首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sulina, the middle distributary of the Danube Delta, has been significantly changed by human activities over the past 150 yr. These include engineering works in the second half of the 19th century, when the channel was transformed for navigation and the construction of jetties which nowadays extend 8 km seawards. These interventions have strongly affected the natural processes of the Black Sea coast near the Sulina mouth. To the south of the Sulina mouth, the natural mild erosion has been reversed in the area close to the jetties where accretion is occurring, while southwards the greatest erosion rate along the entire Romanian coast, of more than 20 m/yr, has been recorded. Sediment accumulation in the northern part of the mouth is also huge and has brought to the creation and swift elongation of a sediment spit in several decades. Thus, the bay located here suffers from a rapid transformation into a lagoon.  相似文献   

2.
《Continental Shelf Research》2006,26(17-18):2073-2091
The eastern part of the chenier plain of the Louisiana coast has been prograding seaward over the last few decades while much of the rest of the Louisiana coast is experiencing high erosion rates. The source of sediment is the Atchafalaya River, which has been delivering sediment to the coastal ocean since the 1940s. Researchers have suggested that the repeated passage of cold fronts during winter and early spring plays an important role in delivering sediment to the coast. A sediment-transport study on the Atchafalaya coast was conducted between October 1997 and March 2001, which included several field experiments in early March, the period of high discharge from the Atchafalaya and frequent cold-front activity. A combination of shipboard profiling and time-series measurements from a bottom tripod and array of wave sensors on the inner shelf has resulted in a data set that illustrates the mechanism of onshore transport. For a cold-front passage sampled in 2001, during pre-front conditions, sediment is resuspended and mixed throughout the water column, with transport rates onshore and to the west of 53 and 184 g s−1 m−1, respectively. Post-front conditions also result in onshore transport due to onshore flow (upwelling) in the lower meter of the water column and formation of a high-concentration bottom layer. Post-front onshore transport rates are 32 g s−1 m−1 and most of the transport occurs in the bottom meter of the water column. The repeated cycling of cold-front passages leads to a positive feedback with transport onshore during both pre- and post-front conditions, and effective attenuation of wave energy over the muddy inner shelf inhibits erosion at the coast. Thus, the chenier-plain coast is experiencing high progradation rates (up to 29 m yr−1), while most of the Gulf coast is eroding.  相似文献   

3.
《Continental Shelf Research》2006,26(17-18):2141-2156
A predominant sigmoidal clinoform deposit extends from the Yangtze River mouth southwards 800 km along the Chinese coast. This clinoform is thickest (∼40 m) between the 20 and 30 m isobaths and progressively thins offshore, reaching water depths of 60 and 90 m and distances up to 100 km offshore. Clay mineral, heavy metal, geochemical and grain-size analyses indicate that the Yangtze River is the primary source for this longshore-transported clinoform deposit. 210Pb chronologies show the highest accumulation rates (>3 cm/yr) occur immediately adjacent to the Yangtze subaqueous delta (north of 30 °N), decreasing southward alongshore and eastward offshore. The interaction of strong tides, waves, the China Coastal Current, winter storms, and offshore upwelling appear to have played important roles in trapping most Yangtze-derived sediment on the inner shelf and transporting it to the south.  相似文献   

4.
In this study, we present new GPS observations in Azerbaijan to provide an improved basis for determining the distribution of crustal deformation throughout the country and surrounding areas. The deformation field in the region has been analyzed with a dense GPS network configuration and a reliable quantification of the ongoing deformation was achieved. Results show that while contraction is dominant over the whole region, it is mostly concentrated on the middle and eastern parts of Caucasus Thrust Fault reaching up to 6.4 ± 0.2 mm/yr and Lesser Caucasus Fault does no accommodate more than 1–2 mm/yr of contraction. New network also clearly substantiates that the West Caspian Fault, which is a continuation of Caucasus Thrust Fault in the south, accommodates right-lateral slip rates of 7.1 ± 0.3 mm/yr in addition to 5.5 ± 0.3 mm/yr contraction rates.  相似文献   

5.
This paper presents the results of a study that compares the sediment routing of the Simiyu River using the hydrologic model, Soil and Water Assessment Tool (SWAT) and the 1D hydrodynamic simulation software for Rivers and Estuaries (SOBEK-RE) model. Routing in SWAT is completed using the simplified Bagnold’s equation and in the SOBEK-RE model is undertaken using the Saint Venant equation. The upstream boundary conditions for the routing modules were derived from the subcatchments sediment yields that were estimated by SWAT using the Modified Universal Soil Loss Equation (MUSLE). The sediment loads extrapolated or interpolated from the sediment rating curve for the catchment outlet were used for calibration and validation purposes. The SWAT model predicted an erosion rate of 2.09 Mt/yr. The total sediment load transported to the main outlet of the catchment simulated by the SWAT and SOBEK-RE models was equal to 2.94 and 2.72 Mt/yr, respectively. Thus the models computed a net erosion in the channels of 0.84 Mt/yr (SWAT) and 0.63 Mt/yr (SOBEK-RE). When comparing the results of the models for the different reaches of the main channel and main tributaries, the models showed different results both in magnitude and in sign (erosion/deposition). However, in a situation where data is scarce (such as grain size, channel geometry), the more complex hydrodynamic model does not necessarily lead to more reliable results.  相似文献   

6.
《Continental Shelf Research》1999,19(9):1143-1159
The Oder river discharge into the Pomeranian Bight of the Baltic Sea was investigated in a combined study using satellite data, numerical modelling and shipborne measurements. The aim was to understand the dynamical processes forming the freshwater distribution patterns during the prevailing winds. From an analysis of typical distribution patterns of the river discharge in relation to the main wind directions and in comparison to seasonal wind statistics, the two main transport directions were determined. The prevailing westerly winds produce an onshore transport and a downwind coastal jet which transports the river water along the Polish coast, in certain cases over a distance of 300 km to the Gdansk Bay. During a period of stable westerly winds in June 1994, the calculated time scale for a water transport over 250 km corresponded to the observed time of 12 d. In spring, the period of maximum river runoff, easterly winds dominate and transport occurs along the German coast into the Arkona Sea. The river water is guided by upwelling processes in front of the Polish coast. During occasional north-easterly winds stable plumes form in front of the Swine river mouth; this occurred in May 1991 for several days. The numerical model showed that the stability of the plume is caused by an interaction between the alignment of the coast, the large-scale circulation in the north, the buoyancy of the freshwater and the Coriolis effect. The underlying anticyclonic eddy is indicated by warm rings in a high resolution Landsat Thematic Mapper scene. From the different datasets the range of the spatial and temporal scales of a stable plume were determined. The volume varied between 0.14 and 0.9 km3, and the suspended matter and chlorophyll load between 1120 and 7200 t and 2.8 and 18 t, respectively. These values are important for ecological budget calculations in turnover process studies.  相似文献   

7.
Pleistocene uplift of the Chilean coast is recorded by the formation of wave-cut platforms resulting from marine erosion during sea-level highstands. In the Altos de Talinay area (~ 31°S), we have identified a sequence of 5 wave-cut platforms. Using in situ produced 10Be exposure ages we show that these platforms were formed during interglacial periods at 6, 122, 232, 321 and 690 ka. These ages correspond to marine isotopic stages (MIS) or substages (MISS) 1, 5e, 7e, 9c and 17. Shoreline angle elevations used in conjunction with our chronology of wave-cut platform formation, illustrate that surface uplift rates vary from 103 ± 69 mm/ka between 122 and 6 ka, to 1158 ± 416 mm/ka between 321 and 232 ka. The absence of preserved platforms related to the MIS 11, 13 and 15 highstands likely reflects slow uplift rates during these times. We suggest that since 700 ka, the Altos de Talinay area was predominantly uplifted during 2 short periods following MIS 17 and MISS 9c. This episodic uplift of the Chilean coast in the Pleistocene may result from subduction related processes, such as pulses of tectonic accretion at the base of the forearc wedge.  相似文献   

8.
《Journal of Geodynamics》2007,43(1):170-186
Stratigraphic and sedimentological studies indicate that Iceland has experienced over 20 glaciations during the last 4–5 Myr, in reasonable agreement with the number of glaciations reconstructed from the ∂18O record in deep-sea sediment. The pattern of glacial erosion was to a large part controlled by constructive volcanic processes resulting in increased topographic relief after 2.5 Myr. Between 2.5 and 0.5 Ma valleys up to 400 m deep were excavated into the Tertiary basalts of eastern and south Iceland with an average erosion rate of 10–20 cm ka−1. During the last 0.5 million years rates of erosion increased to 50–175 cm ka−1, with an additional 200 to over 1000 m of valley excavation. Previous estimates of the rate of landscape erosion during the Holocene vary widely, from 5 to 70,000 cm ka−1. We present new studies that define the rates of landscape denudation during the major part of the Holocene (the last 10,200 years): one based on the Iceland shelf sediment record, the other from the sediment record in the glacier-fed lake, Hvítárvatn. Both studies indicate average Holocene erosion rates of about 5 cm ka−1 similar to our erosion rate estimate for 4–5 Ma old strata that has not been subjected to regional glaciation.  相似文献   

9.
《Continental Shelf Research》2007,27(3-4):296-308
This paper focuses on the delivery of water and sediment to the northern Adriatic to better understand the short-term evolution of continental margin sedimentation under natural and human impact. For that reason, the Po and six Apennine rivers (Metauro, Musone, Potenza, Tronto, Chienti and Pescara) are investigated. The climate-driven hydrological model HydroTrend is used to simulate discharge and sediment loads where observational data are limited. The northern Apennine hinterland has a significant impact on the sediment flux leaving the Po River, contributing 56% of the sediment it delivers to the Adriatic Sea. The Po River experienced a strong decrease in its sediment load (17.2–6.4 Mt/yr) across 1933–1987, in contrast to a small increase in its water discharge. The rivers draining the southern Apennine hinterland contribute more than 50% of the sediment load entering the Adriatic Sea, and this is in spite of human modification of their discharge through numerous small reservoirs that invariably reduce a river's sediment load. As a result, hyperpycnal flows, which historically carried 20–40% of the sediment flux from these Apennine rivers, become rare. Sediment load reduction is also reflected by retreat of the Apennine coastline. Based on the ART model (used in HydroTrend), the total sediment load to the northern Adriatic is 43 MT/yr where the northern Alpine rivers contribute 8 MT/yr, the Po River 13 MT/yr and the Apennine rivers contribute 22 MT/yr.  相似文献   

10.
In the foreland regions of the Western Arunachal Himalaya (WAH), geological studies along the Kameng river (between Tipi village and the Himalayan Frontal Thrust (HFT)) reveal four levels of unpaired terraces and a paired terrace. In WAH, wrench deformation of HFT zone resulted in a SE propagation of the Balipara anticline and it is suggested that the Mikir high basement controls its orientation. Ages of terrace surfaces from Siwaliks suggest that since the Late Pleistocene, Kameng River migrated at a rate varying between ∼7.5 cm/yr in upper reaches and ∼13.5 cm/yr towards northeast due to HFT related uplift. In the Brahmaputra plains, luminescence ages of abandoned paleochannel deposits suggest eastward shifting of the Kameng river at an average rate of ∼1 m/yr. Field evidences between Bhalukpong and Tipi villages show Pliocene strath and Quaternary terrace surfaces, displaced by faults that do not correspond to the mapped faults in the foreland region. We interpret them as out-of-sequence thrusts (OOSTs). This is the first such report of OOST in the NE Himalaya. Presence of active OOST is inferred by similar age (∼1 ka) and differing incision rates of the surface of same terrace (T2b) in adjacent locations. This suggests that OOSTs in the western Arunachal Siwalik are <1 ka. Average slip rate and horizontal shortening rate on OOST during the Holocene, are calculated as ∼12 mm/yr and 7 mm/yr respectively. Thus any estimation of Holocene shortening in the Siwalik therefore, needs to incorporate slip along the OOSTs given that it accommodates a significant amount of N-S compression of the Himalayan fold-and-thrust belt. The reason for OOST in the WAH Siwalik foreland is discussed in terms of the critical wedge dynamics arising from erosion via tectonics-climate interaction. We estimate a minimum slip rate of Siwalik as ∼27 mm/yr during the Holocene and suggest acceleration in shortening rates east of Bhutan.  相似文献   

11.
A 2-year investigation into shoreface morphodynamic behaviour off a high-energy headland-embayment coast in Northern Ireland reveals important process–response mechanisms that cannot be explained solely by existing conceptual models. Fourteen sequential bathymetric surveys, conducted every 1–2 months, show that morphologic (seabed) change is not directly related to oceanographic forcing—extensive nearshore and shoreface accretion and erosion occurs under fair-weather, modal and high-energy conditions. The main factors which seem to cause significant change are long-duration (swell) events coupled with onshore winds, availability of (recently) introduced sediment, surges and elapsed time between storms and the next scheduled survey. Several high-energy events over a short time period (<30 days) did not result in extensive seafloor changes, contrary to expectations. Net seabed change over 2 years shows an average to 0.6 m m?2 of shoreface accretion from the nearshore to 24 m depth. Net erosion was not observed anywhere, including the subaerial beach. Geologic evidence strongly suggests that the source of the significant volume (7.7×105 m3) of sediment introduced into the study area must have been derived from the lower shoreface and/or inner shelf, beyond 24 m depth.  相似文献   

12.
A 5.6-m-long lake sediment core from Bear Lake, Alaska, located 22 km southeast of Redoubt Volcano, contains 67 tephra layers deposited over the last 8750 cal yr, comprising 15% of the total thickness of recovered sediment. Using 12 AMS 14C ages, along with the 137Cs and 210Pb activities of recent sediment, we evaluated different models to determine the age–depth relation of the core, and to determine the age of each tephra deposit. The selected age model is based on a mixed-effect regression that was passed through the adjusted tephra-free depth of each dated layer. The estimated age uncertainty of the 67 tephras averages ±105 yr (95% confidence intervals). Tephra-fall frequency at Bear Lake was among the highest during the past 500 yr, with eight tephras deposited compared to an average of 3.7/500 yr over the last 8500 yr. Other periods of increased tephra fall occurred 2500–3500, 4500–5000, and 7000–7500 cal yr. Our record suggests that Bear Lake experienced extended periods (1000–2000 yr) of increased tephra fall separated by shorter periods (500–1000 yr) of apparent quiescence. The Bear Lake sediment core affords the most comprehensive tephrochronology from the base of the Redoubt Volcano to date, with an average tephra-fall frequency of one every 130 yr.  相似文献   

13.
A geochronological framework for the sequential development of coastal barrier aeolianite complexes in the mouth region of the River Murray, Australia's largest river system is presented based on amino acid racemization and thermoluminescence dating. The sedimentary successions represent a foreshortened and condensed sequence of coastal barriers compared with those of the Coorong Coastal Plain in southern South Australia where the barrier complexes are more widely separated in response to tectonic uplift. The barriers have formed during interglacial sea-level highstands and are correlatives of genetically equivalent landforms of the Coorong Coastal Plain. Thermoluminescence dating and the extent of amino acid racemization in aeolianite ‘whole-rock’ sediment samples, reveal a general increase in age of the barriers landwards from the modern coastline. In detail, however, the individual barriers represent composite structures having formed in more than one interglaciation, due to the reoccupation of Pleistocene shoreline positions during sea-level highstands of similar amplitude, in a zone of gradual basin subsidence. The most seaward Pleistocene aeolianite at Surfer Beach is of interstadial age (Marine Isotope Stage 5c, 105 ± 5 ka; MIS 5c), and correlates with the Robe Range of the Coorong Coastal Plain. The last interglacial shoreline (130 ± 15 ka; MIS 5e) is particularly well-defined in the River Murray mouth region. It is represented by a complex association of coastal parabolic dunes superimposed on a transverse dune system, which runs parallel with the former coastline, and also includes associated estuarine, lagoonal and open ocean beach facies. Landward of the last interglacial succession are distinct barriers relating to the penultimate interglaciation (215 ± 35 ka; MIS 7), as well as earlier interglaciations (350 ± 65 ka; MIS 9 or 11 and 470 ± 70 ka; MIS 11 or 13). The coastal barriers have been successively breached by the ancestral River Murray at times of lower sea level during glacial cycles. Former mouths of the River Murray during interglacial sea-level highstands are likely to have existed near Tauwitchere Island during MIS 7, and between Goolwa and Hindmarsh Island and near the southern-most part of Lake Albert during the last interglacial (MIS 5e). The River Murray mouth region represents a failed delta as the limited sediment brought to this area since late middle Pleistocene time has been either rapidly incorporated within aeolian deposits during sea-level highstands, or transported to the edge of the Lacepede Shelf during glacial maxima. The Holocene and modern River Murray has not established a marine delta, but deposits its load in the settling basins of the terminal lakes. Only a small digitate delta has formed where the river enters Lake Alexandrina.  相似文献   

14.
The distinctly different, εNd(0) values of the Atlantic, Indian, and Pacific Oceans requires that the residence time of Nd in the ocean (i.e., τNd) be on the order of, or less than, the ocean mixing time of ∼ 500–1500 yr. However, estimates of τNd, based on river influxes, range from 4000 to 15,000 yr, thus exceeding the ocean mixing time. In order to reconcile the oceanic Nd budget and lower the residence time by roughly a factor of 10, an additional, as yet unidentified, and hence “missing Nd flux” to the ocean is necessary. Dissolution of materials deposited on continental margins has previously been proposed as a source of the missing flux. In this contribution, submarine groundwater discharge (SGD) is examined as a possible source of the missing Nd flux. Neodymium concentrations (n = 730) and εNd(0) values (n = 58) for groundwaters were obtained from the literature in order to establish representative groundwater values. Mean groundwater Nd concentrations and εNd(0) values were used along with recent estimates of the terrestrial (freshwater) component of SGD (6% of river discharge on a global basis) to test whether groundwater discharge to the coastal oceans could account for the missing flux. Employing mean Nd concentrations of the compiled data base (i.e., 31.8 nmol/kg for all 730 analyses and 11.3 nmol/kg for 141 groundwater samples from a coastal aquifer), the global, terrestrial-derived SGD flux of Nd is estimated to range between 2.9 × 107 and 8.1 × 107 mol/yr. These estimates are of the same order of magnitude, and within a factor of 2, of the missing Nd flux (i.e., 5.4 × 107 mol/yr). Applying the SGD Nd flux estimates, the global average εNd(0) of SGD is predicted to be − 9.1, which is similar to our estimate for the missing Nd flux (− 9.2), and in agreement with the mean (± S.D.) εNd(0) measured in groundwaters (i.e., εNd(0) = −8.9 ± 4.2). The similarities in the estimated SGD Nd flux and corresponding εNd(0) values to the magnitude and isotope composition of the missing Nd flux are compelling, and suggest that discharge of groundwater to the oceans could account for the missing Nd flux. Future investigations should focus on quantifying the Nd concentrations and isotope compositions of groundwater from coastal aquifers from a variety of coastal settings, as well as the important geochemical reactions that effect Nd concentrations in subterranean estuaries in order to better constrain contributions of SGD to the oceanic Nd budget.  相似文献   

15.
Meltwater from the Greenland Ice Sheet (GIS) has been a major contributor to sea level change in the recent past. Global and regional sea level variations caused by melting of the GIS are investigated with the finite element sea-ice ocean model (FESOM). We consider changes of local density (steric effects), mass inflow into the ocean, redistribution of mass, and gravitational effects. Five melting scenarios are simulated, where mass losses of 100, 200, 500, and 1000 Gt/yr are converted to a continuous volume flux that is homogeneously distributed along the coast of Greenland south of 75°N. In addition, a scenario of regional melt rates is calculated from daily ice melt characteristics. The global mean sea level modeled with FESOM increases by about 0.3 mm/yr if 100 Gt/yr of ice melts, which includes eustatic and steric sea level change. In the global mean the steric contribution is one order of magnitude smaller than the eustatic contribution. Regionally, especially in the North Atlantic, the steric contribution leads to strong deviations from the global mean sea level change. The modeled pattern mainly reflects the structure of temperature and salinity change in the upper ocean. Additionally, small steric variations occur due to local variability in the heat exchange between the atmosphere and the ocean. The mass loss has also affects on the gravitational attraction by the ice sheet, causing spatially varying sea level change mainly near the GIS, but also at greater distances. This effect is accounted for by using Green's functions.  相似文献   

16.
Tuff layers are vital stratigraphic tools that allow correlations to be made between widely dispersed exposures. Despite their widespread occurrence in the central Andes, tuffs from both natural exposures and sedimentary cores extracted from the region's extensive salars (salt pans) are relatively unstudied. Here we lay the foundation for a tephrostratigraphic framework in the central Andes (14–28°S) by chemically and morphologically characterizing ash shards, and in some cases dating 36 Neogene distal tuffs. These tuffs occur in lacustrine and alluvial deposits from the southern Bolivian Altiplano and adjacent Atacama Desert. All tuffs are calc-akaline rhyolites, consistent with their setting in the Central Andean Volcanic Zone. Five of the older tuffs were 40Ar/39Ar dated and yield an age range of 6.63–0.75 Ma. Organic material associated with tuffs deposited into paleolake sediments, paleowetland deposits, or urine-encrusted rodent middens provide constraints on the age of several Late Pleistocene and Holocene tuffs.These tuffs provide key stratigraphic markers and ages for lake cycles and archeological sites on the Bolivian Altiplano and for assessing rates of surficial processes and archeology in both the Atacama and Altiplano. While modern climate, and consequently questions about geomorphic processes and climate change, differs in the hyperarid Atacama and the semi-arid Altiplano, the most extensive air-fall tuffs covered both regions, placing the Atacama and the Bolivian Altiplano in the same tephrostratigraphic province. For example, the Escara B tuff (~1.85 Ma), can be securely identified in both the Altiplano and Atacama. On the Altiplano, dates from the Escara B and E tuffs securely establish the age of the Escara Formation—representing the oldest expansive lake documented on the Bolivian Altiplano. By contrast, the presence of the Escara B tuff below ~6 m of alluvial sediment at the Blanco Encalado site in the Atacama desert yields information about sedimentation rates in this hyperarid region. Indeed, most tuffs from the Atacama Desert are older than 600,000 years, even though they occur within fluvial terraces immediately adjacent to the alluvial fans that are still active. Most of these geomorphic surfaces in the Atacama also possess well-developed saline soils that, when combined with the radiometric ages of the distal tuffs, suggest slow rates of geomorphic change and exceptional landscape stability for this area during the Quaternary.In contrast, younger tuffs are more abundant in the more recent lake records of the Altiplano. The Chita tuff was deposited at ~15,650 cal yr B.P., during the regressive phase of the region's deepest late Quaternary lake cycle—the “Tauca lake cycle”—which spanned 18.1–14.1 cal yr B.P. Two Holocene tuffs, the Sajsi tuff and the Cruzani Cocha tuff, are widespread. The Sajsi tuff was deposited just before 1700 cal yr B.P., whereas the Cruzani Cocha tuff appears to be mid-Holocene in age and shows some chemical affinities to a Holocene tuff (202B) deposited between 4420 and 5460 cal yr B.P. in a urine-encased rodent midden in the Atacama Desert.  相似文献   

17.
Although offset and age data from displaced landforms are essential for identifying earthquake clusters and thus testing whether faults slip at uniform or secularly varying rates, it is not clear how the uncertainties in such measurements should be propagated so as to yield a robust fault-slip history (i.e., record of fault displacement over time). Here we develop a Monte Carlo approach for estimating the distribution of geologically reasonable fault-slip histories that fit the offset and age data from a population of dated and displaced landforms. The model assumes that the landforms share common faulting histories, the offset and age constraints are correct, and the fault has not reversed shear sense. Analysis of the model results yields both a precise average slip rate, in the case where a linear fit is applied to the data, and a best-fit fault-slip history, in the case where the linear constraint is removed. The method can be used to test for secular variation in slip because the uncertainty on this best-fit history is quantified. By applying the method to previously published morphochronologic data from faulted late Quaternary terrace risers along the Kunlun fault in China and the Awatere fault in New Zealand, we have assessed the extent to which our modeled average slip rates match previously reported values and the data support previous interpretations of uniform slip rate. The Kunlun data set yields average slip rates of 8.7 + 3.6/?2.1 mm/yr and 5.1 + 1.6/?1.2 mm/yr (68.27% confidence), for the central and eastern reaches of the fault, respectively, both of which match previously published slip rates. Our analysis further indicates that these fault reaches have both slipped uniformly over the latest Quaternary. In contrast, analysis of data from the Saxton River site along the Awatere fault reveals a mid-Holocene deceleration in slip rate from 6.2 + 1.6/?1.4 mm/yr to 2.8 + 1.0/?0.6 mm/yr. This result contradicts previous interpretations of uniform slip along the Awatere fault. The Monte Carlo method we present here for quantifying fault-slip histories using the offset and age data from a population of faulted landforms provides an important tool for distinguishing temporally uniform from secularly varying fault slip.  相似文献   

18.
《Marine pollution bulletin》2014,78(1-2):165-172
The concentrations of PCB congeners in the blubber and liver of mother Steller sea lions (Eumetopias jubatus; SSLs) and their fetuses from the coast of Hokkaido, Japan in 2008, 2010 and 2012 were analyzed by HRGC–HRMS, in order to elucidate PCB congener profiles and maternal-to-fetal transfer of PCBs in SSLs. ΣPCBs in the fetuses were 1400 ± 660 (the mean ± SD) ng/g-fat in the blubber and 570 ± 320 ng/g-fat in the liver, respectively. There was a concern that SSLs had been contaminated by PCBs during the fetal period. The concentrations of the major congeners in the blubber and liver were a correlation between the fetus and mother (blubber: r = 0.9934, liver: r = 0.9160; P  0.05). The results indicated that PCBs in the fetuses came from the mothers. #177 and #199 showed no correlations between the fetus and the mother in the blubber and liver. This indicated a selective capture by some natural protector such as the placenta.  相似文献   

19.
We present results of a geomorphological and morphotectonic analysis of the northeastern part of the Rif. We show that the present day kinematics of the Rif is characterized by active deformation along the Trougout and Nekor faults in the North-East. Digital Elevation Models of offset drainage features (streams, fluvial terraces) allow determining a normal-left-lateral motion along the Trougout fault and a left-lateral strike-slip motion along the Nekor fault. Preliminary 3He cosmogenic dates of tectonic markers yield vertical and horizontal slip rates of ∼0.9 mm/yr and ∼0.5 mm/yr, respectively along the Trougout fault. The present-day localized transtension seen in the north-eastern Rif morphology (Ras Tarf) is coeval with uplifted marine terraces near the Al Hoceima Bay. U/Th dating of shells yield an average uplift rate of ∼0.2 mm/yr during the past 500 ka. These data show that active transtension in the northeastern Rif is also associated with uplift. These new morphotectonic constraints are consistent with the GPS measurements showing southwestward overall motion of most of the Rif belt with respect to stable Africa.  相似文献   

20.
《Continental Shelf Research》2006,26(17-18):2205-2224
On the eastern Raukumara Ranges of the New Zealand East Coast, active tectonics, vigorous weather systems, and human colonisation have combined to cause widespread erosion of the mudstone- and sandstone-dominated hinterland. The Waipaoa River sedimentary dispersal system is an example that has responded to environmental change, and is now New Zealand's second largest river in terms of suspended sediment discharge. This paper presents new sediment accumulation rates for the continental shelf and slope that span century to post-glacial time scales. These data are derived from radiochemical tracer, palynological, tephrostratigraphic, and seismic methods. We hypothesise on the temporal and spatial complexity of post-glacial sedimentation across the margin and identify the broad extent of sediment dispersal from the Waipaoa system. The ∼15 km3 Poverty Bay mid-shelf basin lies adjacent to the mouth of the Waipaoa River, reaching a maximum thickness of ∼45 m. A post-glacial mud lobe of an additional ∼3 km3 extends through the Poverty Gap and out onto the uppermost slope, attaining 40 m thickness in a structurally controlled sub-basin. Here, an offset in the last-glacial erosion surface indicates that deposition was sympathetic with fault activity and the creation of accommodation space, implying that sedimentation was not supply limited. Contrary to classical shelf sedimentation models, the highest modern accumulation rate of 1 cm y−1 occurs on the outer-shelf sediment lobe, approximately ∼2 times the rate recorded at the mid-shelf basin depocentre, and ∼10 times faster than the excess 210Pb rates estimated from the slope. Pollen records from slope cores fingerprint Polynesian then European settlement, and broaden the spatial extent of post-settlement sedimentation initially documented from the Poverty Bay mid-shelf. Changes in sub-millennial sedimentation infer a 2–3-times increase in post-settlement accumulation on the shelf but a smaller 1–2 times increase on the slope. Over longer time scales, seismic evidence infers slower but steady sedimentation since the last transgression, and that significant cross-shelf sediment pathways pre-date the increase in sedimentation resulting from colonisation and deforestation. From a summation of coastal bedload, shelf and slope sediment mass accumulation, the total sediment budget for the Holocene is ∼1 Mt y−1. Under modern conditions a larger proportion of the Waipaoa sediment dispersal system likely extends onto the slope and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号