fault Zone (JSFZ) in Zhejiang Province has been proposed to represent a suture between the Yangtze and Cathaysia blocks in South China. In this study, in-situ zircon U–Pb and Hf isotopic analysis and whole-rock major- and trace-element measurement of early to middle Cretaceous felsic rocks across the fault zone were conducted to constrain the nature of the fault zone. Twelve Cretaceous granitoid bodies were sampled from the NW and SE sides of the fault zone, respectively, with composition ranging from diorite to granite (SiO2 = 56.2–76.6 wt.%). These granitoids yielded U–Pb ages ranging from 135–100 Ma, with a systematic variation in zircon Hf isotopic compositions (εHf(t) = + 6.9 to –7.0 in the NW side vs. + 1.9 to ? 12.9 in the SE side). The TDM2 values for the granitoids from the NW side are 0.34 to 1.33 Ga, with two peaks at ca. 876 and 1170 Ma respectively, whereas those from the SE side are 0.70 to 1.62 Ga, with a single peak at ca. 1126 Ma. The Hf isotopic disparity for the two sides may indicate a fundamental difference in the lower crustal compositions of the Yangtze and Cathaysia blocks, supporting that the JSFZ is possibly a suture zone between the two blocks. Our results together with the available geological data suggest that the Mesoproterozoic materials are important for both the Yangtze and Cathaysia basement and the Neoproterozoic magmatic activities were important in the Yangtze Block, possibly related to the break-up of the Rodinia supercontinent, but less significant in the Cathaysia Block. This may imply that the two blocks have not completely juxtaposed in the Neoproterozoic.  相似文献   

19.
The Madurai Block in southern India is a composite collage of at least three sub-blocks, with Neoarchean–Paleoproterozoic segments in the north and central domains, and a Neoproterozoic segment in the south. Here we investigate a suite of rocks with magmatic protoliths that constitute the basement in the southern margin of the Madurai Block including alkali granites, charnockites, enderbites and gabbros. The alkali granites are dominantly composed of perthitic K-feldspar, minor plagioclase and quartz, with hornblende as the main mafic mineral suggesting a calc-alkaline nature. The enderbites and charnockites have a broadly similar mineralogical constitution except for the variation in the modal content of plagioclase, K-feldspar and quartz, as well as the additional presence of clinopyroxene in some of the enderbites. The high modal content of hornblende in the gabbros suggests crystallization from hydrous basaltic melts. The geochemical features of this suite are identical to those of arc magmatic rocks, with distinct Nb, Ta, and Ti depletion suggesting magmatism in a subduction-related environment. We envisage that the underplating of basaltic magmas within a convergent margin setting provided the heat input for lower crustal melting generating the charnockitic suite of rocks. The intrusion of the underplated mafic melts as gabbroic dykes and sills into the crystallizing felsic magmas resulted in magma mixing and mingling generating the widespread enclaves of gabbroic rocks. The alkali granites were derived from the differentiation of lower crustal melts. Zircon U–Pb data from the alkali granites yield weighted mean 206Pb/238U ages of 786 ± 10 to 772 ± 11 Ma for the oldest and the most dominant group of magmatic grains, with a 662 ± 20 Ma subordinate group. The oldest group of magmatic zircons in the charnockite samples shows ages of 938 ± 27 Ma, 896 ± 12 Ma, and 786 ± 9 Ma, suggesting multiple magmatic pulses during early and mid-Neoproterozoic. A subordinate population of magmatic zircons with ages of 661 ± 9 Ma and 632 ± 7 Ma is also present. In the enderbites, the magmatic zircon population yields weighted mean ages of 926 ± 22 Ma, 923 ± 36 Ma, 889 ± 13 Ma, 803 ± 10 Ma, 787 ± 23 Ma, 786 ± 10 Ma, 748 ± 27 Ma, 742 ± 11 Ma, 717 ± 8 Ma and 692 ± 10 Ma suggesting continuous and multiple pulses of magmas emplaced throughout early to mid-Neoproterozoic. Magmatic zircons from the gabbros show weighted mean 206Pb/238U ages of 903 ± 13 Ma, 777 ± 10 Ma, 729 ± 10 Ma and 639 ± 27 Ma. Metamorphic zircons from all the rock types show latest Neoproterozoic-Cambrian ages in the range of 567 ± 19 Ma to 510 ± 8 Ma suggesting prolonged heating. Zircon Lu–Hf data show that the alkali granite-charnockite-enderbite suite has depleted mantle ages (TDM) in the range of 1164–2172 Ma and crustal residence ages (TDMC) of 1227–3023 Ma. These spots show both negative εHf(t) and positive εHf(t) values (− 22.1 to 10.6), suggesting magma derivation from mixed juvenile mid- to late-Mesoproterozoic components and reworked Mesoarchean to mid-Mesoproterozoic components. Zircon grains from the gabbroic rocks show depleted mantle ages and (TDM) in the range of 1112–2046 Ma, crustal residence ages (TDMC) of 1306–2816 Ma, and both negative and positive εHf(t) values (− 17.8 to 7.9), suggesting that the magmas were dominantly derived from juvenile mid-Mesoproterozoic to Neoproterozoic components as well as reworked Mesoarchean to mid-Mesoproterozoic sources.Our data clearly reveal multiple arc magmatism along the southern Madurai Block during distinct pulses throughout early to late Neoproterozoic, suggesting an active convergent margin along this zone at this time. Crustal thickening occurred through relamination by mafic magmas associated with slab melting. Continental outbuilding and southward growth of the Madurai Block were associated with the lateral accretion of the vast sedimentary belt of Trivandrum Block, culminating in collisional metamorphism during latest Neoproterozoic–Cambrian associated with Gondwana assembly.  相似文献   

20.
Garnet-bearing micaschists and paragneisses of the Yaounde Group in the Pan-African Central African Orogenic Belt in Cameroon underwent a polyphase structural evolution with the deformation stages D1–D2, D3 and D4. The garnet-bearing assemblages crystallized in course of the deformation stage D1–D2 which led to the formation of the regional main foliation S2. In XCaXMg coordinates one can distinguish several zonation trends in the garnet porphyroblasts. Zonation trends with increasing XMg and variably decreasing XCa signalize a garnet growth during prograde metamorphism. Intermineral microstructures provided criteria for local equilibria and a structurally controlled application of geothermobarometers based on cation exchange and net transfer reactions. The syndeformational PT path sections calculated from cores and rims of garnets in individual samples partly overlap and align along clockwise PT trends. The PT evolution started at ~450 °C/7 kbar, passed high-pressure conditions at 11–12 kbar at variable temperatures (600–700 °C) and involved a marked decompression toward 6–7 kbar at high temperatures (700–750 °C). Th–U–Pb dating of metamorphic monazite by electron microprobe (EMP-CHIME method) in eight samples revealed a single period of crystallization between 613 ± 33 Ma and 586 ± 15 Ma. The EMP-monazite age populations between 613 ± 33 Ma enclosed in garnet and 605 ± 12 Ma in the matrix apparently bracket the high temperature–intermediate pressure stage at the end of the prograde PT path. The younger monazites crystallized still at amphibolite-facies conditions during subsequent retrogression. The Pan-African overall clockwise PT evolution in the Yaounde Group with its syndeformational high pressure stages and marked pressure variations is typical of the parts of orogens which underwent contractional crustal thickening by stacking of nappe units during continental collision and/or during subduction-related accretionary processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号