首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to palaeoenvironmental analysis on the fossil fauna dominated by Foraminifera and Ostracoda, core QC2 contains 8 marine transgressive beds, called (from up to bottom) Transgressive Beds Ⅰ,Ⅱ, Ⅲ, …,Ⅷ respectively. Together with dating data, the transgressive sequence since 1. 7 Ma B. P. has been established, indicating that the core went through middle and late Early Pleistocene, early and late Middle Pleistocene, early and late (Substages A and B) Late Pleistocene and the Holocene transgressions. Within these 8 transgressions, late Middle Pleistocene, early Late Pleistocene and the Holocene transgressions-had rather strong activities proved by shallow sea (of 50 or 20-50 m water depth) deposits in the prime, while 2 of the 8, during middle Early Pleistocene and late Late Pleistocene (Substage A), were much weaker only with supratidal deposits. The transgressive cycles also differ from each other. Transgressions in the Holocene and in Substage B of late Late Pleistocene are made up of 3 and  相似文献   

2.
Analysis of multi-channel seismic data from the northern East China Sea Shelf Basin (ECSSB) reveals three sub-basins (Socotra, Domi, and Jeju basins), separated by structural highs (Hupijiao Rise) and faulted basement blocks. These sub-basins show a typical rift-basin development: faulted basement and syn-rift and post-rift sedimentation separated by unconformities. Four regional unconformities, including the top of acoustic basement, have been identified and mapped from multi-channel seismic data. Faults in the acoustic basement are generally trending NE, parallel to the regional structural trend of the area. The depths of the acoustic basement range from less than 1000 m in the northwestern part of the Domi Basin to more than 4500 m in the Socotra Basin and 5500 m in the Jeju Basin. The total sediment thicknesses range from less than 500 m to about 1500 m in the northwest where the acoustic basement is shallow and reach about more than 5500 m in the south.Interpretation of seismic reflection data and reconstruction of three depth-converted seismic profiles reveal that the northern ECSSB experienced two phases of rifting, followed by regional subsidence. The initial rifting in the Late Cretaceous was driven by the NW-SE crustal stretching of the Eurasian Plate, caused by the subduction of the Pacific Plate beneath the Eurasian Plate. Extension was the greatest during the early phase of basin formation; estimated rates of extension during the initial rifting are 2%, 6.5%, and 3.5% in the Domi, Jeju, and Socotra basins, respectively. A regional uplift terminated the rifting in the Late Eocene-Early Oligocene. Rifting and extension, although mild, resumed in the Early Oligocene; while fluvio-lacustrine deposition continued to prevail. The estimated rates of extension during the second phase of rifting are 0.7%, 0.8%, and 0.5% in the Domi, Jeju, and Socotra basins, respectively. A second phase of uplift in the Early Miocene terminated the rifting, marking the transition to the post-rift phase of regional subsidence. Regional subsidence dominated the study area between the Early Miocene and the Late Miocene. An inversion in the Late Miocene interrupted the post-rift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. Uplift and subsequent erosion were followed by regional subsidence.  相似文献   

3.
The Seram Trough is located in the northern part of the Banda Arc-Australian collision zone in eastern Indonesia and is currently the site of contraction between the Bird's Head of New Guinea and Seram Island. It has been interpreted as a subduction trench, an intra-continental thrust zone and foredeep, and a zone of strike-slip faulting. Recently acquired 2D seismic lines clarify its tectonic evolution and relationship to the Bird's Head. Folding in the Early Pliocene formed an anticlinorium running from Misool to the Onin Peninsula of Irian Jaya and produced a newly recognised angular unconformity. The unconformity truncates sediments as old as Middle Jurassic and is an ancient topographic surface with significant relief. It was later folded and now dips south towards the trough where it is covered by up to 3 km of sediments. Initial tilting of the unconformity surface was accompanied by deposition of a transgressive sequence which can be traced into the trough. This is overlain by two sequences which prograde towards the trough. These sequences show progressive rotation of the unconformity surface, gravitational displacement of sediments into the trough, and thrusting which continues to the present day. Contraction occurred in the trough after the Early Pliocene and is younger than the previously suggested Late Miocene age. Thrust faults in the trough deform sediments deposited above the unconformity and detach at the unconformity surface. On Seram thrust faults repeat Mesozoic–Miocene sequences and probably detach at their contact with metamorphic basement. The detachment surface must cut through the Mesozoic-Miocene sequence between Seram and the trough. This work suggests the Seram Trough is not a subduction trench but a foredeep produced in response to loading by the developing fold and thrust belt of Seram, with an associated peripheral bulge to the north. The Seram Trough is interpreted to be a very young zone of thrusting within the Australian continental margin.  相似文献   

4.
本文采用国际大洋发现计划(IODP)第368航次U1501站位井深264.0~331.1 m的样品,通过有孔虫壳体氧同位素地层和锶同位素定年,得出该段井深年龄为晚渐新世-早中新世20.3~32.0 Ma(地震反射不整合面T60的底部年龄在28~30.5 Ma左右).T60构造运动之后,岩芯沉积物中有机碳含量、底栖有孔虫...  相似文献   

5.
The evolution of the Miocene San Marino carbonate shelf (Torriana outcrop), developed on the accretionary prism of the northern Apennines, has been interpreted through a stratigraphic and compositional study. Modal analysis allowed to quantify the framework components and to identify four microfacies through which the main steps of the carbonate ecosystem were traced. The healthy phase of the carbonate shelf, dominated by bryozoans and echinoids, originated in a high-energy transgressive setting and evolved during a warm period characterized by a progressive increase of nutrients. The transitional stage is marked by a reduction of carbonate productivity and by terrigenous intermittent pulses associated with bioclast fragmentation. The drowning succession corresponds to deepening upward facies formed by fine-grained hybrid arenites to sandy marls with abundant planktonic foraminifera, glauconitic grains and clay matrix. The demise of the carbonate shelf might have resulted from a combination of regional and global factors that interplayed controlling the detrital input, the nutrient budget and the deepening of the basin. Synsedimentary tectonics triggered subsidence of the basin and enhanced terrigenous discharge. Moreover, the superposition of paleoclimatic and paleoceanographic events (Monterey and Middle Miocene Climate Optimum) could have contributed with the intense weathering and remarkable detrital and nutrients supply.  相似文献   

6.
The Bajo Segura basin (eastern Betic Cordillera) has one of the most complete late Miocene–early Pliocene marine records of the western Mediterranean. An updated planktonic foraminifer zonal scheme based on recent astronomically tuned biozones is presented for this interval, documenting a complete succession of biostratigraphic markers, from biozone MMi9 (earliest Tortonian) to MPl3 (latest early Pliocene), of likely significance for regional-scale correlation throughout the Mediterranean. The findings reveal a series of intrazonal events (some unreported until now in the Mediterranean Neogene basin), including the particularly interesting two influxes of the Globorotalia miotumida group during the Tortonian. These biostratigraphic findings are the basis for a framework of the major allostratigraphic units in the basin based on planktonic foraminifer event-stratigraphy: synthems Tortonian I, Tortonian II, Tortonian-Messinian I, Messinian II, and Pliocene. In addition, the timing of the main tectono-sedimentary and palaeogeographic events throughout the basin's evolution has been further constrained. Our results suggest that, at least in the Bajo Segura basin, the late-Messinian barren interval (non-distinctive zone) can be considered an ecobiostratigraphic zone (cenozone) characterized by dwarf fauna of planktonic foraminifera. Consequently, the Bajo Segura composite section can be regarded as a biostratigraphic reference section for Neogene basins in the Betic Cordillera and hence also in the Western Mediterranean.  相似文献   

7.
本文利用珠江口盆地四个工程钻井的古生物、古地磁、同位素及沉积物资料,对钻孔所揭露的地层进行划分,认为所钻遇的地层包括下更新统(上部)、中更新统、上更新统及全新统。依据古生物分异度及含量作出海平面变化曲线,识别出十个海侵期,利用钙质超微化石特征种的初现面和末现面资料,将本区海平面变化曲线与太平洋V_(28-239)氧同位素曲线对比,分析了本区晚第四纪以来的沉积环境和气候,认为早更新世晚期,中更新世中期,晚更新世早期及全新世本区气候温暖,沉积环境属陆架浅海环境。  相似文献   

8.
Reconnaissance seismic shot in 1971/72 showed a number of well defined seismic anomalies within the East Sengkang Basin which were interpreted as buried reefs. Subsequent fieldwork revealed that Upper Miocene reefs outcropped along the southern margin of the basin. A drilling programme in 1975 and 1976 proved the presence of shallow, gas-bearing, Upper Miocene reefs in the northern part of the basin. Seismic acquisition and drilling during 1981 confirmed the economic significance of these discoveries, with four separate accumulations containing about 750 × 109 cubic feet of dry gas in place at an average depth of 700 m. Kampung Baru is the largest field and contains over half the total, both reservoir quality and gas deliverability are excellent. Deposition in the East Sengkang Basin probably started during the Early Miocene. A sequence of Lower Miocene mudstones and limestones unconformably overlies acoustic basement which consists of Eocene volcanics. During the tectonically active Middle Miocene, deposition was interrupted by two periods of deformation and erosion. Carbonate deposition became established in the Late Miocene with widespread development of platform limestones throughout the East Sengkang Basin. Thick pinnacle reef complexes developed in the areas where reef growth could keep pace with the relative rise in sea level. Most reef growth ceased at the end of the Miocene and subsequent renewed clastic sedimentation covered the irregular limestone surface. Late Pliocene regression culminated in the Holocene with erosion. The Walanae fault zone, part of a major regional sinistral strike-slip system, separates the East and West Sengkang Basins. Both normal and reverse faulting are inferred from seismic data and post Late Pliocene reverse faulting is seen in outcrop.  相似文献   

9.
The Baram Delta Province is located in the northern part of Sarawak (West Baram Delta) and extends north-eastward into Brunei and further into the south-western part of Sabah (East Baram Delta). The delta is a Neogene basin which developed over an accretionary wedge implying Cretaceous to Eocene sediments during the Late Eocene to Late Miocene times (Tongkul, 1991; Hutchison et al., 2000; Morley et al., 2003; Sapin et al., 2011).Facies and well log analyses were carried out on core and well data for the Late Miocene successions of Baram field, a medium-sized oilfield located in the north-eastern flank of the Baram Delta Oil Province, offshore Sarawak. A numerical model of sea-level fluctuations and progradational basin-fill was generated using the Clastic Modeling Program (Hardy and Waltham, 1992a and 1992b; Waltham, 1992) software to evaluate the possible controls of sea-level changes in the development of the siliciclastic successions and their bounding surfaces. This model was based on four lines of evidence, namely core data, fieldwide wireline logs correlation, seismic sections and average thickness variations across the field.Cored intervals of the Upper Cycle V (Late Miocene) display reservoir successions dominated by thick swaley cross-stratified (SCS) sandstones, thin hummocky cross-stratified sandstones and other shallow marine, wave and storm-dominated facies, interbedded with laminated shelfal mudstones. The vertical facies organisation suggests deposition during shoreface progradation associated with a fall of relative sea level.Analysis and correlation of well logs reveal stacking patterns comprising three scales of depositional cyclicity: the parasequences (∼10–∼30 m thick), the parasequence sets (∼45–∼130 m thick) and the major cycles (∼600–800 m thick).Field-wide, dip-oriented seismic sections show very well-developed horizontal to slightly upward convex layers traceable over great distances, which suggests a ramp-type margin, in which the basin floor dipped gradually seaward and lacked a distinct shelf-slope margin.The evidences gathered demonstrate that the deposition and build-up stratigraphy of the Late Miocene sedimentary successions could have been strongly controlled by superimposed short-term, medium-term and long-term sea-level changes.The simulated sea level and sedimentary basin-fill model, generated by the Clastic Modelling Program, match to the well log correlation. This model illustrates that high frequency sea-level fluctuations enable sands to be distributed over large areas within a shallow, low gradient shelf. Our study shows that integrated studies incorporating cores, well logs, seismic sections and simulated models can be employed as important tools for correlation and reservoir modelling.  相似文献   

10.
The northern East China Sea Shelf Basin consists of three depressions (the Domi, Jeju, and Socotra Depressions), separated by basement highs or rises. Reconstruction of depth-converted seismic reflection profiles from these depressions reveals that the northern East China Sea Shelf Basin experienced two phases of rifting, followed by regional subsidence. Initial rifting in the Late Cretaceous was driven by the NW?CSE crustal stretching of the Eurasian plate, caused by the subduction of the Pacific plate beneath the plate margin. Major extension (~15 km) took place during the early phase of basin formation. The initial rifting was terminated by regional uplift in the Late Eocene-Early Oligocene, which was probably due to reorganization of plate boundaries. Rifting resumed in the Early Oligocene; the magnitude of extension was mild (<1 km) during this period. A second phase of uplift in the Early Miocene terminated the rifting, marking the transition to the postrift phase of regional subsidence. Up to 2,600 m of sediments and basement rock were removed by erosion during and after the second phase of uplift. An inversion in the Late Miocene interrupted the postrift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. Subsequent erosion removed about 900 m of sediments. The regional subsidence has dominated the area since the Late Miocene.  相似文献   

11.
Using recently gathered onland structural and 2D/3D offshore seismic data in south and central Palawan (Philippines), this paper presents a new perspective in unraveling the Cenozoic tectonic history of the southeastern margin of the South China Sea. South and central Palawan are dominated by Mesozoic ophiolites (Palawan Ophiolite), distinct from the primarily continental composition of the north. These ophiolites are emplaced over syn-rift Eocene turbidites (Panas Formation) along thrust structures best preserved in the ophiolite–turbidite contact as well as within the ophiolites. Thrusting is sealed by Early Miocene (∼20 Ma) sediments of the Pagasa Formation (Isugod Formation onland), constraining the younger limit of ophiolite emplacement at end Late Oligocene (∼23 Ma). The onset of ophiolite emplacement at end Eocene is constrained by thrust-related metamorphism of the Eocene turbidites, and post-emplacement underthrusting of Late Oligocene – Early Miocene Nido Limestone. This carbonate underthrusting at end Early Miocene (∼16 Ma) is marked by the deformation of a seismic unit corresponding to the earliest members of the Early – Middle Miocene Pagasa Formation. Within this formation, a tectonic wedge was built within Middle Miocene (from ∼16 Ma to ∼12 Ma), forming a thrust-fold belt called the Pagasa Wedge. Wedge deformation is truncated by the regionally-observed Middle Miocene Unconformity (MMU ∼12 Ma). A localized, post-kinematic extension affects thrust-fold structures, the MMU, and Late Miocene to Early Pliocene carbonates (e.g. Tabon Limestone). This structural set-up suggests a continuous convergent regime affecting the southeastern margin of the South China Sea between end Eocene to end Middle Miocene. The ensuing structures including juxtaposed carbonates, turbidites and shallow marine clastics within thrust-fold belts have become ideal environments for hydrocarbon generation and accumulation. Best developed in the Northwest Borneo Trough area, the intensity of thrust-fold deformation decreases towards the northeast into offshore southwest Palawan.  相似文献   

12.
对南海北部陆坡神狐海域4口钻孔(BY1、BY2、BY3、BY4)岩心沉积物中微体古生物的研究表明晚中新世以来该区沉积物中硅质和钙质生物组分丰度具有较大时间和空间变化。从时间上看,硅质生物在晚中新世—上新世几乎缺失,中更新世以来约40万年(0~24m)才较多出现,18万年以后繁盛,大于0.15mm粗粒级有孔虫在晚中新世期间丰度很低,而在更新世—上新世丰度很高;空间上的差异表现在不同的钻井岩心中生物丰度变化范围较大。根据硅质生物丰度变化可推测晚中新世—上新世—早更新世时海水表层古生产力极低,而中更新世以来古生产力相对较高。南海北部钙质生物丰度的变化主要受控于陆源物质的输入量,在钻探区可识别2个可能具有不同物质来源的小区块,如BY1、BY2孔晚中新世—上新世陆源物质的输入量高于更新世,BY3和BY4孔更新世陆源物质的输入量高于上新世。2007年本区钻探结果揭示的一个令人惊奇和十分独特的现象,水合物以高达20%~49%饱和度状态分散在细粒沉积物(黏土粉砂)孔隙中,本研究发现这些矿层富含钙质生物组分(钙质超微化石和有孔虫),而硅质组分贫乏。由此初步推测,大量钙质生物组分的存在可能增加了黏土粉砂沉积物的孔隙空间,从而为大...  相似文献   

13.
本文通过太平洋中部5个长柱状岩心古地磁样品的测量分析,对区内早中新世以来的松散沉积层进行了磁性地层的划分对比,确定了各孔研究深度内沉积层的时代,认识到太平洋中部新世以来主要有两个沉积时期和两个沉积间断时期。第一沉积期分别到早中新世末或中中新世初停止沉积,为主沉积期,沉积了岩心的大部分。从晚上新世或第四纪初开始沉积到第四纪中晚期停止沉积的是第二沉积期,从早中新世末或中中新世初至早上新世或第四纪初为主  相似文献   

14.
晚玉木冰期台湾海峡的沉积环境   总被引:4,自引:1,他引:3  
对台湾海峡西部海域及河口平原14个钻孔剖面经孢粉、14C年龄和古地磁测定确定为晚玉木冰期的沉积层(Q33)样品进行了硅藻、有孔虫分析.结果表明,该时期海域的沉积层均属海相沉积,而河口平原区的沉积层则由海相和陆相地层交互组成.据此,提出了台湾海峡在晚玉木冰期属于水深在30~50m的浅海沉积环境的观点;阐述了这一与全球性气候冷暖更替所引起的海平面升降不一致现象是由于晚玉木冰期台湾海峡的地壳运动正处于间歇性下降时期,从而保持了浅海环境.  相似文献   

15.
Seismic and sequence stratigraphic architecture of the central western continental margin of India (between Coondapur and south of Mangalore) has been investigated with shallow seismic data. Seismic stratigraphic analysis defined nine seismic units, that are configured in a major type-1 depositional sequence possibly related to fourth-order eustatic sea-level changes, comprising regressive, lowstand, transgressive and highstand systems tracts. The late-Quaternary evolution of the continental margin took place under the influence of an asymmetric relative fourth-order sea-level cycle punctuated by higher frequency cycles. These cycles of minor order were characterised by rapid sea-level rises and gradual sea-level falls that generated depositional sequences spanning different time scales. During the regressive periods, dipping strata were developed, while erosional surfaces and incised valleys were formed during the lowstands of sea level. Terraces, v-shaped depressions, lagoon-like structures observed on the outer continental shelf are the result of the transgressive period. In the study area we have recognised a complex erosional surface that records a long time span during the relative sea-level fall (regressive period) and the following sea-level lowstand and has been reworked during the last transgression. We also infer that sedimentation processes changed from siliciclastic sedimentation to carbonate sedimentation and again to siliciclastic sedimentation, marking an important phase in the late-Quaternary evolution of the western continental shelf of India. We attribute this to an abrupt climate change at the end of the oxygen isotope stage 2, between the Last Glacial Maximum and the Bølling-Allerod event (14?000 yr BP). This sensitive climate change (warming) favoured the formation of reefs at various depths on the shelf, besides the development of Fifty Fathom Flat, a carbonate platform on the outer shelf off Bombay developed prior to 8300 yr BP. The highstand systems tracts were deposited after the sea level reached its present position.  相似文献   

16.
In the article, my own data on the species composition of the shells of planktonic Foraminifera (PF) from the Early Turonian sediments of the Atlantic and Indian Ocean and from a number of the cross sections of Australia have been analyzed. In addition, literature materials on the epicontinental basins of the northern hemisphere were also studied. The foraminifera species (PF) are grouped, and four types of thanatocoenoses are distinguished according to their relationship. A climatic zonality map for the early Turonian was constructed on the basis of the spatial distribution of these types. The reconstruction obtained was compared with the climatic maps compiled earlier for the later time intervals of the Late Cretaceous. It was established that the Turonian was characterized by the warmest climate. The tendency for global warming was the most clearly manifested in the Early Turonian.  相似文献   

17.
The Cenozoic succession of Browse Basin is characterized by a carbonate system, that developed from a non-tropical ramp in Eocene-lower Miocene times to a tropical rimmed platform in the middle Miocene. The evolution of the platform was unraveled through the interpretation of the seismic geomorphology and borehole data of the middle Miocene tropical reef system. The first reef structures developed during the early middle Miocene as narrow linear reef belts with an oblique orientation with respect to shelf strike direction. Subsequently, they prograded toward the platform margin to form a barrier reef with a minimum length of 40 km. The barrier reef itself comprises three distinct ridges separated by progradational steps. The second and third step are separated by a karstified horizon, which is interpreted to represent the global sea-level fall shortly before the Serravallian/Tortonian boundary. The following third ridge formed in a slightly downstepped position during the sea-level lowstand and initial transgressive phase. Further sea-level rise during the early Tortonian first drowned the barrier-reef system and subsequently also the patch reefs and relic atolls that had established in a backstepped position in the platform interior. The similar evolution of the Browse Basin reef system and other contemporaneous carbonate systems indicates a strong impact of eustatic sea-level changes. Relatively large subsidence rates in the study area possibly augmented the eustatic sea-level rise in the Tortonian and hence contributed to the drowning of the reef system. However, the initiation and final demise of the reef system was also governed by global and regional climate variations. The first seismically-defined reefs developed simultaneous to a maximum in the transport capacity of the Indonesian throughflow, which brings warm low-salinity waters to the North-West Shelf. Reef drowning followed the restriction of this seaway close to the middle to early Miocene boundary. This near closure of the Indonesian seaway possibly led to a regional amplification of the global middle to late Miocene cooling trend and hampered the potential of the reef system to keep up with the rising sea-level.  相似文献   

18.
本文系统介绍了珠江口盆地最南的一个探井——BY7—1—1井浮游有孔虫生物地层和海侵层序。通过对该井有孔虫全面系统采样分析,发现了渐新世浮游有孔虫组合。这一重大发现给重新认识该区上、下第三系界线,以及对整个南海北部地层对比提供了新资料。并对有关的一些地质问题进行了讨论。  相似文献   

19.
Evolution of the western Barents Sea   总被引:2,自引:0,他引:2  
Information from multichannel seismic reflection data complemented by seismic refraction, gravity and magnetics forms the basis for a regional structural and evolutionary model of the western Barents Sea during post-Caledonian times. The western Barents Sea contains a thick succession, locally > 10 km, of Upper Paleozoic to Cenozoic sedimentary rocks covering a basement of probably Caledonian origin. The area is divided into three regional geological provinces: (1) an east-west trending basinal province between 74°N and the coast of Norway; (2) an elevated platform area to the north towards Svalbard; and (3) the western continental margin. Several structural elements of different origin and age have been mapped within each of these provinces. The main stratigraphic sequence boundaries have been tentatively dated from available well information, correlation with the geology of adjacent areas, and correlation with the interregional unconformities caused by relative changes of sea level. The main structural elements were developed during three major post-Caledonian tectonic phases: the Svalbardian phase in Late Devonian to Early Carboniferous times, the Mid and Late Kimmerian phase in Mid Jurassic to Early Cretaceous times and Cenozoic tectonism related to the progressive northward opening of the Norwegian-Greenland Sea. The sediments are predicted to be of mainly clastic origin except for a thick sequence of Middle Carboniferous — Lower Permian carbonates and evaporites. Salt diapirs have developed in several sub-basins, especially in the Nordkapp Basin where they form continuous salt walls that have pierced through > 7 km of sediments.  相似文献   

20.
L. Vidal  T. Bickert  G. Wefer  U. R  hl 《Marine Geology》2002,180(1-4):71-85
High-resolution benthic oxygen isotope and XRF (Fe and Ca) records from Site 1085 drilled in the Mid-Cape basin (ODP Leg 175) are used to investigate global climate changes during the Late Miocene in relation to Messinian geological events. The cyclic fluctuations of the time series at Site 1085 enable us to establish a reliable chronology for the time interval 7.3–4.7 Ma. Spectral analysis of the δ18O record indicates that the 41-kyr period of orbital obliquity dominates the Late Miocene record. A global climate record was extracted from the oxygen isotopic composition of benthic foraminifera. Both long- and short-term variabilities in the climate record are discussed in terms of sea-level and deep-water temperature changes. The time interval 7.3–6.25 Ma characterized by low-amplitude δ18O variations is followed by a period marked by maximum in the δ18O values (6.25–5.57 Ma). At about 5.56 Ma, a rapid decrease in δ18O values is documented that may reflect a warming of deep-water temperature associated with a global warming period. Comparison between the timing of the oceanic isotope events and the chronology of the Mediterranean Salinity Crisis suggest that global eustatic processes were not essential in the Mediterranean Salinity Crisis history. From our data, we infer that the global warmth documented in the Early/mid-Pliocene probably started during the Late Miocene (at 5.55 Ma). At the same time, the onset of evaporite deposition in the central basin of the Mediterranean Sea took place. Sharp changes in the sedimentation rates, mainly driven by terrigenous input at this site, are observed during the Messinian Stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号