首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Barremian–Aptian organic-rich shales from Abu Gabra Formation in the Muglad Basin were analysed using geochemical and petrographic analyses. These analyses were used to define the origin, type of organic matters and the influencing factors of diagenesis, including organic matter input and preservation, and their relation to paleoenvironmental and paleoclimate conditions. The bulk geochemical characteristics indicated that the organic-rich shales were deposited in a lacustrine environment with seawater influence under suboxic conditions. Their pyrolysis hydrogen index (HI) data provide evidence for a major contribution by Type I/II kerogen with HI values of >400 mg HC/g TOC and a minor Type II/III contribution with HI values <400 mg HC/g TOC. This is confirmed by kerogen microscopy, whereby the kerogen is characterized by large amounts of structured algae (Botryococcus) and structureless (amorphous) with a minor terrigenous organic matter input. An enhanced biological productivity within the photic zone of the water columns is also detected. The increased biological productivity in the organic-rich shales may be related to enhanced semi-arid/humid to humid-warm climate conditions. Therefore, a high bio-productivity in combination with good organic matter preservation favoured by enhanced algae sizes are suggested as the OM enrichment mechanisms within the studied basin.  相似文献   

2.
Organic-rich black shale of the Upper Yangtze Basin from the Late Ordovician and Early Silurian is considered an excellent source rock in South China. The formation and preservation conditions of this resource are revealed by its geochemical characteristics in this study. Geochemical indices, including redox indices (V/(V + Ni), V/Cr, V/Sc, and Ni/Co) and primary productivity indices (P/Ti and Ba/Al), and paleoclimate, clastic flux and sedimentary rate analyses are presented to investigate the accumulation mechanism of organic matter. Redox indices suggest that a stagnant, anoxic environment predominated in the Upper Yangtze Basin during accumulation of Wufeng and Longmaxi formations. In contrast, ventilated and oxygenated marine conditions pervaded the Upper Yangtze Basin during deposition of Linxiang and Guanyinqiao formations. The concentrations of V and U demonstrate that accumulation of organic matter was mainly controlled by redox conditions. Besides, such factors as clastic fluxes, fresh water inflows or a mixed deposition with a rapid sedimentary rate cannot be ignored due to their influences on organic matter enrichment and preservation. However, weak co-variance relationship of TOC content and productivity proxies, including P/Ti and Ba/Al, demonstrates that the accumulation of organic matter was not controlled by primary productivity. Results of the present study suggest a depositional model that stresses the importance of tectonic movements and glacial events on the accumulation and preservation of organic matter. The model shows that the Upper Yangtze Basin was a semi-restricted basin system influenced by the isolation of Xuefeng, but also it implies that oxygen-depleted bottom water of the basin favored the accumulation and preservation of sedimentary organic matter, resulting in the formation of organic-rich black shale.  相似文献   

3.
High-resolution geochemical, isotope and elemental data from core PC23A in the northern margin of the Aleutian Basin (Bering Sea) were used to reconstruct distinct paleoceanographic features of the last deglaciation (pre-Boreal[PB], Bølling-Allerød[BA], Younger Dryas[YD]). The PB and BA intervals are characterized by increased siliceous (diatom) and calcareous (coccolithophores and foraminifers) productivity represented by high biogenic opal and CaCO3 contents, respectively. The enhanced productivity can plausibly be attributed to an elevated sea-surface nutrient supply from increased melt-water input and enhanced Alaskan Stream injection under warm, restricted sea-ice conditions. High Corg/N ratios and low δ13C values of sediment organic matter during the PB and BA intervals reflect the contribution of terrestrial organic matters. The PB and BA intervals were also identified by laminated sediment layers of core PC23A, characterized by high Mo/Al and Cd/Al ratios, indicating that the bottom water condition remained anoxic. High δ15N values during the same period were attributed mainly to the increased nutrient utilization and subsequent denitrification of seawater nitrate. Part of high δ15N values may also be due to incorporation of inorganic nitrogen in the clay minerals. It is worthy of note that high total organic carbon (TOC) deposition occurred approximately 3,000 years before onset of the last deglaciation. Simultaneous high Corg/N ratios and low δ13C values clearly suggest that the high TOC content should be related to terrestrial organic carbon input. Low δ15N values during the high TOC interval also confirm the contribution of terrigenous organic matter. Although abundant calcareous phytoplankton production under cold, nutrient-poor conditions represented by Baex data was reported for high TOC deposition preceding the last deglaciation in an earlier study of the Okhotsk Sea, the main reason for the enhanced TOC deposition in the Bering Sea is an increased terrigenous input from the submerged continental shelves (Beringia) with a sea-level rise; this is further supported by Al enrichment of bulk sediments during the high TOC deposition.  相似文献   

4.
As a result of a long-lasting and complex geological history, organic-matter-rich fine-grained rocks (black shales) with widely varying ages can be found on Ukrainian territory. Several of them are proven hydrocarbon source rocks and may hold a significant shale gas potential.Thick Silurian black shales accumulated along the western margin of the East European Craton in a foreland-type basin. By analogy with coeval organic-matter-rich rocks in Poland, high TOC contents and gas window maturity can be expected. However, to date information on organic richness is largely missing and maturity patterns remain to be refined.Visean black shales with TOC contents as high as 8% and a Type III-II kerogen accumulated along the axis of the Dniepr-Donets rift basin (DDB). They are the likely source for conventional oil and gas. Oil-prone Serpukhovian black shales accumulated in the shallow northwestern part of the DDB. Similar black shales probably may be present in the Lviv-Volyn Basin (western Ukraine).Middle Jurassic black shales up to 500 m thick occur beneath the Carpathian Foredeep. They are the likely source for some heavy oil deposits. TOC contents up to 12% (Type II) have been recorded, but additional investigations are needed to study the vertical and lateral variability of organic matter richness and maturity.Lower Cretaceous black shales with a Type III(-II) kerogen (TOC > 2%) are widespread at the base of the Carpathian flysch nappes, but Oligocene black shales (Menilite Fm.) rich in organic matter (4–8% TOC) and containing a Type II kerogen are the main source rock for oil in the Carpathians. Their thermal maturity increases from the external to the internal nappes.Oligocene black shales are also present in Crimea (Maykop Fm.). These rocks typically contain high TOC contents, but data from Ukraine are missing.  相似文献   

5.
To study the sedimentary environment of the Lower Cambrian organic-rich shales and isotopic geochemical characteristics of the residual shale gas, 20 black shale samples from the Niutitang Formation were collected from the Youyang section, located in southeastern Chongqing, China. A combination of geochemical, mineralogical, and trace element studies has been performed on the shale samples from the Lower Cambrian Niutitang Formation, and the results were used to determine the paleoceanic sedimentary environment of this organic-rich shale. The relationships between total organic carbon (TOC) and total sulfur (TS) content, carbon isotope value (δ13Corg), trace element enrichment, and mineral composition suggest that the high-TOC Niutitang shale was deposited in an anoxic environment and that the organic matter was well preserved after burial. Stable carbon isotopes and biomarkers both indicate that the organic matter in the Niutitang black shales was mainly derived from both lower aquatic organisms and algaes and belong to type I kerogen. The oil-prone Niutitang black shales have limited residual hydrocarbons, with low values of S2, IH, and bitumen A. The carbon isotopic distribution of the residual gas indicate that the shale gas stored in the Niutitang black shale was mostly generated from the cracking of residual bitumen and wet gas during a stage of significantly high maturity. One of the more significant observations in this work involves the carbon isotope compositions of the residual gas (C1, C2, and C3) released by rock crushing. A conventional δ13C1–δ13C2 trend was observed, and most δ13C2 values of the residual gases are heavier than those of the organic matter (OM) in the corresponding samples, indicating the splitting of ethane bonds and the release of smaller molecules, leading to 13C enrichment in the residual ethane.  相似文献   

6.
The Es3L (lower sub-member of the third member of the Eocene Shahejie Formation) shale in the Jiyang Depression is a set of relatively thick and widely deposited lacustrine sediments with elevated organic carbon, and is considered to be one of the most important source rocks in East China. We can determine the mineralogy, organic and inorganic geochemistry of the Es3L shale and calculate paleoclimate indexes by using multiple geochemical proxies based on organic chemistry (total organic carbon [TOC] and Rock-Eval pyrolysis), major and trace elements, X-Ray diffraction, and carbon and oxygen isotope data from key wells alongside ECS (Elemental Capture Spectroscopy) well log data. These indicators can be used to analyze the evolution of the paleoenvironment and provide a mechanism of organic matter (OM) accumulation. The Es3L oil shale has high TOC abundance (most samples >3.0%) and is dominated by Type I kerogens. Additionally, the organic-rich shale is rich in CaO and enrichment in some trace metals is present, such as Sr, Ba and U. The positive δ13C and negative δ18O values, high Sr/Ba, B/Ga and Ca/Ca + Fe ratios and low C/S ratios indicate that the Es3L shales were mainly deposited in a semi-closed freshwater-brackish water lacustrine environment. The consistently low Ti/Al and Si/Al ratios reflect a restricted but rather homogeneous nature for the detrital supply. Many redox indicators, including the Th/U, V/(V + Ni), and δU ratios, pyrite morphology and TOC-TS-Fe diagrams suggest deposition under dysoxic to suboxic conditions. Subsequently, the brackish saline bottom water evolved into an anoxic water body under a relatively arid environment, during which organic-lean marls were deposited in the early stage. Later, an enhanced warm-humid climate provided an abundant mineral nutrient supply and promoted the accumulation of algal material. OM input from algal blooms reached a maximum during the deposition of the organic-rich calcareous shale with seasonal laminations. High P/Ti ratios and a strongly positive relationship between the P and TOC contents indicate that OM accumulation in the oil shale was mainly controlled by the high primary productivity of surface waters with help from a less stratified water column. Factors such as the physical protection of clay minerals and the dilution of detrital influx show less influence on OM enrichment.  相似文献   

7.
We have conducted elemental, isotopic, and Rock-Eval analyses of Cenomanian–Santonian sediment samples from ODP Site 1138 in the southern Indian Ocean to assess the origin and thermal maturity of organic matter in mid-Cretaceous black shales found at this high-latitude location. Total organic carbon (TOC) concentrations range between 1 and 20 wt% in black to medium-gray sediments deposited around the Cenomanian–Turonian boundary. Results of Rock-Eval pyrolysis indicate that the organic matter is algal Type II material that has experienced modest alteration. Important contributions of nitrogen-fixing bacteria to the amplified production of organic matter implied by the high TOC concentrations is recorded in δ15N values between −5 and 1‰, and the existence of a near-surface intensified oxygen minimum zone that favored organic carbon preservation is implied by TOC/TN ratios between 20 and 40. In contrast to the marine nature of the organic matter in the Cenomanian–Turonian boundary section, deeper sediments at Site 1138 contain evidence of contributions land-derived organic matter that implies the former presence of forests on the Kerguelen Plateau until the earliest Cenomanian.  相似文献   

8.
Source rock formation influenced by river-delta system, especially in continental margin basins, is still poorly understood. This article aimed to reveal the effect of river-delta system on the formation of the source rock by taking the Baiyun Sag of the Pearl River Mouth Basin for example. Paleo-Pearl River began to develop since the Enping Formation, providing abundant organic matter beneficial for the formation of the source rocks in the Baiyun Sag. The main controlling factor of source rock formation in the Baiyun Sag is terrestrial organic matter supply rather than the paleoproductivity or redox conditions. Low Al/Ti and P/Ti ratios suggest low marine productivity, which may be associated with a large number of terrigenous detritus input, occupying about 43.04%–94.91%. There is a positive correlation between the oleanane/C30hopane ratio and the TOC value, showing that terrigenous organic matter controls the source rock formation. The size of the delta below Pearl River estuary determines the extent of terrestrial organic matter supply. Source rocks with high organic matter abundance mainly formed in delta environment, and those in neritic environment in Enping and Zhuhai Formations also have high TOC values as a result of adequate terrestrial organic matter supply.  相似文献   

9.
In order to understand the paleoenvironment of the Early Cambrian black shale deposition in the western part of the Yangtze Block, geochemical and organic carbon isotopic studies have been performed on two wells that have drilled through the Qiongzhusi Formation in the central and southeastern parts of Sichuan Basin. It shows that the lowest part of the Qiongzhusi Formation has high TOC abundance, while the middle and upper parts display relative low TOC content. Redox-sensitive element (Mo) and trace elemental redox indices (e.g., Ni/Co, V/Cr, U/Th and V/(V + Ni)) suggest that the high-TOC layers were deposited under anoxic conditions, whereas the low-TOC layers under relatively dysoxic/oxic conditions. The relationship of the enrichment factors of Mo and U further shows a transition from suboxic low-TOC layers to euxinic high-TOC layers. On the basis of the Mo-TOC relationship, the Qiongzhusi Formation black shales were deposited in a basin under moderately restricted conditions. Organic carbon isotopes display temporal variations in the Qiongzhusi Formation, with a positive excursion of δ13Corg values in the lower part and a continuous positive shift in the middle and upper parts. All these geochemical and isotopic criteria indicate a paleoenvironmental change from bottom anoxic to middle and upper dysoxic/oxic conditions for the Qiongzhusi Formation black shales. The correlation of organic carbon isotopic data for the Lower Cambrian black shales in different regions of the Yangtze Block shows consistent positive excursion of δ13Corg values in the lower part for each section. This excursion can be ascribed to the widespread Early Cambrian transgression in the Yangtze Block, under which black shales were deposited.  相似文献   

10.
Late Jurassic organic-rich shales from Shabwah sub-basin of western Yemen were analysed based on a combined investigations of organic geochemistry and petrology to define the origin, type of organic matter and the paleoenvironment conditions during deposition. The organic-rich shales have high total sulphur content values in the range of 1.49–4.92 wt. %, and excellent source rock potential is expected based on the high values of TOC (>7%), high extractable organic matter content and hydrocarbon yield exceeding 7000 ppm. The high total sulphur content and its relation with high organic carbon content indicate that the Late Jurassic organic-rich shales of the Shabwah sub-basin were deposited in a marine environment under suboxic-anoxic conditions. This has been evidenced from kerogen microscopy and their biomarker distributions. The kerogen microscopy investigation indicated that the Late Jurassic organic-rich shales contain an abundant liptinitic organic matter (i.e., alginite, structureless (amorphous organic matters)). The presence of alginite with morphology similar to the lamalginite alga and amorphous organic matter in these shale samples, further suggests a marine origin. The biomarker distributions also provide evidence for a major contribution by aquatic algae and microorganisms with a minor terrigenous organic matter input. The biomarkers are characterized by unimodal distribution of n-alkanes, low acyclic isoprenoids compared to normal alkanes, relatively high tricyclic terpanes compared to tetracyclic terpanes, and high proportion of C27 and C29 regular steranes compared to C28 regular sterane. Moreover, the suboxic to anoxic bottom water conditions as evidenced in these Late Jurassic shales is also supported based on relatively low pristane/phytane (Pr/Ph) ratios in the range of 0.80–1.14. Therefore, it is envisaged here that the high content of organic matter (TOC > 7 wt.%) in the analysed Late Jurassic shales is attributed to good organic matter (OM) preservation under suboxic to anoxic bottom water conditions during deposition.  相似文献   

11.
The geochemical and petrographic characteristics of saline lacustrine shales from the Qianjiang Formation, Jianghan Basin were investigated by organic geochemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and low pressure nitrogen adsorption analysis. The results indicate that: the saline lacustrine shales of Eq3 member with high oil content are characterized by type I and type II oil-prone kerogen, variable TOC contents (1.0–10.0 wt%) and an early-maturity stage (Ro ranges between 0.41 and 0.76%). The mineral compositions of Eq3 saline shale show strong heterogeneity: brittle intervals with high contents of quartz and carbonate are frequently alternated with ductile intervals with high glauberite and clay contents. This combination might be beneficial for oil accumulation, but may cause significant challenges for the hydraulic stimulation strategy and long-term production of shale oil. The interparticle pores and intraparticle pores dominate the pore system of Eq3 shale, and organic matter hosted pores are absent. Widely distributed fractures, especially tectonic fractures, might play a key role in hydrocarbon migration and accumulation. The pore network is contributed to by both large size inorganic pores and abundant micro-factures, leading to a relatively high porosity (2.8–30.6%) and permeability (0.045–6.27 md) within the saline shale reservoir, which could enhance the flow ability and storage capacity of oil. The oil content (S1 × 100/TOC, mg HC/g TOC and S1, mg HC/g rock) and brittleness data demonstrate that the Eq33x section has both great potential for being a producible oil resource and hydraulic fracturing. Considering the hydrocarbon generation efficiency and properties of oil, the mature shale of Eq3 in the subsidence center of the Qianjiang Depression would be the most favorable zone for shale oil exploitation.  相似文献   

12.
Detailed bulk geochemistry and organo-petrography of outcrop Cretaceous sediments (with no significant effects of weathering) from the Calabar Flank, southeast Nigeria were performed to understand the organic carbon source, accumulation and degradation, and paleo-climatic, paleoceanographic and paleoenvironmental conditions in West Africa during Early Cretaceous (Aptian) to Maastrichtian times. This study was based on microscopic, elemental analyses (organic carbon, nitrogen, iron and sulphur), Rock-eval pyrolysis and carbon-isotope analyses. In general, the Calabar Flank shales are characterised by highly variable total organic carbon (TOC) contents, which range between 0.1% in Aptian–Albian Mfamosing Limestone and 9.9% in the Awi Formation sediments. The organic matter (OM) is a mixture of immature to early-mature marine and terrigenous OM of types III and IV. This is indicated by low hydrogen indices (HI value (10–190 mg HC/g TOC), Tmax (417–460 °C), vitrinite reflectance %Ro (0.39–0.62 %Ro), low to high C/N ratios (3.4–1158.0) and high amounts of terrigenous macerals (vitrinite + inertinite). Based on carbon isotope, C/N ratios and sulphate reduction index (SRI), OM degradation (up to 70%, SRI > 2.5) is most pronounced for shales deposited in a marine environment. The geochemical and petrographic data indicate that local factors such as low bioproductivity, down slope transport and redeposition of sediments from a fluvial–deltaic basin to nearshore facies, shallower, oxic and mildly oxygen-deficient environments, humid–arid paleogeographic conditions, specifically controlled the amount and quality of the OM during Aptian–Mastrichtian stages where marine sediments have been assumed to be deposited during the global anoxic events. Therefore, the order of the main factors controlling OM content in sediments are: input of terrigenous material transported from the land > low OM productivity by marine photoautotrophs > low preservation.  相似文献   

13.
The Middle Triassic Botneheia Formation of eastern Svalbard (Edgeøya and Barentsøya) comprises an organic carbon-rich, fine-grained clastic succession (∼100 m thick) that makes the best petroleum source rock horizon in the NW Barents Sea shelf. The succession records a transgressive–regressive interplay between the prodelta depositional system sourced in the southern Barents Sea shelf (black shale facies of the lower and middle parts of the Muen Member) and the open shelf phosphogenic system related to upwelling and nutrient supply from the Panthalassic Ocean (phosphogenic black shale facies of the upper part of the Muen Member and the Blanknuten Member). The relationships between organic matter, authigenic apatite, and pyrite in these facies allow to characterize the relative roles of redox conditions and oceanic productivity in the organic carbon preservation. The accumulation of terrestrial and autochthonous marine organic matter in the black shale facies occurred under dominating oxic conditions and increasing-upward productivity related to early transgressive phase and retrogradation of the prodelta system. The phosphogenic black shale facies deposited in an oxygen-minimum zone (OMZ) of the open shelf environment during the late transgressive to regressive phases under conditions of high biological productivity, suppressed sedimentation rates, and changing bottom redox. The phosphatic black shales occurring in the lower and upper parts of the phosphogenic succession reveal depositional conditions indicative of the shallower part of OMZ, including high input of autochthonous organic matter into sediment, oxic-to-dysoxic (episodically suboxic and/or anoxic) conditions, intense phosphogenesis, and recurrent reworking of the seabed. The massive phosphatic mudstone occurring in the middle of the phosphogenic succession reflects the development of euxinia in the deeper part of OMZ during high-stand of the sea. High input of autochthonous organic matter in this environment was coupled with mineral starvation and intermittent phosphogenesis. In mature sections in eastern Svalbard, the petroleum potential of the Botneheia Formation rises from moderate to good in the black shale facies, and from good to very good in the phosphogenic black shale facies, attaining maximum in the massive phosphatic mudstone.  相似文献   

14.
Deposition of organic rich black shales and dark gray limestones in the Berriasian-Turonian interval has been documented in many parts of the world. The Early Cretaceous Garau Formation is well exposed in Lurestan zone in Iran and is composed of organic-rich shales and argillaceous limestones. The present study focuses on organic matter characterization and source rock potential of the Garau Formations in central part of Lurestan zone. A total of 81 core samples from 12 exploratory wells were subjected to detailed geochemical analyses. These samples have been investigated to determine the type and origin of the organic matter as well as their petroleum-generation potential by using Rock-Eval/TOC pyrolysis, GC and GCMS techniques. The results showed that TOC content ranges from 0.5 to 4.95 percent, PI and Tmax values are in the range of 0.2 and 0.6, and 437 and 502 °C. Most organic matter is marine in origin with sub ordinary amounts of terrestrial input suggesting kerogen types II-III and III. Measured vitrinite reflectance (Rrandom%) values varying between 0.78 and 1.21% indicating that the Garau sediments are thermally mature and represent peak to late stage of hydrocarbon generation window. Hydrocarbon potentiality of this formation is assessed fair to very good capable of generating chiefly gas and some oil. Biomarker characteristics are used to provide information about source and maturity of organic matter input and depositional environment. The relevant data include normal alkane and acyclic isoprenoids, distribution of the terpane and sterane aliphatic biomarkers. The Garau Formation is characterized by low Pr/Ph ratio (<1.0), high concentrations of C27 regular steranes and the presence of tricyclic terpanes. These data indicated a carbonate/shale source rock containing a mixture of aquatic (algal and bacterial) organic matter with a minor terrigenous organic matter contribution that was deposited in a marine environment under reducing conditions. The results obtained from biomarker characteristics also suggest that the Garau Formation is thermally mature which is in agreement with the results of Rock-Eval pyrolysis.  相似文献   

15.
The organic-rich Upper Ordovician sediments (Wufeng and Guanyinqiao Formations) on the Yangtze platform are considered to be one of the main source rocks. Here we present geochemical proxies, including redox indicator (S/C ratios and sulfur isotopes) and productivity indices (TOC, Mo and Ba contents), from Nanbazi section in North Guizhou province, South China, in order to investigate the mechanism of organic matter accumulation. The geochemical data suggest a stagnant and anoxic environment predominated the Yangtze Sea during the Wufeng period, whereas ventilated and oxygenated marine conditions pervaded the Yangtze Sea during the Guanyinqiao period. Variations in the concentration of TOC, Mo and Ba indicate that higher organic carbon export in the Wufeng intervals than those in the Guanyinqiao intervals. These variations in redox and productivity during the late Ordovician were associated with different mechanisms and forcing processes. The abrupt change from anoxic to oxygenated condition at the beginning of the Guanyinqiao was concomitant with the global glacial period, likely resulted from the glacio-eustatic sea-level fall and subsequent circulation of cold, dense oxygenated waters upon the shelf seabed. The productivity variations were related to the change of nutrient supply, which is consistent with volcanic activities and runoff to the Yangtze Sea. Redox changes, together with primary productivity fluctuations could have played a significant role on the variation of organic matter accumulation during the late Ordovician in South China.  相似文献   

16.
Shale reservoirs of the Middle and Upper Devonian Horn River Group provide an opportunity to study the influence of rock composition on permeability and pore throat size distribution in high maturity formations. Sedimentological, geochemical and petrophysical analyses reveal relationships between rock composition, pore throat size and matrix permeability.In our sample set, measured matrix permeability ranges between 1.69 and 42.81 nanodarcies and increases with increasing porosity. Total organic carbon (TOC) content positively correlates to permeability and exerts a stronger control on permeability than inorganic composition. A positive correlation between silica content and permeability, and abundant interparticle pores between quartz crystals, suggests that quartz may be another factor enhancing the permeability. Pore throat size distributions are strongly related to TOC content. In organic rich samples, the dominant pore throat size is less than 10 nm, whereas in organic lean samples, pore throat size distribution is dominantly greater than 20 nm. SEM images suggest that in organic rich samples, organic matter pores are the dominant pore type, whereas in quartz rich samples, the dominant type is interparticle pores between quartz grains. In clay rich and carbonate rich samples, the dominant pore type is intraparticle pores, which are fewer and smaller in size.High permeability shales are associated with specific depositional facies. Massive and pyritic mudstones, rich in TOC and quartz, have comparatively high permeability. Laminated mudstone, bioturbated mudstone and carbonate facies, which are relatively enriched in clay or carbonate, have fairly low permeability.  相似文献   

17.
The Qiongdongnan Basin and Zhujiang River(Pearl River) Mouth Basin, important petroliferous basins in the northern South China Sea, contain abundant oil and gas resource. In this study, on basis of discussing impact of oil-base mud on TOC content and Rock-Eval parameters of cutting shale samples, the authors did comprehensive analysis of source rock quality, thermal evolution and control effect of source rock in gas accumulation of the Qiongdongnan and the Zhujiang River Mouth Basins. The contrast analysis of TOC contents and Rock-Eval parameters before and after extraction for cutting shale samples indicates that except for a weaker impact on Rock-Eval parameter S_2, oil-base mud has certain impact on Rock-Eval S_1, Tmax and TOC contents. When concerning oil-base mud influence on source rock geochemistry parameters, the shales in the Yacheng/Enping,Lingshui/Zhuhai and Sanya/Zhuhai Formations have mainly Type Ⅱ and Ⅲ organic matter with better gas potential and oil potential. The thermal evolution analysis suggests that the depth interval of the oil window is between 3 000 m and 5 000 m. Source rocks in the deepwater area have generated abundant gas mainly due to the late stage of the oil window and the high-supper mature stage. Gas reservoir formation condition analysis made clear that the source rock is the primary factor and fault is a necessary condition for gas accumulation. Spatial coupling of source, fault and reservoir is essential for gas accumulation and the inside of hydrocarbon-generating sag is future potential gas exploration area.  相似文献   

18.
The Excello Shale is one of the best exposed examples of Pennsylvanian cyclothemic organic-rich shales in the midcontinent region. This study aimed to describe detailed stratigraphy of the study interval along the outcrop belt and to relate the environments of depositon, and paleogeography of the study area during the glacial-related paleoclimatic episodes. Certain present-day shallow silled basins were used as a possible analogue of the Pennsylvanian cyclic epeiric seas. Eustatic changes in sea-level were closely related to cyclic glaciation, global tectonics, basin subsidence and sedimentation pattern.Because of paleobathymetric relief in the cyclic epeiric seas, some units disappear and new ones appear, commonly with a change of facies. In many cases, cyclic coal beds underlie black shales. This suggests that swamp environments were present intermittently due to minor regression preceding episodes of cyclic maximum transgression. The occurrence of the cyclic seas and swamps between 5° and 8° N paleo-latitude all suggest a tropical-wet climate with possible seasonally controlled rainfall.Thin laminae, fine particle size and high TOC content (up to 17 wt%) indicate stagnant conditions with bottom-water anoxia in the Excello Sea. Anaerobic sediments were deposited in more than 100 m depth of water, poor circulation, shallow mixing with atmosphere, and high organic productivity and/or better preservation was present during maximum transgressive episode. The establishment of a density-stratified water column or pycnocline was the most important factor in development of the anaerobic sediments. Perhaps a halocline between bottom normal marine salinnity waters and a surface fresh-water layer probably caused the water stratification and anoxia leading to better preservation of organic matter in the Excello Sea.  相似文献   

19.
Organic shales deposited in a continental environment are well developed in the Ordos Basin, NW China, which is rich in hydrocarbons. However, previous research concerning shales has predominantly focused on marine shales and barely on continental shales. In this study, geochemical and mineralogical analyses, high-pressure mercury intrusion and low-pressure adsorption were performed on 18 continental shale samples obtained from a currently active shale gas play, the Chang 7 member of Yanchang Formation in the Ordos Basin. A comparison of all these techniques is provided for characterizing the complex pore structure of continental shales.Geochemical analysis reveals total organic carbon (TOC) values ranging from 0.47% to 11.44%, indicating that there is abundant organic matter (OM) in the study area. Kerogen analysis shows vitrinite reflectance (Ro) of 0.68%–1.02%, indicating that kerogen is at a mature oil generation stage. X-ray diffraction mineralogy (XRD) analysis indicates that the dominant mineral constituents of shale samples are clay minerals (which mainly consist of illite, chlorite, kaolinite, and negligible amounts of montmorillonite), quartz and feldspar, followed by low carbonate content. All-scale pore size analysis indicates that the pore size distribution (PSD) of shale pores is mainly from 0.3 to 60 nm. Note that accuracy of all-scale PSD analysis decreases for pores less than 0.3 nm and more than 10 μm. Experimental analysis indicates that mesopores (2–50 nm) are dominant in continental shales, followed by micropores (<2 nm) and macropores (50 nm–10 μm). Mesopores have the largest contribution to pore volume (PV) and specific surface area (SSA). In addition, plate- and sheet-shaped pores are dominant with poor connectivity, followed by hybrid pores. Results of research on factors controlling pore structure development show that it is principally controlled by clay mineral contents and Ro, and this is different from marine systems. This study has important significance in gaining a comprehensive understanding of continental shale pore structure and the shale gas storage–seepage mechanism.  相似文献   

20.
The late Volgian (early "Boreal" Berriasian) sapropels of the Hekkingen Formation of the central Barents Sea show total organic carbon (TOC) contents from 3 to 36 wt%. The relationship between TOC content and sedimentation rate (SR), and the high Mo/Al ratios indicate deposition under oxygen-free bottom-water conditions, and suggest that preservation under anoxic conditions has largely contributed to the high accumulation of organic carbon. Hydrogen index values obtained from Rock-Eval pyrolysis are exceptionally high, and the organic matter is characterized by well-preserved type II kerogen. However, the occurrence of spores, freshwater algae, coal fragments, and charred land-plant remains strongly suggests proximity to land. Short-term oscillations, probably reflecting Milankovitch-type cyclicity, are superimposed on the long-term trend of constantly changing depositional conditions during most of the late Volgian. Progressively smaller amounts of terrestrial organic matter and larger amounts of marine organic matter upwards in the core section may have been caused by a continuous sea-level rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号