首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study documents the stratigraphic and palaeogeographic distribution of hybrid event beds that comprise both debris-flow (cohesive) and turbidity current (non-cohesive) deposits. This is the first study of such beds in a submarine fan system to combine outcrop and research borehole control, and uses a dataset from the Skoorsteenberg Formation of the Tanqua depocentre in the Karoo Basin, South Africa. Three types of 0.1–1.0 m thick hybrid beds are observed, which have a basal weakly graded fine-grained sandstone turbidite division overlain by a division of variable composition that can comprise 1) poorly sorted carbonaceous-rich material supported by a mud-rich and micaceous sand-matrix; 2) poorly sorted mudstone clasts in a mud-rich sand-silt matrix; or 3) gravel-grade, rounded mudstone clasts in a well sorted (mud-poor) sandstone matrix. These upper divisions are interpreted respectively as: 1) the deposit of a debris-flow most likely derived from shelf-edge collapse; 2) the deposit of a debris flow, most likely developed through flow transformation from turbidity current that eroded a muddy substrate; and 3) from a turbidity current with mudstone clasts transported towards the rear of the flow. All three hybrid bed types are found concentrated at the fringes of lobes that were deposited during fan initiation and growth. The basinward stepping of successive lobes means that the hybrid beds are concentrated at the base of stratigraphic successions in medial and distal fan settings. Hybrid beds are absent in proximal fan positions, and rare and thin in landward-stepping lobes deposited during fan retreat. This distribution is interpreted to reflect the enhanced amounts of erosion and availability of mud along the transport route during early lowstands of sea level. Therefore, hybrid beds can be used to indicate a fan fringe setting, infer lobe stacking patterns, and have a sequence stratigraphic significance.  相似文献   

2.
This study addresses reservoir development and hydrocarbon occurrence of the late Pliocene basin-floor fan deposits in the northeastern Bay of Bengal. The G-series turbiditic sandstones host dry gases, biogenic in origin, of three gas fields that are juxtaposed on the western flank of the NW–SE anticline. The gas reservoirs are stacked in back-stepping fashion being sourced from northwest as part of the Bengal fan. The Shwe field (Shwe fan) has an elongate fan-shaped morphology (12 km long and 4 km wide) and occurs about 30 km off the base of slope.The Shwe field reservoirs consist of two contrasting types of turbidite deposits, lower G5.2 and upper G3.2 reservoirs. The G5.2 is characterized by stacked lobe elements in which amalgamated and layered sheet sandstones provide an excellent vertical connectivity and high net-to-gross ratio (avg. 86%). On the contrary, the G3.2 represents overbank deposits, which is characterized by thin-bedded sandstones with low net-to-gross ratio (avg. 33%) as well as low-resistivity pays.Aside from the primary depositional framework, post-depositional modifications appear to have greatly affected Shwe fan, adding complexity in establishing a geological model. A line of evidence suggests that G5.2 lobe sands were injected into overlying G3.2, mostly in the form of sills. The injected sand beds measured from G3.2 cores account for 10 m, more than half of the total net sand. The sand injection is thought to be triggered by slumping that overpressured G5.2 lobes. Post-G3.2 erosional channel complexes incised into G5.2 and G3.2, ultimately diminishing gas pool extent as well as dividing Shwe fan into multiple compartments.  相似文献   

3.
The West Crocker Formation (Oligocene–Early Miocene), NW Borneo, consists of a large (>20 000 km2) submarine fan deposited as part of an accretionary complex. A range of gravity-flow deposits are observed, the most significant of which are mud-poor, massive sandstones interpreted as turbidites and clast-rich, muddy sandstones and sandy mudstones interpreted as debrites. An upward transition from turbidite to debrite is commonly observed, with the contact being either gradational and planar, or sharp and highly erosive. Based on their repeated vertical relationship and the nature of the contact between them, these intervals are interpreted as being deposited from one flow event which consisted of two distinct flow phases: fully turbulent turbidity current and weakly turbulent to laminar debris flow. The associated bed is called a co-genetic turbiditedebrite, with the upper debrite interval termed a linked debrite. Linked debrites are best developed in the non-channellised parts of the fan system, and are absent to poorly-developed in the proximal channel-levee and distal basin floor environments. Due to outcrop limitations, the genesis of linked debrites within the West Crocker Formation is unclear. Based on clast size and type, it seems likely that a weakly turbulent to laminar debris-flow flow phase was present when the flow event entered the basin. A change in flow behaviour may have led to deposition of a sand-rich unit with ‘turbidite’ characteristics, which was subsequently overlain by a mud-rich unit with ‘debrite’ characteristics. Flow transformation may have been enhanced by the disintegration and incorporation into the flow of muddy clasts derived from the upstream channel floor, channel mouth or from channel-levee collapse. Lack of preservation of this debrite in proximal areas may indicate either bypass of this flow phase or that the available outcrops fail to capture the debris flow entry point. Establishing robust sedimentological criteria from a variety of datasets may lead to the increasing recognition of co-genetic turbidite-debrite beds, and an increased appreciation of the importance of bipartite flows in the transport and deposition of sediments in deepwater environments.  相似文献   

4.
The Laingsburg depocentre of the SW Karoo Basin, South Africa preserves a well-exposed 1200 m thick succession of upper Permian strata that record the early filling of a basin during an icehouse climate. Uniformly fine-grained sandstones were derived from far-field granitic sources, possibly in Patagonia, although the coeval staging and delivery systems are not preserved. Early condensed shallow marine deposits are overlain by distal basin plain siltstone-prone turbidites and volcanic ashes. An order of magnitude increase in siliciclastic input to the basin plain is represented by up to 270 m of siltstone with thin sandstone turbidites (Vischkuil Formation). The upper Vischkuil Formation comprises three depositional sequences, each bounded by a regionally developed zone of soft sediment deformation and associated 20-45 m thick debrite that represent the initiation of a major sand delivery system. The overlying 300 m thick sandy basin-floor fan system (Unit A) is divisible into three composite sequences arranged in a progradational-aggradational-retrogradational stacking pattern, followed by up to 40 m of basin-wide hemipelagic claystone. This claystone contains Interfan A/B, a distributive lobe system that lies 10 m beneath Unit B, a sandstone-dominated succession that averages 150 m thickness and is interpreted to represent a toe of slope channelized lobe system. Unit B and the A/B interfan together comprise 4 depositional sequences in a composite sequence with an overall basinward-stepping stacking pattern, overlain by 30 m of hemipelagic claystone. The overlying 400 m thick submarine slope succession (Fort Brown Formation) is characterized by 10-120 m thick sand-prone to heterolithic packages separated by 30-70 m thick claystone units. On the largest scale the slope stratigraphy is defined by two major cycles interpreted as composite sequence sets. The lower cycle comprises lithostratigraphic Units B/C, C and D while the upper cycle includes lithostratigraphic Units D/E, E and F. In each case a sandy basal composite sequence is represented by an intraslope lobe (Units B/C and D/E respectively). The second composite sequence in each cycle (Units C and E respectively) is characterized by slope channel-levee systems with distributive lobes 20-30 km down dip. The uppermost composite sequence in each cycle (Units D and F respectively) are characterised by deeply entrenched slope valley systems. Most composite sequences comprise three sequences separated by thin (<5 m thick) claystones. Architectural style is similar at individual sequence scale for comparable positions within each composite sequence set and each composite sequence. The main control on stratigraphic development is interpreted as late icehouse glacio-eustasy but along-strike changes associated with changing shelf edge delivery systems and variable bathymetry due to differential substrate compaction complicate the resultant stratigraphy.  相似文献   

5.
The Orange Basin records the development of the Late Jurassic to present day volcanic-rifted passive margin of Namibia. Regional extension is recorded by a Late Jurassic to Lower Cretaceous Syn-rift Megasequence, which is separated from a Cretaceous to present day post-rift Megasequence by the Late Hauterivian (ca. 130 Ma) break-up unconformity. The Late Cretaceous Post-rift evolution of the basin is characterized by episodic gravitational collapse of the margin. Gravitational collapse is recorded as a series of shale-detached gravity slide systems, consisting of an up-dip extensional domain that is linked to a down-dip zone of contraction domain along a thin basal detachment of Turonian age. The extensional domain is characterized by basinward-dipping listric faults that sole into the basal detachment. The contractional domain consists of landward-dipping listric faults and strongly asymmetric basinward-verging thrust-related folds. Growth stratal patterns suggest that the gravitational collapse of the margin was short-lived, spanning from the Coniacian (ca. 90 Ma) to the Santonian (ca. 83 Ma). Structural restorations of the main gravity-driven system show a lack of balance between up-dip extension (24 km) and down-dip shortening (16 km). Gravity sliding in the Namibian margin is interpreted to have occurred as a series of episodic short-lived gravity sliding between the Cenomanian (ca. 100 Ma) and the Campanian (ca. 80 Ma). Gravity sliding and spreading are interpreted to be the result of episodic cratonic uplift combined with differential thermal subsidence. Sliding may have also been favoured by the presence of an efficient detachment layer in Turonian source rocks.  相似文献   

6.
The Kaimiro Formation is an early to middle Eocene, NE-SW trending reservoir fairway in Taranaki Basin, and comprises a range of coastal plain through to shallow marine facies. A time of regional transgression is observed across the Paleocene–Eocene transition, which is linked to a general global warming trend and to regional thermal relaxation-related subsidence in New Zealand. The earliest Eocene transgressive deposits pass upwards into a series of cyclically stacked packages, interpreted as 3rd and 4th order sequences. Maximum regression occurred within the early Eocene and was followed by punctuated retrogradational stacking patterns associated with shoreline retreat and subsequent regional transgression in the middle Eocene.The Kaimiro Formation is considered a good reservoir target along most of the reservoir fairway, which can largely be attributed to a consistently quartz-rich, lithic-poor composition and reasonably coarse sand grain size. Correlations demonstrate that within the early Eocene the main reservoir facies are channel-fill sandstones overlying candidate sequence boundaries in paleoenvironmentally landward (proximal) settings, and upper shoreface/shoreline sandstones in relatively basinward (distal) settings. Middle Eocene reservoir facies are not represented in distal wells due to overall transgression at this time, yet they form a significant target in more proximal well locations, particularly on the Taranaki Peninsula.Depositional facies is one of the principal controls on sandstone reservoir quality. However, while reservoir facies have been proven along the length of the reservoir fairway, it is evident that diagenesis has significantly impacted sandstone quality. Relatively poor reservoir properties are predicted for deeply buried parts of the basin (maximum burial >4.5 km) due to severe compaction and relatively abundant authigenic quartz and illite. In contrast, good reservoir properties are locally represented in reservoir facies where present-day burial depths are <4 km due to less severe compaction, cementation and illitisation. Within these beds (<4 km) the presence of locally occurring authigenic grain-coating chlorite (shallow marine facies) and/or well-developed secondary porosity are both favourable to reservoir quality, while pervasive kaolinite and/or carbonate are both detrimental to reservoir quality.These results illustrate how an interdisciplinary approach to regional reservoir characterisation are used to help reduce risk during prospect evaluation. Assessment of both reservoir distribution and quality is necessary and can be undertaken through integrated studies of facies, sequence stratigraphy, burial modelling and petrography.  相似文献   

7.
8.
High-resolution Chirp profiling and coring reveals an elongated(ca. 400 km) Holocene Zhujiang River(Pearl River)-derived mud area(maximum thickness 20 m) extending from the Zhujiang River Delta, southwestward off the Guangdong coast, to the Leizhou Peninsula. Two depo-centers, one proximal and one distal, are identified. On the continental shelf off the west Guangdong Province, the mud is deposited in water depth shallower than 50 m; while to the southeast of the Zhujiang River Estuary, the mud area can extend to the-120 m isobath. A combined analysis with the stratigraphic sequences of other muddy deposits in the Western Pacific marginal seas(mainly Changjiang(Yangtze) and Huanghe(Yellow) Rivers derived) indicates that the initiation of the Zhujiang River muddy deposit can be further divided into two stages: Stage 1 is before the mid-Holocene sea-level highstand(ca. 7.0 cal. ka BP), the proximal mud was mostly deposited after 9.0 cal. ka BP, when the sea-level rose slowly after the Meltwater Pulse-1C; Stage 2, after the mid-Holocene sealevel highstand, clinoform developed on the continental shelf off the west Guangdong Province, extending ca. 400 km from the Zhujiang River Estuary. The proximal clinoform thins offshore, from ca. 10 m thickness around 5–10 m water depth to less than 1–2 m around 20–30 m water depth. In addition, we also find a developed distal clinoform in the east of the Leizhou Peninsula.  相似文献   

9.
Arsenic levels (up to 130 mg kg−1) substantially exceeding the official threshold have recently been documented in beach and nearshore sediments along more than 50 km of coastline in the Brazilian state of Espírito Santo between 19°50′ and 20°12′S. In an attempt to assess the sources of this enrichment, we performed a study on arsenic distribution in the main mineral substances and living organisms in the beach environment. Laboratory tests on arsenic retention by beach carbonate debris have also been carried out. The data suggest that sedimentary arsenic occurs largely bound to particles of the calcareous red alga Corallina panizzoi, whereby live specimens contained much smaller amounts of this metalloid than was the case for nonliving material (2.4 and 20.3 mg kg−1, respectively). Experimental tests confirmed the ability of C. panizzoi detritus to retain arsenic at pH intervals and ionic strength characteristic of seawater. There are two potential sources of that metalloid for calcareous debris in sediments: brown macroalgae, which were found to contain high levels of As (up to 66.3 mg kg−1), and ferruginized sandstones (up to 23.0 mg kg−1). We argue that any contribution of brown algae to beach sediment enrichment by As would be minor, and consider the ferrous sandstones from coastal sedimentary rocks of the Barreiras Group as the principal large-scale source of arsenic in the marine environment of Espírito Santo. The experimental data, together with field studies, corroborate the interpretation that arsenic anomalies in sediments with calcareous debris can form when weathered continental rocks even only slightly enriched in As are leached by marine waters, and the As is at least partially retained by biogenic calcareous detritus in nearshore sediments. Considering that rocks of the Barreiras Group are exposed to marine erosion far to the north of Espírito Santo, we estimate that marine sediments containing calcareous material are “anomalously” enriched in As along approximately 2,000 km of the Brazilian tropical coastline.  相似文献   

10.
The deposits of subaqueous sediment gravity flows can show evidence for abrupt and/or progressive changes in flow behaviour making them hard to ascribe to a single flow type (e.g. turbidity currents, debris flows). Those showing evidence for transformation from poorly cohesive and essentially turbulent flows to increasingly cohesive deposition with suppressed turbulence ‘at a point’ are particularly common. They are here grouped as hybrid sediment gravity flow deposits and are recognised as key components in the lateral and distal reaches of many deep-water fan and basin plain sheet systems. Hybrid event beds contain up to five internal divisions: argillaceous and commonly mud clast-bearing sandstones (linked debrite, H3) overlie either banded sandstones (transitional flow deposits, H2) and/or structureless sandstones (high-density turbidity currents, H1), recording longitudinal and/or lateral heterogeneity in flow structure and the development of turbulent, transitional and laminar flow behaviour in different parts of the same flow. Many hybrid event beds are capped by a relatively thin, well-structured and graded sand–mud couplet (trailing low-density turbulent cloud H4 and mud suspension fallout H5). Progressive bed aggradation results in the deposits of the different flow components stacked vertically in the final bed. Variable vertical bed character is related to the style of up-dip flow transformations, the distance over which the flows can evolve and partition into rheological distinct sections, the extent to which different flow components mutually interact, and the rate at which the flows decelerate, reflecting position (lateral versus distal) and gradient changes. Hybrid beds may inherit their structure from the original failure, with turbidity currents outpacing debris flows from which they formed via partial flow transformation. Alternatively, they may form where sand-bearing turbidity currents erode sufficient substrate to force transformation of a section of the current to form a linked debris flow. The incorporation of mud clasts, their segregation in near-bed layers and their disintegration to produce clays that can dampen turbulence are inferred to be key steps in the generation of many hybrid flow deposits. The occurrence of such beds may therefore identify the presence of non-equilibrium slopes up-dip that were steep enough to promote significant flow incision. Where hybrid event beds dominate the entire distal fan stratigraphy, this implies either the system was continually out of grade in order to freight the flows with mud clasts and clays, or the failure mechanism and transport path repeatedly allowed transmission of components of the initial slumps distally. Where hybrid beds are restricted to sections representing fan initiation, or occur more sporadically within the fan deposits, this could indicate shorter episodes of disequilibrium, due to an initial phase of slope re-adjustment, or intermittent tectonically or gravity-driven surface deformation or supply variations. Alternatively, changes between conventional and hybrid event beds may record changes in the flow generation mechanism through time. Thus the vertical distribution of hybrid event beds may be diagnostic of the wider evolution of the fan systems that host them.  相似文献   

11.
Seven categories of event bed (1–7) are recognised in cores from hydrocarbon fields in the outer part of the Palaeocene Forties Fan, a large mixed sand-mud, deep-water fan system in the UK and Norwegian Central North Sea. Bed Types 1, 6 and 7 resemble conventional high-density turbidite, debrite and low-density turbidite, respectively. However the cores are dominated by distinctive hybrid event beds (Types 2–5; 81% by thickness) that comprise an erosively-based graded and structureless and/or banded sandstone overlain by an argillaceous sandstone or sandy-mudstone unit containing mudstone-clasts and common carbonaceous fragments. Many of the hybrid beds are capped by a thin laminated sandstone–mudstone couplet (the deposit of a dilute wake behind the head of the turbidity current). Different types of hybrid event bed Types are defined on the basis of the ratio of sandier lower part to upper argillaceous part of the bed, and the internal structure, particularly the presence of banding. Although the argillaceous and clast-rich upper divisions could reflect post-depositional mixing, sand injection or substrate deformation, they can be shown to be dominantly primary depositional features and record both a temporal (and by implication) spatial change from turbidite to debrite deposition beneath rheologically complex hybrid flows. Where banding occurs between lower sandy and upper argillaceous divisions, the flow may have passed through a transitional flow regime. Significantly, the often soft-sediment sheared and partly sand-injected argillaceous divisions are present in cores both close to and remote from salt diapirs and hence are not a local product of remobilisation around salt-cored topography. Lateral correlations between wells establish that sandy hybrid beds (Types 2, 3S) pass down-dip and laterally into packages dominated by muddier hybrid beds (Types 3M, 4) over relatively short distances (several km). Type 5 beds have minimal or no lower sandier divisions, implying that the debritic component outran the sandier component of the flow. The Forties hybrid beds are thought to record flow transformations affecting fluidal flows following erosion and bulking with mudstone clasts and clays that suppressed near-bed turbulence and induced a change to plastic flow. Hybrid beds dominate the muddier parts of sandying-upward, muddying-upward and sandying to muddying-upward successions, interpreted to record splay growth and abandonment, overall fan progradation, and local non-uniformity effects that either delayed or promoted the onset of flow transformations. The dominance of hybrid event beds in the outer Forties Fan may reflect very rapid delivery of sand to the basin, an uneven substrate that promoted flow non-uniformity, tilting as a consequence of source area uplift and extensive inner-fan erosion to create deep fan valleys. This combination of factors could have promoted erosion and bulking, and hence transformations leading to the predominance of hybrid beds in the outer parts of the fan.  相似文献   

12.
13.
The Crati Fan is located in the tectonically active submerged extension of the Apennines chain and foretrough. The small fan system is growing in a relatively shallow (200 to 450 m), elongate nearshore basin receiving abundant input from the Crati River. The fan is characterized by a short, steep, channelized section (inner or upper fan) and a smooth, slightly bulging distal section (outer or lower fan). The numerous subparallel channels head in the shelf or littoral zone and do not form branching distributary patterns. Sand and mud depositional lobes of the outer fan stretch over more than 60% of fan length.  相似文献   

14.
Hans Nelson 《Marine Geology》1976,22(2):129-155
The asymmetrical Astoria Fan (110 × 180 km) developed off the Columbia River and Astoria submarine canyon during the Pleistocene. Morphology, stratigraphy, and lithology have been outlined for a Pleistocene turbidite, and a Holocene hemipelagic sedimentary regime to generate geologically significant criteria for comparison with ancient equivalent deposits. Both gray silty clay of the Late Pleistocene and olive-gray clay of the Early Holocene are interrupted by turbidites. The few deeply incised fan valleys of the more steeply sloping upper fan contain thick, muddy and very poorly sorted sand and gravel beds that usually have poorly developed internal sedimentary structures. The numerous shallower fan valleys and distributaries of the flatter middle and lower fan contain thick, clean, and moderately sorted medium to fine sands that are vertically graded in texture, composition and well-developed internal sedimentary structures. Tuffaceous turbidites (containing Mazama ash, 6600 B.P.) can be traced as thick deposits (ca. 30–40 cm) throughout the Astoria Channel system and as thin correlative interbeds (ca. 1–2 cm) in interchannel areas. Similarly, sand/shale ratios are high throughout the fan valleys and the middle and lower fan areas of distributaries, but are low in the upper-fan interchannel areas.These depositional trends indicate that high-density turbidity currents carry coarse traction loads that remain confined in upper but not lower fan valleys. Fine debris selectively sorts out from channelized flows into overbank suspension flows that spread over the fan and deposit clayey silt. A high content of mica, plant fragments, and glass shards (if present) characterizes deposits of the overbank flows, a major process in the building of upper fan levees and interchannel areas.In the Late Pleistocene, turbidity currents funneled most coarse-grained debris through upper channels to depositional sites in middle and lower fan distributaries that periodically shifted, anastomosed and braided to spread sand layers throughout the area. At this time, depositional rates were many times greater (>50 cm/1000 years) than in the Holocene (8 cm/1000 years).During the Holocene rise of sea level, the shoreline shifted, the Columbia River sediment was trapped, and turbidity-current activity slackened from one major event per 6 years in the Late Pleistocene, to one per 1000 years in the Early Holocene, to none since the Mt. Mazama eruption (ca. 6600 B.P.). Turbidites became muddier and deposited as thick beds within main channels, in part explaining Holocene deposition rates three times greater there (25 cm/1000 years) than in interchannel regions. Turbid-layer debris, funneled through channel systems and trapped from flows off the continental terrace, also contributed to rapid sedimentation in valleys; however, less than 2% of the suspended sediment load of the Columbia River has been trapped in fan valleys during the Holocene.By the Late Holocene, continuous particle-by-particle deposition of hemipelagic clay with a biogenous coarse fraction was the predominant process on the fan. These hemipelagites contain progressively more clay size and less terrigenous debris offshore, and are finer grained, richer in planktonic tests and dominated by radiolarians compared to the foraminiferal-rich Pleistocene clays. The hemipelagic sedimentation of interglacial times, however, is insignificant compared to turbidite deposition of glacial times.  相似文献   

15.
Hybrid beds, the deposits of sediment gravity flows that show evidence for more than one flow regime (turbulent, transitional and/or laminar), have been recognized as important components of submarine lobe deposits. A wide range of hybrid bed types have been documented, however, quantitative analysis of the stratigraphic and geographic distribution of these enigmatic bed types is rare. Here, extensive exposures integrated with research borehole data from Unit A of the Laingsburg Formation and Fan 4 of the Skoorsteenberg Formation, Ecca Group, South Africa, provide the opportunity to examine geographical and stratigraphic patterns over a range of hierarchical scales.For this purpose, >23,000 individual beds have been evaluated for deposit type and bed thickness. On average, hybrid beds make up < 5% of all events and <10% of the cumulative thickness. Lobe complex 1 (LC1) of Fan 4,Skoorsteenberg Formation, preserves a prominent geographical trend of hybrid beds becoming more prevalent towards the frontal fringes of a lobe complex (up to 33.2% of beds), whereas their proportion in proximal and medial lobe complex settings is <10%.Data from Unit A, Laingsburg Formation, show hybrid beds are less common in the basal (A.1) and top (A.6) subunits compared to A.2-A.5 in both core data sets. The bases and tops of some lobe complexes (A.2, A.3 and A.5.7) are observed to be slightly enriched in hybrid beds, whereas others (A.5.1, A.5.5 and A.6.1) show no hybrid beds in their bases, which does not conform to expected allogenically-driven distributions that predict more hybrid beds during the initiation of lobe complexes. Instead, the occurrence and distribution of hybrid beds in lobe complexes are interpreted to be controlled by autogenic processes, including flow transformation processes on the basin-floor meaning enrichment in frontal lobe fringe settings. Therefore, the 1D distribution of hybrid beds in lobe complexes reflects the dominant stacking pattern of lobes within a lobe complex, with enrichment at the base and top of lobe complexes due to overall progradational to retrogradational stacking patterns. Individual lobes show a wide range of hybrid bed distributions, due to stacking patterns of the component lobe elements. These findings highlight the importance of autogenic processes rather than allogenic controls in the distribution of hybrid beds, which has implications for reservoir evaluation and the assessment of lobe stacking patterns in 1D core data sets.  相似文献   

16.
Integrated tectono-stratigraphic interpretation at MC-118 using 3D seismic, well logs and biostratigraphy reveals an area dominated by allochthonous salt and its related structures. OCS-Block MC-118 is located 130 km southeast of New Orleans on the Gulf of Mexico middle slope in ∼2600 ft of water.The area is divided into three domains based on their structural styles: (1) a western domain consisting of a basinward-dipping normal fault family and associated strata; (2) a central domain composed of a landward-plunging diapiric salt tongue canopy and associated salt welds, two flanking NE–SW trending salt-withdrawal mini-basins, and a crestal fault family; and (3) an eastern domain comprised of basinward/landward-dipping normal and listric normal fault families with their associated rollovers. These structural domains are genetically-and-kinematically related to the salt structure and extend beyond MC-118 boundaries. The salt structure is postulated to have evolved mostly passive, with punctuated active episodes, and by lateral spreading. This is part of a larger regional structure, eastern Gulf of Mexico, which involves some amalgamation between small-scale salt canopies and salt diapirs although collectively they appear mostly disconnected.A Pliocene (3.13–4.95 Ma) third-order genetic stratigraphic sequence, the focus of this study, is as much as ∼3600 ft thick within the mini-basins and contains: muddy mass transport complexes; sandy slope fans; muddy turbidites and condensed sections; and transitional facies flanking the salt structure that collectively have ponded and wedged external geometries. Mass transport complexes and muddy turbidites and condensed sections make most of the studied genetic sequence in a mud-dominated deltaic setting eastern Gulf of Mexico.Facies kinematic indicators and a matching number of genetic sequences accounted on the sea level chart support a eustatically driven mini-basin sedimentation. Nonetheless salt still plays a role in sedimentation (secondary/minor) by slumping generated during passive/active salt diapiric evolution.  相似文献   

17.
The Crati Fan is located in the tectonically active submerged extension of the Apennines chain and foretrough. The small fan system is growing in a relatively shallow (200 to 450 m), elongate nearshore basin receiving abundant input from the Crati River. The fan is characterized by a short, steep, channelized section (inner or upper fan) and a smooth, slightly bulging distal section (outer or lower fan). The numerous subparallel channels head in the shelf or littoral zone and do not form branching distributary patterns. Sand and mud depositional lobes of the outer fan stretch over more than 60% of fan length. Margin setting represents fan and/or source area  相似文献   

18.
The Cengio sandstone member of the Tertiary Piedmont Basin in northwestern Italy has a conservatively estimated volume of 2.5 to 3 km3 (length: 6.4 km; width: 4.8 km; thickness: 170 m). It is interpreted as a sandstone-rich submarine fan deposit. The Cengio member consists of eight tabular depositional sandstone lobes that are 5- to 25-m thick. These lobes filled a submarine structural depression and onlap and/or pinch-out against bounding slope mudstones. The stacking of the lobe units was related to synsedimentary tectonism. Margin setting represents fan and/or source area  相似文献   

19.
The 0.5- to 2-km thick Quaternary Laurentian Fan is built over Tertiary and Mesozoic sediments that rest on oceanic crust. Two 400-km long fan valleys, with asymmetric levees up to 700-m high, lead to an equally long, sandy, lobate basin plain (northern Sohm Abyssal Plain). The muddy distal Sohm Abyssal Plain is a further 400-km long. The sediment supplied to the fan is glacial in origin, and in part results from seismically triggered slumping on the upper continental slope. Sandy turbidity currents, such as the 1929 Grand Banks earthquake event, probably erode the fan-valley floors; but thick muddy turbidity currents build up the high levees. Margin setting represents fan and/or source area  相似文献   

20.
Delta-front sand bodies with large remaining hydrocarbon reserves are widespread in the Upper Cretaceous Yaojia Formation in the Longxi area of the Western Slope, Songliao Basin, China. High-resolution sequence stratigraphy and sedimentology are performed based on core observations, well logs, and seismic profile interpretations. An evaluation of the reservoir quality of the Yaojia Formation is critical for further petroleum exploration and development. The Yaojia Formation is interpreted as a third-order sequence, comprising a transgressive systems tract (TST) and a regressive systems tract (RST), which spans 4.5 Myr during the Late Cretaceous. Within this third-order sequence, nine fourth-order sequences (FS9–FS1) are recognized. The average duration of a fourth-order sequence is approximately 0.5 Myr. The TST (FS9–FS5) mostly comprises subaqueous distributary channel fills, mouth bars, and distal bars, which pass upward into shallow-lake facies of the TST top (FS5). The RST (FS4–FS1) mainly contains subaqueous distributary-channel and interdistributary-bay deposits. Based on thin-sections, X-ray diffraction (XRD), scanning electron microscope (SEM) and high-pressure mercury-intrusion (HPMI) analyses, a petrographic study is conducted to explore the impact of the sedimentary cyclicity and facies changes on reservoir quality. The Yaojia sandstones are mainly composed of lithic arkoses and feldspathic litharenites. The sandstone cements mostly include calcite, illite, chlorite, and secondary quartz, occurring as grain coating or filling pores. The Yaojia sandstones have average core plug porosity of 18.55% and permeability of 100.77 × 10−3 μm2, which results from abundant intergranular pores and dissolved pores with good connectivity. Due to the relatively coarser sediments and abundant dissolved pores in the feldspars, the FS4–FS1 sandstones have better reservoir quality than the FS9–FS5 sandstones, developing relatively higher porosity and permeability, especially the FS1 and FS2 sandstones. The source–reservoir–cap-rock assemblages were formed with the adjoining semi-deep lake mudstones that were developed in the Nenjiang and Qingshankou Formations. This study reveals the deposition and distribution of the delta-front sand bodies of the Yaojia Formation within a sequence stratigraphic framework as well as the factors controlling the Yaojia sandstones reservoir quality. The research is of great significance for the further exploration of the Yaojia Formation in the Longxi area, as well as in other similar lacustrine contexts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号