首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 946 毫秒
1.
The industrial zone of Porto Marghera is one the most important "contaminated sites of national interest" (SIN) in Italy, being identified as an area of high environmental risk. The site includes a wide shallow water area of the Venice Lagoon extending toward the city of Venice, which was investigated in order to acquire information on the pollutant level and distribution. Grain-size, heavy metal, nutrient, and organic micropollutant concentrations were determined in the surface sediment layers (0-5 and 5-10 cm depths) of 51 sites. A generally low contamination was found, except for Hg concentration, which increases the toxicological risk in most of the sites of the area, according to the results of a comparison with Sediment Quality Guidelines. A heavy pollution fingerprint (Cd, Cu, Hg, Pb, and Zn up to 15.2, 257, 11.9, 248, and 3010 mg/kg d.w., respectively) was instead found near the Tresse Island, which is ascribed to the spill of pollutants from the contaminated sediment disposed therein. Grain-size and heavy metal profiles down to a depth of 40 cm in eight selected sites, finally show a probable decrease of the pollution affecting the area in recent years.  相似文献   

2.
《Marine pollution bulletin》2014,85(1-2):373-378
The surficial coastal sediments in Kendari Bay are sampled in the field to determine the concentration and pollution level of three heavy metals (Pb, Cd and Cr). Twenty-five sampling points ranging from the inner (Wanggu River) to the outer area of the bay have been chosen. The physicochemical properties, such as temperature, pH, salinity and TDS of the overlying water, as well as the sediment type and TOC of the surficial sediments, are also measured. The total concentrations of the Pb, Cd and Cr in the sediment samples are quantified using inductively-coupled plasma mass spectrometry (ICP-MS). The concentrations of the heavy metals (Pb, Cd and Cr) ranged from 0.84 to 17.02 μg/g, 0.02 to 0.17 μg/g and 1.92 to 40.11 μg/g (dry weight), respectively, following the Cr > Pb > Cd sequence. To assess the degree of contamination, a geoaccumulation index (Igeo) is measured. Kendari Bay is not a contaminated area regarding Pb, Cd and Cr.  相似文献   

3.
The study on topsoil contamination due to heavy metals was carried out by using the Magnetic susceptibility (MS) measurements in Izmit industrial city, northern Turkey. We attempted to investigate correlations between the concentration of selected heavy metals and the MS from 41 sample sites around Izmit Gulf. These investigations let us quantify and standardize the MS method, which may have consequences for long term monitoring of anthropogenic pollution, especially in urban areas. The MS surfer contour map based on the topsoil measurements was compiled with a randomly ranged distance density. The soil samples collected throughout the industrial areas, the parks, road sides and residential areas were also analyzed by Atomic Absorption Spectrometer. Heavy metals Cu, Ni, Cr and Pb show strong correlations with MS, while Zn and Co show a weak correlation with MS. Moreover, the Tomlinson pollution load index (PLI) shows insignificant correlation with the MS.The MS was examined vertically (0–30 cm) with respect to anthropogenic and/or lithogenic influences at the fourteen sample sites. The maximum values were mostly observed in depths of 2–5 cm and the MS values on the depth profiles vary between 10 × 10? 8 m3 kg? 1 and 203 × 10? 8 m3 kg? 1. The study revealed that MS is an inexpensive, fast and non-destructive method for the detection and mapping of contaminated soils.  相似文献   

4.
A geographically extensive investigation was carried out to analyze the concentrations of heavy metals, PCBs and OCPs in the sediments and marine organisms collected from the Liaohe Estuary. In order to determine the spatial distribution and potential ecological risk of heavy metals, the surface sediments were collected from 44 sites in the Liaohe Estuary. The results showed that the heavy metal contents in the sediments were observed in the following order: Cr (11.2–84.8 mg/kg) > Cu (1.7–47.9 mg/kg) > Pb (4.3–28.3 mg/kg) > As (1.61–12.77 mg/kg) > Cd (0.06–0.47 mg/kg) > Hg (0.005–0.113 mg/kg). In comparison with the concentrations of heavy metals and POPs in other regions, the concentrations of As, Pb and DDTs in the Liaohe Estuary were generally low, and other pollutant concentrations were inconsistent with those reported in other regions. The contamination factor (CF), the pollution load index (PLI), the geoaccumulation index and the potential ecological risk index were used to analyze the pollution situation, which showed that the heavy metal pollution in Liaohe Estuary is mainly dominated by Cd and Hg. The concentrations of the four heavy metals varied significantly in the three kinds of tested organisms (fish, mollusk and crustacean), indicating the different accumulative abilities of the species. The results obtained in this study provide useful information background information for further ecology investigation and management in this region.  相似文献   

5.
《Marine pollution bulletin》2013,77(1-2):427-434
Concentrations of heavy metals were measured in sediment and water from Málaga Bay (South Spain). In the later twentieth century, cities such as Málaga, have suffered the impact of mass summer tourism. The ancient industrial activities, and the actual urbanization and coastal development, recreation and tourism, wastewaters treatment facilities, have been sources of marine pollution. In sediments, Ni was the most disturbing metal because Ni concentrations exceeded the effects range low (ERL), concentration at which toxicity could start to be observed in 85% of the samples analyzed. The metal bioavailability decreased in the order: Cd > Ni > Pb > Cu > Cr. In the sea water samples, Cd and Pb were the most disturbing metals because they exceeded the continuous criteria concentration (CCC) of US EPA in a 22.5% and 10.0% of the samples, respectively. Statistical analyses (ANOVA, PCA, CA) were performed.  相似文献   

6.
《Continental Shelf Research》2006,26(17-18):2141-2156
A predominant sigmoidal clinoform deposit extends from the Yangtze River mouth southwards 800 km along the Chinese coast. This clinoform is thickest (∼40 m) between the 20 and 30 m isobaths and progressively thins offshore, reaching water depths of 60 and 90 m and distances up to 100 km offshore. Clay mineral, heavy metal, geochemical and grain-size analyses indicate that the Yangtze River is the primary source for this longshore-transported clinoform deposit. 210Pb chronologies show the highest accumulation rates (>3 cm/yr) occur immediately adjacent to the Yangtze subaqueous delta (north of 30 °N), decreasing southward alongshore and eastward offshore. The interaction of strong tides, waves, the China Coastal Current, winter storms, and offshore upwelling appear to have played important roles in trapping most Yangtze-derived sediment on the inner shelf and transporting it to the south.  相似文献   

7.
《Continental Shelf Research》2007,27(3-4):475-488
Across a limited depth range (5–10 m) on many continental shelves, the dominant sediment size changes from sand to mud. This important boundary, called the sand–mud transition (SMT), separates distinct benthic habitats, causes a significant change in acoustic backscatter, represents a key facies change, and delimits more surface-reactive mud from less surface-reactive sand. With the goal of improving dynamical understanding of the SMT, surficial sediments were characterized across two SMTs on the Adriatic continental shelf of Italy. Geometric mean diameter, specific surface area (SSA), mud fraction (<63 μm) and heavy metal concentrations were all measured. The SMT related to the Tronto River is identified between 15 and 20 m water depth while the SMT associated with the Pescara River varies between 15 and 25 m water depth. The sediment properties correlate with a new, process-based sedimentological parameter that quantifies the fraction of the sediment in the seabed that was delivered as flocs. These correlations suggest that floc dynamics exert strong influence over sediment textural properties and metal concentrations. Relative constancy in the depth of the SMT along this portion of the margin and its lack of evolution over a period during which sediment input to the margin has dramatically decreased suggest that on the Adriatic continental shelf energy is the dominant control on the depth of the SMT.  相似文献   

8.
《Marine pollution bulletin》2010,60(8-12):281-296
To study the benthic foraminifers’ response to heavy metal pollution and analyse the geochemical parameters, samples of surface sediments were collected in 2005 and 2006 from a polluted coastal zone shorefront to the industrial complex of Portoscuso–Portovesme (Sulcis, South-Western Sardinia). The samples came from the upper 1–2 cm of the undisturbed sediments in water less than 2 m deep, along coastline (about 8.5 km in length) proximal to emerged alluvial plain. The entire examined marine area represents a shallow inner shelf, which is physiographically fairly protected and characterized by low turbulence, but subjected to southwards littoral drift.Geochemical analyses of seawater, sediments and foraminiferal tests correlated to biotic indexes (Dominance, Shannon–Weaver, Simpson, Eveness, Menhinick, Margalef, Equitability, Fisher-α, Berger-Parker and Q-mode Cluster Analyses – Ward Method) and provide data on environmental stress.A total of 38 benthic foraminiferal species were identified. Increasing pollution results in low species diversity, low population density and more frequent abnormal specimens.Results from ESEM images allow recognition of a strong infestation on the calcareous foraminiferal tests by microbial communities developed in the polluted environment.  相似文献   

9.
《Continental Shelf Research》2006,26(17-18):2125-2140
Sediment delivered to coastal systems by rivers (15×109 tons) plays a key role in the global carbon and nutrient cycles, as deltas and continental shelves are considered to be the main repositories of organic matter in marine sediments. The Mississippi River, delivering more than 60% of the total dissolved and suspended materials from the conterminous US, dominates coastal and margin processes in the northern Gulf of Mexico. Draining approximately 41% of the conterminous US, the Mississippi and Atchafalaya river system deliver approximately 2×108 tons of suspended matter to the northern Gulf shelf each year. Unlike previous work, this study provides a comprehensive evaluation of sediment accumulation covering majority of the shelf (<150 m water depth) west of the Mississippi Delta from 92 cores collected throughout the last 15 years. This provides a unique and invaluable data set of the spatial and modern temporal variations of the sediment accumulation in this dynamic coastal environment.Three types of 210Pb profiles were observed from short cores (15–45 cm) collected on the shelf. Proximal to Southwest Pass in 30–100 m water depths, non-steady-state profiles were observed indicating rapid accumulation. Sediment accumulation rates in this area are typically >2.5 cm yr−1 (>1.8 g cm−2 yr−1). Kasten cores (∼200 cm in length) collected near Southwest Pass also indicate rapid deposition (>4 cm yr−1; >3 g cm−2 yr−1) on a longer timescale than that captured in the box cores. Near shore (<20 m), profiles are dominated by sediments reworked by waves and currents with no accumulation (the exception is an area just south of Barataria Bay where accumulation occurs). The remainder of the shelf (distal of Southwest Pass) is dominated by steady-state accumulation beneath a ∼10-cm thick mixed layer. Sediment accumulation rates for the distal shelf are typically <0.7 cm yr−1 (<0.5 g cm−2 yr−1). A preliminary sediment budget based on the distribution of 210Pb accumulation rates indicates that 40–50% of the sediment delivered by the river is transported out of the study region. Sediment is moved to distal regions of the shelf/slope through two different mechanisms. Along-isobath sediment movement occurs by normal resuspension processes west of the delta, whereas delivery of sediments south and southwest of the delta may be also be influenced by mass movement events on varying timescales.  相似文献   

10.
《Marine pollution bulletin》2009,58(6-12):846-857
The objective of this study was to determine the concentrations and possible sources of heavy metals and persistent organic pollutants (POPs) in water and estuarine sediments from Gao-ping River in order to evaluate the environmental quality of aquatic system in southern Taiwan. High concentrations of heavy metals including Cr, Zn, Ni, Cu and As, ranging from 10.7 to 180 mg/kg-dry weight (dw), were detected in sediments from Gao-ping River. When normalized to the principal component analysis (PCA), swinery and electroplating wastewaters were found to be the most important pollution sources for heavy metals. Of various organochlorine pesticide (OCP) residues detected, aldrin and total-hexachlorocyclohexane (HCH) were frequently found in sediments. The total concentrations of OCPs were in the range 0.47–47.4 ng/g-dw. Also, the total-HCH, total-cyclodiene, and total-dichlorodiphenyltrichloroethane (DDT) were in the range 0.37–36.3, 0.21–19.0, and 0.44–1.88 ng/g-dw, respectively. The polychlorinated biphenyl (PCB) concentrations in sediments from Gao-ping River ranged between 0.37 and 5.89 ng/g-dw. The PCB concentrations are positively correlated to the organic contents of the sediment particles. α-HCH was found to be the dominant compound of HCH in the sediments, showing that long-range transport may be the possible source for the contamination of HCH in sediments from Gao-ping River. In summary, trace amounts of POPs in estuarine sediments from Gao-ping River were detected, showing that there still exist a wide variety of POP residues in the river sediments in Taiwan. These POP residues may be mainly from long-range transport and weathered agricultural soils, while heavy metal contamination is primarily from the swinery and industrial wastewaters.  相似文献   

11.
《Marine pollution bulletin》2013,70(1-2):178-188
Spatial variation in the density and biomass of Branchiostoma caribaeum was analyzed along a sewage contamination gradient identified by fecal steroids in a subtropical estuary, southern Brazil. Sampling, repeated in the austral winter and summer, followed a hierarchical design nested at four spatial scales (sector > 1 km; area > 100 m; site > 10 m; replicate < 1 m). Density and biomass were significantly lower at sites characterized by high concentrations of fecal steroids. The best combinations of variables that explained the biological similarities among sites involved contamination indicators. Most of the variation of biological data was found at the smallest scales and could be related with the sediment texture. Our study highlighted the usefulness of a multi-scale perspective to evaluate distribution patterns of benthic invertebrates as a biological indication of environmental pollution. Gradient analyses at larger spatial scales may be invalidated by the patchy distribution of benthic fauna if they do not account for such small scale variability.  相似文献   

12.
In the present study, the uppermost 3 cm of muddy, seabed sediment was collected from a deep-sea sediment core, drilled from a water depth of 4 km, near the deepest site of the Mediterranean Sea, outside Pylos, Greece. The core was divided into 7 layer samples, each 3–4 mm thick, in order to get an independent age assessment for each one using luminescence dating; from polymineral coarse grains in the range 30–60 μm. Between 11 and 22 aliquots were measured for each sample using the optically stimulated luminescence, single-aliquot regenerative-dose analysis. The estimated mean equivalent dose values had an uncertainty less than 3% and resulted in optical ages ranging from 3.5 to approximately 5 ka, with uncertainties lying between 5.5 and 7.4%. Multiple-aliquot, thermoluminescence-based, additive-dose, total bleaching approach provided equivalent doses with typical errors of 10–15% and ages in the range of 3.6 and 9.4 ka, with uncertainties up to 17%. Single-aliquot optical ages are shown to be relatively successful, due to their consistency with AMS 14C radiocarbon ages, obtained from Planktonic foraminifera from the same core. Luminescence dates for the topmost 1.5 cm indicate a substantial mix and post burial disturbance of the surface sediment. Below the topmost 1.5 cm, both luminescent approaches indicate ages which increase smoothly with depth. The concordant OSL and TL age estimates for the sample O5, in conjunction with specific luminescence properties and its major-element geochemical chemistry content, suggest that it was heated during the Santorini volcanic eruption. Deposition rates of 8.6–18.9 cm over 10 ka below the sample O5, provided by optical ages, exhibit an excellent level of agreement with the accumulation rate of 7–18 cm over 10 ka at the sea bottom, already reported for the site under study.  相似文献   

13.
《Continental Shelf Research》2006,26(17-18):2178-2204
Continental-shelf lithofacies are described from a series of cores collected in the northern Gulf of Alaska, a high-energy paraglacial shelf experiencing rapid rates of sediment accumulation. Short-lived tracers (234Th and chlorophyll-a) indicate that during the annual peak in fluvial sediment input (summer), biologic sediment mixing coefficients in the surficial seabed are generally lower than other coastal environments (<20 cm2 yr−1) and mixing extends downward <10 cm.210Pb geochronology indicates that sediment accumulation rates (time scales of 10–100 yr) are 0.1–3 cm yr−1. The measured bioturbation and accumulation rates lead to predictions of moderate to bioturbated lithofacies, as observed. Primary depositional fabric is preferentially preserved where sediment accumulation rates >2 cm yr−1 and non-steady sediment deposition occurs. Depositional fabric is also observed in strata at 50–100 m water depths and is similar in appearance to beds that may form through deposition of wave-induced fluid-mud flows, which have been observed forming on other shelves with moderate to high wave energy. Five general lithofacies can be identified for the study area: inner-shelf sand facies, interbedded sandy mud facies, moderate-to-well-bioturbated mud facies, gravelly mud facies, and Tertiary bedrock facies. The moderate-to-well-bioturbated mud facies is areally dominant, representing over 50% of the shelf area, although roughly equal volumes (∼0.4 km3) of strata with some preservation of primary fabric are annually accumulating. Lithofacies on this paraglacial shelf generally resemble mid- and low-latitude allochthonous shelf strata to a much greater degree than Holocene glacimarine strata formed on shelves dominated by icebergs and floating ice shelves. Paraglacial strata may be differentiated from non-glacial shelf strata by lower organic carbon concentrations, a relatively lower degree of bioturbation, and increased preservation of primary depositional fabric.  相似文献   

14.
Contamination with As, Cd and Hg, their spatial and temporal distribution are reported from the coastal wetland sediments of the northern Beibu Gulf, South China Sea. The content of As, Cd, Hg and TOC in surface sediments is 8.1 ± 5.8 μg g?1, 0.08 ± 0.14 μg g?1, 0.034 ± 0.028 μg g?1 and 0.45 ± 0.39%, respectively. The mean sedimentation rates are 0.93–1.37 cm year?1 during 1920s to 2008 determined by 210Pb and 137Cs dating in three cores. The vertical profiles of As, Cd and Hg content in the cores retrieved from Qin and Nanliu River estuaries show increasing trends during 1985–2008 due to anthropogenic impact caused by local economic development. Locally the surface sediments have potential ecological risk of As to benthos according to the NOAA sediment quality guidelines.  相似文献   

15.
《Marine pollution bulletin》2008,56(10-12):415-424
The sulphur cycle in the sediment of the Venice canal network was investigated by considering the sulphate reduction rate (SRR) and the distribution of sulphur compounds, in both pore water and sediment. Sulphate reduction (SR) is the main process in the metabolism of the organic matter supplied to the network by untreated urban effluents. Although it might account for the decomposition of only a limited percentage of the total organic-C inputs, the estimated rates are among the highest observed in coastal sediments. Measured rates range from 0.26 to 0.99 μmol cm−3 d−1, while mean annual values, estimated by a diagenetic model, vary from 0.16 to 0.43 μmol cm−3 d−1. The speciation of S in the sediment reveals that pyrite-S is the most abundant component of the total reduced S pool, whereas acid volatile sulphides and elemental sulphur together account for less than 45%. A preliminary budget indicates that the rate of burial of solid-phase S is small compared to the S produced by SR (from 10 to 25%). A large amount of reduced S is then lost from the canal deposits to be re-oxidised at the sediment-water interface or in the overlying water column.  相似文献   

16.
《Marine pollution bulletin》2012,64(5-12):528-534
The Salt-water River watershed is one of the major river watersheds in the Kaohsiung City, Taiwan. Water quality and sediment investigation results show that the river water contained high concentrations of organics and ammonia–nitrogen, and sediments contained high concentrations of heavy metals and organic contaminants. The main pollution sources were municipal and industrial wastewaters. Results from the enrichment factor (EF) and geo-accumulation index (Igeo) analyses imply that the sediments can be characterized as heavily polluted in regard to Cd, Cr, Pb, Zn, and Cu. The water quality analysis simulation program (WASP) model was applied for water quality evaluation and carrying capacity calculation. Modeling results show that the daily pollutant inputs were much higher than the calculated carrying capacity (1050 kg day−1 for biochemical oxygen demand and 420 kg day−1 for ammonia–nitrogen). The proposed watershed management strategies included river water dilution, intercepting sewer system construction and sediment dredging.  相似文献   

17.
Water level, sediment heterogeneity, and plant density are important factors that determine plant growth, distribution, and community structure. In the present study, we investigated the effects of these factors on the growth and root characteristics of Carex brevicuspis. We conducted an outdoor experiment to monitor biomass accumulation and allocation, relative root distribution mass ratio, longest root length, and total N and P contents of C. brevicuspis plants. We used a factorial design with two water levels (0 cm and −15 cm relative to the soil surface, named high and low water level treatments, respectively), three sediment types (sand/clay sediment with 0–15 cm of sand and 15–30 cm of clay; mixed sediment with 0–30 cm mixture of sand and clay with 1:1 volumw ratio; and clay/sand sediment with 0–15 cm of clay and 15–30 cm of sand), and three plant densities (88 plants per m2, 354 plants per m2, and 708 plants per m2). Biomass accumulation decreased with increasing plant density and was significantly higher in the low water level and the clay/sand sediment than in the high water level and the other two sediment types. The shoot:root ratio was markedly higher in the high water level than in the low water level and decreased with increasing plant density; further, in the high water level, it was significantly lower in the sand/clay sediment than in the other two sediment types. The relative root distribution mass ratio was markedly higher in the high water level treatments than in the low water level treatments. Further, in the high water level treatments, the relative root distribution mass ratio increased with increasing plant density in the clay/sand sediment and was lower in the sand/clay sediment than in the other two sediment types. The longest root length was significantly lower in the high water level than in the low water level and increased with increasing plant density in the sand/clay sediment in the high water level. Total N content in the plants was influenced only by sediment type; on the other hand, total P content was markedly higher in the high water level than in the low water level. Our data indicate that growth of C. brevicuspis was limited by higher water level, higher density and sand/clay sediment. Plants can increase shoot:root ratio and develop shallow root system to acclimate to high water level and thus could adjust shoot:root ratio and root characteristics, e.g. decrease their shoot:root ratio and allocating more root and increasing root length to the nutrient rich layer to acclimate to conditions of higher density and sediment heterogeneity.  相似文献   

18.
《Continental Shelf Research》2006,26(17-18):2260-2280
On October 3, 2002 Hurricane Lili made landfall on a previously studied region of the inner Louisiana shelf as a Category 2 storm with winds over 160 km/h. A week after the hurricane, major impacts of the storm were not evident in the water column except for the lower than expected inshore salinities (∼12 psu) for this time of year, which was characterized by low river discharge. Turbidity profiles were typical of those measured during previous investigations with suspended sediment concentrations >75 mg/L at inshore stations and <50 mg/L in surface waters and offshore. The implication is that the sediments resuspended during the hurricane settled soon after the storm passage. Water column particulate organic carbon (POC) concentrations ranged from 0.1 to over 2.0 mg/L, with the highest concentrations measured near the seabed and in the inshore portions of the study area. Suspended particles were characterized by low organic matter content (%POC of 0.5–2 wt%), low chlorophyll:POC ratios (Chl:POC<4 mg/g) and moderately elevated POC:particulate nitrogen ratios (POC:PN of 10–14 mol/mol), all suggesting their source was locally resuspended seabed sediment rather than from algal biomass or land-derived vascular plant detritus.Post hurricane sediment deposition throughout the study area resulted in a storm layer that ranged from <0.5 to 20 cm in thickness. In most locations sediment accumulation ranged from 3 to 10 cm. The storm deposits were generally composed of silty clays with a coarser, somewhat sandy 1–2 cm basal layer. Surface sediments from the storm layer were characterized by relatively high mineral surface areas (SA of 30–50 m2/g) and elevated OC contents (%OC of 1.0–2.0%). The dispersal of fine sediments following the hurricane resulted in marked changes in the SA and %OC values of surface sediments from offshore locations, which prior to the storm contained coarser, organic-poor particles (SA of 5–15 m2/g and %OC of 0.2–0.6%). The OC:SA and OC:N ratios of storm layer sediments ranged from 0.4 to 0.6 mg OC/m2 and from 10 to 12 mol/mol, respectively, and were comparable to those measured in surface sediments prior to the hurricane. Such similarities in the composition of the organic matter reinforce the idea that the source of the storm deposits was the finer fraction of resuspended seabed sediments, with little evidence for inputs from local land-derived sources or autochthonous algal production. Overall, the magnitude of sediment and organic matter deposition on the seabed after the storm greatly exceeded the annual inputs from the Atchafalaya River and coastal primary production. The combined effects of hurricane-driven erosion and post-storm deposition represent a major perturbation to the benthic community of the region, which is already subject to these types of disturbances due to the combined effects of peaks in river discharge and the passage of storm fronts.  相似文献   

19.
《Marine pollution bulletin》2012,65(12):2829-2833
This study reports the first evidence of the quantification of two dominant perfluorinated compounds (PFCs), namely perfluorooctanesulfate (PFOS) and perfluorooctannoate (PFOA), in surface sediment samples (0–5 cm; n = 13) from the Ganges (Hugli) River including Sundarban wetland, India using HPLC–MS/MS. The concentrations of PFOA exhibited a wide range of concentrations from <0.5 to 14.09 ng/g dry wt, whereas the concentration of PFOS was always below the detection limit of <0.5 ng/g dry wt. A consistent enrichment of PFOA was recorded in all the five sites of Sundarban (mean value 11.61 ± 1.86) whereas it was of moderate concentration or below the detection level in the seven sites along with the lower stretch of the Ganges (Hugli) River estuary (mean value 5.96 ng/g dry wt ± 5.36). Wastewater and untreated effluents are likely the major causes of accumulation of PFCs in sediments. The present paper could be used as baseline study to assess future monitoring programs of the ecosystem.  相似文献   

20.
The aim of the present study is to optimize the slow release biostimulant ball (BSB) for bioremediation of contaminated coastal sediment using response surface methodology (RSM). Metals contamination and stabilization of metals in coastal sediments using BSB were investigated. The effects of BSB size (1–5 cm), distance (1–10 cm), and time (1–4 months) on the stabilization of metals including Fe, Cd, Cu, and Pb were determined. The maximum stabilization percentages of Fe, Cd, Cu, and Pb, of 64.5%, 54.9%, 63.8%, and 47.6%, respectively, were observed at a 3 cm ball size, 5.5 cm distance, and a period of 4 months; these values are the optimum conditions for effective treatment of contaminated coastal sediment. The determination coefficient of the R2 value suggests that > 91.55%, 89.97%, 96.10%, and 86.40% of the variance is attributable to the variables of Fe, Cd, Cu, and Pb, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号