首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study is the first attempt which provides information regarding the bulk and quantitative pyrolysis results of the Chia Gara Formation from the Kurdistan region, northern Iraq. Ten representative early-mature to mature samples from the Chia Gara Formation were investigated for TOC contents, Rock Eval pyrolysis, pyrolysis-GC and bulk kinetic parameters. These analyses were used to characterize the petroleum generated during thermal maturation of the Chia Gara source rock and to clarify the quantity of the organic matter and its effect on the timing of petroleum generation.Pyrolysis HI data identified two organic facies with different petroleum generation characteristics; Type II–III kerogen with HI values of >250 mg HC/g TOC, and Type III kerogen with HI values < 100 mg HC/g TOC. These types of kerogen can generate liquid HCs and gas. This is supported by the products of pyrolysis–gas chromatography (Py–GC) analysis of the extracted rock samples. Pyrolysis products show a dominance of a marine organic matter with variable contributions from terrestrial organic matter (Types II–III and III kerogen), and produces mainly paraffinic-naphthenic-aromatic low wax oils with condensate and gas.Bulk kinetic analysis of the Chia Gara source rock indicates a heterogeneous organic matter assemblage, typical of restricted marine environments in general. The activation energy distributions reveal relatively broad and high values, ranging from 40 to 64 kcal/mol with pre-exponential factors varying from 2.2835 E+12/sec to 4.0920 E+13/sec. The predicted petroleum formation temperature of onset (TR 10%) temperatures ranges from 110 to 135 °C, and peak generation temperatures (geological Tmax) between 137 °C and 152 °C. The peak generation temperatures reach a transformation ratio in the range of 42–50% TR, thus the Chia Gara source rock could have generated and expelled significant quantities of petroleum hydrocarbons in the Kurdistan of Iraq.  相似文献   

2.
Structured organic matters of the Palynomorphs of mainly dinoflagellate cysts are used in this study for dating the limestone, black shale, and marl of the Middle Jurassic (Bajocian–Bathonian) Sargelu Formation, Upper Jurassic (Upper Callovian – Lower Oxfordian) Naokelekan Formation, Upper Jurassic (Kimeridgian and Oxfordian) Gotnia and Barsarine Formations, and Upper Jurassic – Lower Cretaceous (Tithonian-Beriassian) Chia Gara source rock Formations while spore species of Cyathidites australis and Glechenidites senonicus are used for maturation assessments of this succession. Materials' used for this palynological study are 320 core and cutting samples of twelve oil wells and three outcrops in North Iraq.Terpane and sterane biomarker distributions, as well as stable isotope values, were determined for oils potential source rock extracts of Jurassic-Lower Cretaceous strata to determine valid oil-to-source rock correlations in North Iraq. Two subfamily carbonate oil types-one of Middle Jurassic age (Sargelu) carbonate rock and the other of mixed Upper Jurassic/Cretaceous age (Chia Gara) with Sargelu sources as well as a different oil family related to Triassic marls, were identified based on multivariate statistical analysis (HCA & PCA). Middle Jurassic subfamily A oils from Demir Dagh oil field correlate well with rich, marginally mature, Sargelu source rocks in well Mk-2 near the city of Baiji. In contrast, subfamily B oils have a greater proportion of C28/C29 steranes, indicating they were generated from Upper Jurassic/Lower Cretaceous carbonates such as those at Gillabat oil field north of Mansuriyah Lake. Oils from Gillabat field thus indicate a lower degree of correlation with the Sargelu source rocks than do oils from Demir Dagh field.Palynofacies assessments are performed for this studied succession by ternary kerogen plots of the phytoclast, amorphous organic matters, and palynomorphs. From the diagram of these plots and maturation analysis, it could be assessed that the formations of Chia Gara and Sargelu are both deposited in distal suboxic to anoxic basin and can be correlated with kerogens classified microscopically as Type A and Type B and chemically as Type II. The organic matter, comprised principally of brazinophyte algae, dinoflagellate cysts, spores, pollen, foraminifera test linings, and phytoclasts in all these formations and hence affected with upwelling current. These deposit contain up to 18 wt% total organic matters that are capable to generate hydrocarbons within mature stage of thermal alteration index (TAI) range in Stalplin's scale (Staplin, 1969) of 2.7–3.0 for the Chia Gara Formation and 2.9–3.1 for the Sargelu Formation. Case study examples of these oil prone strata are; one 7-m (23-ft) thick section of the Sargelu Formation averages 44.2 mg HC/g S2 and 439 °C Tmax (Rock-Eval pyrolysis analyses) and 16 wt% TOC especially in well Mk-2 whereas, one 8-m (26-ft) thick section of the Chia Gara and 1-m (3-ft) section of Naokelekan Formations average 44.5 mg HC/g S2 and 440 °C Tmax and 14 wt% TOC especially in well Aj-8. One-dimension, petroleum system models of key wells using IES PetroMod Software can confirm their oil generation capability.These hydrocarbon type accumulation sites are illustrated in structural cross sections and maps in North Iraq.  相似文献   

3.
Cretaceous sedimentary rocks of the Mukalla, Harshiyat and Qishn formations from three wells in the Jiza sub-basin were studied to describe source rock characteristics, providing information on organic matter type, paleoenvironment of deposition and hydrocarbon generation potential. This study is based on organic geochemical and petrographic analyses performed on cuttings samples. The results were then incorporated into basin models in order to understand the burial and thermal histories and timing of hydrocarbon generation and expulsion.The bulk geochemical results show that the Cretaceous rocks are highly variable with respect to their genetic petroleum generation potential. The total organic carbon (TOC) contents and petroleum potential yield (S1 + S2) of the Cretaceous source rocks range from 0.43 to 6.11% and 0.58–31.14 mg HC/g rock, respectively indicating non-source to very good source rock potential. Hydrogen index values for the Early to Late Cretaceous Harshiyat and Qishn formations vary between 77 and 695 mg HC/g TOC, consistent with Type I/II, II-III and III kerogens, indicating oil and gas generation potential. In contrast, the Late Cretaceous Mukalla Formation is dominated by Type III kerogen (HI < 200 mg HC/g TOC), and is thus considered to be gas-prone. The analysed Cretaceous source rock samples have vitrinite reflectance values in the range of 0.37–0.95 Ro% (immature to peak-maturity for oil generation).A variety of biomarkers including n-alkanes, regular isoprenoids, terpanes and steranes suggest that the Cretaceous source rocks were deposited in marine to deltaic environments. The biomarkers also indicate that the Cretaceous source rocks contain a mixture of aquatic organic matter (planktonic/bacterial) and terrigenous organic matter, with increasing terrigenous influence in the Late Cretaceous (Mukalla Formation).The burial and thermal history models indicate that the Mukalla and Harshiyat formations are immature to early mature. The models also indicate that the onset of oil-generation in the Qishn source rock began during the Late Cretaceous at 83 Ma and peak-oil generation was reached during the Late Cretaceous to Miocene (65–21 Ma). The modeled hydrocarbon expulsion evolution suggests that the timing of oil expulsion from the Qishn source rock began during the Miocene (>21 Ma) and persisted to present-day. Therefore, the Qishn Formation can act as an effective oil-source but only limited quantities of oil can be expected to have been generated and expelled in the Jiza sub-basin.  相似文献   

4.
An evaluation of the petroleum generating potential of onshore Eocene-Miocene sequences of Western Sabah, Malaysia was performed based on organic petrological and geochemical methods. The sequences analysed are the Belait, Meligan, Temburong and West Crocker formations of western Sabah. The Belait Formation which is Stage IV equivalent in the offshore represents one of the major source rock/reservoirs of the petroleum-bearing Sabah Basin. The Eocene-Early Miocene West Crocker and Temburong formations are deepwater turbidites whilst the Miocene Meligan and Belait formations are shallow marine fluvio-deltaic deposits. The vitrinite reflectance and pyrolysis Tmax values show that the Belait samples are generally immature for hydrocarbon generation, whereas the Meligan, Temburong and West Crocker samples are in the mature to late maturity stage of hydrocarbon generation. The overall bulk source rock properties of the Belait and Meligan show fair to good petroleum source rock potential with TOC more than 1 wt %, hydrocarbon yield in the range of 400–1300 ppm and moderately high HI for many of the samples. Most of the samples representing the Temburong and West Crocker formations have TOC less than 1 wt% and have no to fair hydrocarbon generating potential. Interestingly, the samples collected in the West Crocker Formation characterized by slump deposits (MTD) have TOC>2 and possess good to excellent hydrocarbon generating potential. The organic matter present in all of the studied formations is mainly of terrigenous origin based on the abundance of woody plant materials observed under the microscope. Consequently, the analysed sequences are predominantly gas prone, dominated by Type III and Type III-IV kerogen except for minor occurrence of mixed oil-gas prone Type II-III kerogen in the Belait Formation and in the slump mass transport deposits (MTD) of the West Crocker Formation.  相似文献   

5.
Uppermost Jurassic and Lower Cretaceous strata of the Silesian Nappe of the Outer Western Carpathians contain large amounts of shale, which can, under favourable conditions, become source rocks for hydrocarbons. This study analysed 45 samples from the area of Czech Republic by the means of palynofacies analysis, thermal alteration index (TAI) of palynomorphs and total organic carbon (TOC) content to determine the kerogen type, hydrocarbon source rock potential, and to interpret the depositional environment. Uppermost Jurassic Vendryně Formation and Lower Cretaceous Formations (Těšín Limestone, Hradiště and Lhoty) reveal variable amount of mostly gas prone type III kerogen. Aptian Veřovice Formation has higher organic matter content (over 3 wt.%) and oil-prone type II kerogen. Organic matter is mature to overmature and hydrocarbon potential predisposes it as a source of gas. Aptian black claystones of the Veřovice Fm. are correlatable with oceanic anoxic event 1 (OAE1).  相似文献   

6.
The Upper Jurassic marlstones (Mikulov Fm.) and marly limestones (Falkenstein Fm.) are the main source rocks for conventional hydrocarbons in the Vienna Basin in Austria. In addition, the Mikulov Formation has been considered a potential shale gas play. In this paper, organic geochemical, petrographical and mineralogical data from both formations in borehole Staatz 1 are used to determine the source potential and its vertical variability. Additional samples from other boreholes are used to evaluate lateral trends. Deltaic sediments (Lower Quarzarenite Member) and prodelta shales (Lower Shale Member) of the Middle Jurassic Gresten Formation have been discussed as secondary sources for hydrocarbons in the Vienna Basin area and are therefore included in the present study.The Falkenstein and Mikulov formations in Staatz 1 contain up to 2.5 wt%TOC. The organic matter is dominated by algal material. Nevertheless, HI values are relative low (<400 mgHC/gTOC), a result of organic matter degradation in a dysoxic environment. Both formations hold a fair to good petroleum potential. Because of its great thickness (∼1500 m), the source potential index of the Upper Jurrasic interval is high (7.5 tHC/m2). Within the oil window, the Falkenstein and Mikulov formations will produce paraffinic-naphtenic-aromatic low wax oil with low sulfur content. Whereas vertical variations are minor, limited data from the deep overmature samples suggest that original TOC contents may have increased basinwards. Based on TOC contents (typically <2.0 wt%) and the very deep position of the maturity cut-off values for shale oil/gas production (∼4000 and 5000 m, respectively), the potential for economic recovery of unconventional petroleum is limited. The Lower Quarzarenite Member of the Middle Jurassic Gresten Formation hosts a moderate oil potential, while the Lower Shale Member is are poor source rock.  相似文献   

7.
As a result of a long-lasting and complex geological history, organic-matter-rich fine-grained rocks (black shales) with widely varying ages can be found on Ukrainian territory. Several of them are proven hydrocarbon source rocks and may hold a significant shale gas potential.Thick Silurian black shales accumulated along the western margin of the East European Craton in a foreland-type basin. By analogy with coeval organic-matter-rich rocks in Poland, high TOC contents and gas window maturity can be expected. However, to date information on organic richness is largely missing and maturity patterns remain to be refined.Visean black shales with TOC contents as high as 8% and a Type III-II kerogen accumulated along the axis of the Dniepr-Donets rift basin (DDB). They are the likely source for conventional oil and gas. Oil-prone Serpukhovian black shales accumulated in the shallow northwestern part of the DDB. Similar black shales probably may be present in the Lviv-Volyn Basin (western Ukraine).Middle Jurassic black shales up to 500 m thick occur beneath the Carpathian Foredeep. They are the likely source for some heavy oil deposits. TOC contents up to 12% (Type II) have been recorded, but additional investigations are needed to study the vertical and lateral variability of organic matter richness and maturity.Lower Cretaceous black shales with a Type III(-II) kerogen (TOC > 2%) are widespread at the base of the Carpathian flysch nappes, but Oligocene black shales (Menilite Fm.) rich in organic matter (4–8% TOC) and containing a Type II kerogen are the main source rock for oil in the Carpathians. Their thermal maturity increases from the external to the internal nappes.Oligocene black shales are also present in Crimea (Maykop Fm.). These rocks typically contain high TOC contents, but data from Ukraine are missing.  相似文献   

8.
Source rock potential of 108 representative samples from 3 m intervals over a 324 m thick shale section of middle Eocene age from the north Cambay Basin, India have been studied. Variation in total organic carbon (TOC) and its relationship with loss on ignition (LOI) have been used for initial screening. Screened samples were subjected to Rock-Eval pyrolysis and organic petrography. A TOC log indicated wide variation with streaks of elevated TOC. A 30 m thick organic-rich interval starting at 1954 m depth, displayed properties consistent with a possible shale oil or gas reservoir. TOC (wt%) values of the selected samples were found to vary from 0.68% to 3.62%, with an average value of 2.2. The modified van Krevelen diagram as well as HI vs. Tmax plot indicate prevalence of Type II to Type III kerogen. Tmax measurements ranged from 425 °C to 439 °C, indicating immature to early mature stage, which was confirmed by the mean vitrinite reflectance values (%Ro of 0.63, 0.65 and 0.67 at 1988 m, 1954 m, and 1963 m, respectively). Quantification of hydrocarbon generation, migration and retention characteristics of the 30 m source rock interval suggests 85% expulsion of hydrocarbon. Oil in place (OIP) resource of the 30 m source rock was estimated to be 3.23 MMbbls per 640 acres. The Oil saturation index (OSI) crossover log showed, from a geochemical perspective, moderate risk for producing the estimated reserve along with well location for tapping the identified resource.  相似文献   

9.
The Shoushan Basin is an important hydrocarbon province in the Western Desert, Egypt, but the origin of the hydrocarbons is not fully understood. In this study, organic matter content, type and maturity of the Jurassic source rocks exposed in the Shoushan Basin have been evaluated and integrated with the results of basin modeling to improve our understanding of burial history and timing of hydrocarbon generation. The Jurassic source rock succession comprises the Ras Qattara and Khatatba Formations, which are composed mainly of shales and sandstones with coal seams. The TOC contents are high and reached a maximum up to 50%. The TOC values of the Ras Qattara Formation range from 2 to 54 wt.%, while Khatatba Formation has TOC values in the range 1-47 wt.%. The Ras Qattara and Khatatba Formations have HI values ranging from 90 to 261 mgHC/gTOC, suggesting Types II-III and III kerogen. Vitrinite reflectance values range between 0.79 and 1.12 VRr %. Rock−Eval Tmax values in the range 438-458 °C indicate a thermal maturity level sufficient for hydrocarbon generation. Thermal and burial history models indicate that the Jurassic source rocks entered the mature to late mature stage for hydrocarbon generation in the Late Cretaceous to Tertiary. Hydrocarbon generation began in the Late Cretaceous and maximum rates of oil with significant gas have been generated during the early Tertiary (Paleogene). The peak gas generation occurred during the late Tertiary (Neogene).  相似文献   

10.
The Upper Cretaceous Mukalla coals and other organic-rich sediments which are widely exposed in the Jiza-Qamar Basin and believed to be a major source rocks, were analysed using organic geochemistry and petrology. The total organic carbon (TOC) contents of the Mukalla source rocks range from 0.72 to 79.90% with an average TOC value of 21.50%. The coals and coaly shale sediments are relatively higher in organic richness, consistent with source rocks generative potential. The samples analysed have vitrinite reflectance in the range of 0.84–1.10 %Ro and pyrolysis Tmax in the range of 432–454 °C indicate that the Mukalla source rocks contain mature to late mature organic matter. Good oil-generating potential is anticipated from the coals and coaly shale sediments with high hydrogen indices (250–449 mg HC/g TOC). This is supported by their significant amounts of oil-liptinite macerals are present in these coals and coaly shale sediments and Py-GC (S2) pyrograms with n-alkane/alkene doublets extending beyond nC30. The shales are dominated by Type III kerogen (HI < 200 mg HC/g TOC), and are thus considered to be gas-prone.One-dimensional basin modelling was performed to analysis the hydrocarbon generation and expulsion history of the Mukalla source rocks in the Jiza-Qamar Basin based on the reconstruction of the burial/thermal maturity histories in order to improve our understanding of the of hydrocarbon generation potential of the Mukalla source rocks. Calibration of the model with measured vitrinite reflectance (Ro) and borehole temperature data indicates that the present-day heat flow in the Jiza-Qamar Basin varies from 45.0 mW/m2 to 70.0 mW/m2 and the paleo-heat flow increased from 80 Ma to 25 Ma, reached a peak heat-flow values of approximately 70.0 mW/m2 at 25 Ma and then decreased exponentially from 25 Ma to present-day. The peak paleo-heat flow is explained by the Gulf of Aden and Red Sea Tertiary rifting during Oligocene-Middle Miocene, which has a considerable influence on the thermal maturity of the Mukalla source rocks. The source rocks of the Mukalla Formation are presently in a stage of oil and condensate generation with maturity from 0.50% to 1.10% Ro. Oil generation (0.5% Ro) in the Mukalla source rocks began from about 61 Ma to 54 Ma and the peak hydrocarbon generation (1.0% Ro) occurred approximately from 25 Ma to 20 Ma. The modelled hydrocarbon expulsion evolution suggested that the timing of hydrocarbon expulsion from the Mukalla source rocks began from 15 Ma to present-day.  相似文献   

11.
Although extensive studies have been conducted on unconventional mudstone (shales) reservoirs in recent years, little work has been performed on unconventional tight organic matter-rich, fine-grained carbonate reservoirs. The Shulu Sag is located in the southwestern corner of the Jizhong Depression in the Bohai Bay Basin and filled with 400–1000 m of Eocene lacustrine organic matter-rich carbonates. The study of the organic matter-rich calcilutite in the Shulu Sag will provide a good opportunity to improve our knowledge of unconventional tight oil in North China. The dominant minerals of calcilutite rocks in the Shulu Sag are carbonates (including calcite and dolomite), with an average of 61.5 wt.%. The carbonate particles are predominantly in the clay to silt size range. Three lithofacies were identified: laminated calcilutite, massive calcilutite, and calcisiltite–calcilutite. The calcilutite rocks (including all the three lithofacies) in the third unit of the Shahejie Formation in the Eocene (Es3) have total organic carbon (TOC) values ranging from 0.12 to 7.97 wt.%, with an average of 1.66 wt.%. Most of the analyzed samples have good, very good or excellent hydrocarbon potential. The organic matter in the Shulu samples is predominantly of Type I to Type II kerogen, with minor amounts of Type III kerogen. The temperature of maximum yield of pyrolysate (Tmax) values range from 424 to 452 °C (with an average of 444 °C) indicating most of samples are thermally mature with respect to oil generation. The calcilutite samples have the free hydrocarbons (S1) values from 0.03 to 2.32 mg HC/g rock, with an average of 0.5 mg HC/g rock, the hydrocarbons cracked from kerogen (S2) yield values in the range of 0.08–57.08 mg HC/g rock, with an average of 9.06 mg HC/g rock, and hydrogen index (HI) values in the range of 55–749 mg HC/g TOC, with an average of 464 mg HC/g TOC. The organic-rich calcilutite of the Shulu Sag has very good source rock generative potential and have obtained thermal maturity levels equivalent to the oil window. The pores in the Shulu calcilutite are of various types and sizes and were divided into three types: (1) pores within organic matter, (2) interparticle pores between detrital or authigenic particles, and (3) intraparticle pores within detrital grains or crystals. Fractures in the Shulu calcilutite are parallel to bedding, high angle, and vertical, having a significant effect on hydrocarbon migration and production. The organic matter and dolomite contents are the main factors that control calcilutite reservoir quality in the Shulu Sag.  相似文献   

12.
Thirty-six Silurian core and cuttings samples and 10 crude oil samples from Ordovician reservoirs in the NC115 Concession, Murzuq Basin, southwest Libya were studied by organic geochemical methods to determine source rock organic facies, conditions of deposition, thermal maturity and genetic relationships. The Lower Silurian Hot Shale at the base of the Tanezzuft Formation is a high-quality oil/gas-prone source rock that is currently within the early oil maturity window. The overall average TOC content of the Hot Shale is 7.2 wt% with a maximum recorded value of 20.9 wt%. By contrast, the overlying deposits of the Tanezzuft Formation have an average TOC of 0.6 wt% and a maximum value of 1.1 wt%. The organic matter in the Hot Shale consists predominantly of mixed algal and terrigenous Type-II/III kerogen, whereas the rest of the formation is dominated by terrigenous Type-III organic matter with some Type II/III kerogen. Oils from the A-, B- and H-oil fields in the NC115 Concession were almost certainly derived from marine shale source rocks that contained mixed algal and terrigenous organic input reflecting deposition under suboxic to anoxic conditions. The oils are light and sweet, and despite being similar, were almost certainly derived from different facies and maturation levels within mature source rocks. The B-oils were generated from slightly less mature source rocks than the others. Based on hierarchical cluster analysis (HCA), principal component analysis (PCA), selected source-related biomarkers and stable carbon isotope ratios, the NC115 oils can be divided into two genetic families: Family-I oils from Ordovician Mamuniyat reservoirs were probably derived from older Palaeozoic source rocks, whereas Family-II oils from Ordovician Mamuniyat–Hawaz reservoirs were probably charged from a younger Palaeozoic source of relatively high maturity. A third family appears to be a mixture of the two, but is most similar to Family-II oils. These oil families were derived from one proven mature source rock, the Early Silurian, Rhuddanian Hot Shale. There is a good correlation between the Family-II and -III oils and the Hot Shale based on carbon isotope compositions. Saturated and aromatic maturity parameters indicate that these oils were generated from a source rock of considerably higher maturity than the examined rock samples. The results imply that the oils originated from more mature source rocks outside the NC115 Concession and migrated to their current positions after generation.  相似文献   

13.
Barremian–Aptian organic-rich shales from Abu Gabra Formation in the Muglad Basin were analysed using geochemical and petrographic analyses. These analyses were used to define the origin, type of organic matters and the influencing factors of diagenesis, including organic matter input and preservation, and their relation to paleoenvironmental and paleoclimate conditions. The bulk geochemical characteristics indicated that the organic-rich shales were deposited in a lacustrine environment with seawater influence under suboxic conditions. Their pyrolysis hydrogen index (HI) data provide evidence for a major contribution by Type I/II kerogen with HI values of >400 mg HC/g TOC and a minor Type II/III contribution with HI values <400 mg HC/g TOC. This is confirmed by kerogen microscopy, whereby the kerogen is characterized by large amounts of structured algae (Botryococcus) and structureless (amorphous) with a minor terrigenous organic matter input. An enhanced biological productivity within the photic zone of the water columns is also detected. The increased biological productivity in the organic-rich shales may be related to enhanced semi-arid/humid to humid-warm climate conditions. Therefore, a high bio-productivity in combination with good organic matter preservation favoured by enhanced algae sizes are suggested as the OM enrichment mechanisms within the studied basin.  相似文献   

14.
The Western Desert of Egypt is one of the world’s most prolific Jurassic and Cretaceous hydrocarbon provinces. It is one of many basins that experienced organic-rich sedimentation during the late Cenomanian/early Turonian referred to as oceanic anoxic event 2 (OAE2). The Razzak #7 oil well in the Razzak Field in the northern part of the Western Desert encountered the Upper Cretaceous Abu Roash Formation. This study analyzed 23 samples from the upper “G”, “F”, and lower “E” members of the Abu Roash Formation for palynomorphs, particulate organic matter, total organic carbon (TOC) and δ13Corg in order to identify the OAE2, determine hydrocarbon source rock potential, and interpret the depositional environment. The studied samples are generally poor in palynomorphs, but show a marked biofacies change between the lower “E” member and the rest of the studied samples. Palynofacies analysis (kerogen quality and quantity) indicates the presence of oil- and gas-prone materials (kerogen types I and II/III, respectively), and implies reducing marine paleoenvironmental conditions. Detailed carbon stable isotopic and organic carbon analyses indicate that fluctuations in the δ13Corg profile across the Abu Roash upper “G”, “F”, and lower “E” members correspond well with changes in TOC values. A positive δ13Corg excursion (∼2.01‰) believed to mark the short-term global OAE2 was identified within the organic-rich shaly limestone in the basal part of the Abu Roash “F” member. This excursion also coincides with the peak TOC measurement (24.61 wt.%) in the samples.  相似文献   

15.
Two petroleum source rock intervals of the Lower Cretaceous Abu Gabra Formation at six locations within the Fula Sub-basin, Muglad Basin, Sudan, were selected for comprehensive modelling of burial history, petroleum maturation and expulsion of the generated hydrocarbons throughout the Fula Sub-basin. Locations (of wells) selected include three in the deepest parts of the area (Keyi oilfield); and three at relatively shallow locations (Moga oilfield). The chosen wells were drilled to depths that penetrated a significant part of the geological section of interest, where samples were available for geochemical and source rock analysis. Vitrinite reflectances (Ro %) were measured to aid in calibrating the developed maturation models.The Abu Gabra Formation of the Muglad Basin is stratigraphically subdivided into three units (Abu Gabra-lower, Abu Gabra-middle and Abu Gabra-upper, from the oldest to youngest). The lower and upper Abu Gabra are believed to be the major source rocks in the province and generally contain more than 2.0 wt% TOC; thus indicating a very good to excellent hydrocarbon generative potential. They mainly contain Type I kerogen. Vitrinite reflectance values range from 0.59 to 0.76% Ro, indicating the oil window has just been reached. In general, the thermal maturity of the Abu Gabra source rocks is highest in the Abu Gabra-lower (deep western part) of the Keyi area and decreases to the east toward the Moga oilfied at the Fula Sub-basin.Maturity and hydrocarbon generation modelling indicates that, in the Abu Gabra-Lower, early oil generation began from the Middle- Late Cretaceous to late Paleocene time (82.0–58Ma). Main oil generation started about 58 Ma ago and continues until the present day. In the Abu Gabra-upper, oil generation began from the end of the Cretaceous to early Eocene time (66.0–52Ma). Only in one location (Keyi-N1 well) did the Abu Gabra-upper reach the main oil stage. Oil expulsion has occurred only from the Abu Gabra-lower unit at Keyi-N1 during the early Miocene (>50% transformation ratio TR) continuing to present-day (20.0–0.0 Ma). Neither unit has generated gas. Oil generation and expulsion from the Abu Gabra source rocks occurred after the deposition of seal rocks of the Aradeiba Formation.  相似文献   

16.
The quality of source rocks plays an important role in the distribution of tight and conventional oil and gas resources. Despite voluminous studies on source rock hydrocarbon generation, expulsion and overpressure, a quality grading system based on hydrocarbon expulsion capacity is yet to be explored. Such a grading system is expected to be instrumental for tight oil and gas exploration and sweet spot prediction. This study tackles the problem by examining Late Cretaceous, lacustrine source rocks of the Qingshankou 1 Member in the southern Songliao Basin, China. By evaluating generated and residual hydrocarbon amounts of the source rock, the extent of hydrocarbon expulsion is modelled through a mass balance method. The overpressure is estimated using Petromod software. Through correlation between the hydrocarbon expulsion and source rock evaluation parameters [total organic carbon (TOC), kerogen type, vitrinite reflectance (Ro) and overpressure], three classes of high-quality, effective and ineffective source rocks are established. High-quality class contains TOC >2%, type-I kerogen, Ro >1.0%, overpressure >7Mpa, sharp increase of hydrocarbon expulsion along with increasing TOC and overpressure, and high expulsion value at Ro >1%. Source rocks with TOC and Ro <0.8%, type-II2 & III kerogen, overpressure <3Mpa, and low hydrocarbon expulsion volume are considered ineffective. Rocks with parameters between the two are considered effective. The high-quality class shows a strong empirical control on the distribution of tight oil in the Songliao Basin. This is followed by the effective source rock class. The ineffective class has no measurable contribution to the tight oil reserves. Because the hydrocarbon expulsion efficiency of source rocks is controlled by many factors, the lower limits of the evaluation parameters in different basins may vary. However, the classification method of tight source rocks proposed in this paper should be widely applicable.  相似文献   

17.
丽水—椒江凹陷是东海陆架盆地油气勘探的一个重要领域,目前处于较低的油气勘探阶段。基于现有地质资料,在烃源岩发育特征及有机质丰度、类型和成熟度分析的基础上,采用含油气盆地数值模拟技术,定量恢复了研究区月桂峰组烃源岩的生排烃史。结果表明,月桂峰组烃源岩有机质丰度高,有机质类型以Ⅱ1型和Ⅱ2型为主,具有油气兼生的能力,总体上处于成熟阶段和高成熟阶段;月桂峰组烃源岩具有较高的生排烃强度,总体上经历了2次生排烃过程,但在不同构造单元存在明显的差异性。总之,以月桂峰组烃源岩为油气来源的含油气系统是该区油气勘探的主要目标。  相似文献   

18.
Source rock studies are one of the key issues of petroleum exploration activities. In the supercontinent of Gondwana, ice ages related to the Upper Ordovician (Hirnantian) and rising sea levels caused by glacial melting at the end of the Ordovician and Early Silurian (Llandoverian) created excellent source rocks along the margin of Gondwana. Investigations conducted in the Arabian Peninsula have been indicated indicating that the lower Qalibah Formation (the so-called Qusaiba Member or Hot Shale) is a good source rock for the Paleozoic petroleum system in this area. Likewise, the Sarchahan Formation was recently introduced as a source rock in the Zagros Basin of Iran, which is probably equivalent to the Qalibah Formation in the Arabian Peninsula. In this study, samples were prepared from surface and subsurface Paleozoic rock units in Iran's Zagros Basin. The emphasis of the paper was on the Sarchahan Formation in Kuh-e Faraghan, ranging in age from the Late Ordovician (Hirnantian) to Lower Silurian (Llandoverian) to determine whether the high richness of organic matter in the Sarchahan Formation is related to the Late Ordovician or Lower Silurian. The basal part of the Sarchahan Formation belongs to the Late Ordovician (Hirnantian) because of the presence of the persculptus graptolite biozone, while the remainder belongs to the Lower Silurian. The Ordovician and early Llandoverian parts of the Sarchahan Formation contain type II and III kerogen with TOC ranging from 2.94 to 7.19, but the rest of the Sarchahan Formation (late Llandoverian) has TOC ranging from 0.1 to 0.58. Therefore, the Hot Shale in Iran falls within the Hirnantian and early Llandoverian (Rhuddanian), and not the latest Llandoverian (Aeronian and Telychian). Utilizing organic petrography, kerogen type was found II/III. The carbon stable isotope studies revealed that the source rock of hydrocarbons in Dalan and Kangan reservoirs has been the Sarchahan Formation. Based on analytical data, the kerogenous shales in the lower part of the Sarchahan Formation are at end of gas window, and the gamma ray amount is approximately 180 API. This research indicates the differences between the source rocks in the southern and northern Persian Gulf and suggesting, the Hot Shale should be considered in different views and used in modeling studies of sedimentary basins for future exploration targets.  相似文献   

19.
Potential source rocks on the Laminaria High, a region of the northern Bonaparte Basin on the North West Shelf of Australia, occur within the Middle Jurassic to Lower Cretaceous early to post-rift sequences. Twenty-two representative immature source rock samples from the Jurassic to Lower Cretaceous (Plover, Laminaria, Frigate, Flamingo and Echuca Shoals) sequences were analysed to define the hydrocarbon products that analogous mature source rocks could have generated during thermal maturation and filled the petroleum reservoirs in the Laminaria High region. Rock-Eval pyrolysis data indicate that all the source rocks contain type II–III organic matter and vary in organic richness and quality. Open system pyrolysis-gas chromatography on extracted rock samples show a dominance of aliphatic components in the pyrolysates. The Plover source rocks are the exception which exhibit high phenolic contents due to their predominant land-plant contribution. Most of the kerogens have the potential to generate Paraffinic–Naphthenic–Aromatic oils with low wax contents. Bulk kinetic analyses reveal a relatively broad distribution of activation energies that are directly related to the heterogeneity in the kerogens. These kinetic parameters suggest different degrees of thermal stability, with the predicted commencement of petroleum generation under geological heating conditions covering a relatively broad temperature range from 95 to 135 °C for the Upper Jurassic−Lower Cretaceous source rocks. Both shales and coals of the Middle Jurassic Plover Formation have the potential to generate oil at relatively higher temperatures (140–145 °C) than those measured for crude oils in previous studies. Hence, the Frigate and the Flamingo formations are the main potential sources of oils reservoired in the Laminaria and Corallina fields. Apart from being a reservoir, the Laminaria Formation also contains organic-rich layers, with the potential to generate oil. For the majority of samples analysed, the compositional kinetic model predictions indicate that 80% of the hydrocarbons were generated as oil and 20% as gas. The exception is the Lower Cretaceous Echuca Shoals Formation which shows the potential to generate a greater proportion (40%) of gas despite its marine source affinity, due to inertinite dominating the maceral assemblage.  相似文献   

20.
Late Jurassic organic-rich shales from Shabwah sub-basin of western Yemen were analysed based on a combined investigations of organic geochemistry and petrology to define the origin, type of organic matter and the paleoenvironment conditions during deposition. The organic-rich shales have high total sulphur content values in the range of 1.49–4.92 wt. %, and excellent source rock potential is expected based on the high values of TOC (>7%), high extractable organic matter content and hydrocarbon yield exceeding 7000 ppm. The high total sulphur content and its relation with high organic carbon content indicate that the Late Jurassic organic-rich shales of the Shabwah sub-basin were deposited in a marine environment under suboxic-anoxic conditions. This has been evidenced from kerogen microscopy and their biomarker distributions. The kerogen microscopy investigation indicated that the Late Jurassic organic-rich shales contain an abundant liptinitic organic matter (i.e., alginite, structureless (amorphous organic matters)). The presence of alginite with morphology similar to the lamalginite alga and amorphous organic matter in these shale samples, further suggests a marine origin. The biomarker distributions also provide evidence for a major contribution by aquatic algae and microorganisms with a minor terrigenous organic matter input. The biomarkers are characterized by unimodal distribution of n-alkanes, low acyclic isoprenoids compared to normal alkanes, relatively high tricyclic terpanes compared to tetracyclic terpanes, and high proportion of C27 and C29 regular steranes compared to C28 regular sterane. Moreover, the suboxic to anoxic bottom water conditions as evidenced in these Late Jurassic shales is also supported based on relatively low pristane/phytane (Pr/Ph) ratios in the range of 0.80–1.14. Therefore, it is envisaged here that the high content of organic matter (TOC > 7 wt.%) in the analysed Late Jurassic shales is attributed to good organic matter (OM) preservation under suboxic to anoxic bottom water conditions during deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号