首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
塔中地区志留系主要为无障壁海岸及潮坪沉积体系,其储层以岩屑砂岩、岩屑石英砂岩为主。通过观察岩心和对薄片、扫描电镜、阴极发光、物性、碳酸盐含量等大量资料的研究,认为塔中地区志留系储层砂岩经历了压实作用、胶结作用、交代作用和溶解作用等多种成岩作用,目前已达到晚成岩A2期。孔隙演化与该区的成岩作用关系密切,特别是次生孔隙的发育。孔隙演化经历了原生孔隙的破坏、次生孔隙的形成和次生孔隙的破坏3个阶段,其中机械压实作用和胶结作用是原生孔隙损失的主要原因,溶蚀作用产生的次生孔隙是重要的储集空间。  相似文献   

2.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   

3.
The main reservoir of the Humbly Grove Oilfield comprises variably dolomitic grainstones and packstones representing the Bathonian Great Oolite Group. The Bathonian sequence commences in Lower Fuller's Earth claystones which coarsen upwards into oncolitic claystones and skeletal packstones probably equivalent to the Fuller's Earth Rock. Above is a variable succession of wackestones and thin packstones which have a distinctive sandstone at their base. This sequence is named here the Hester's Copse Formation. The succeeding Great Oolite Limestone is predominantly oolitic and cross-bedded on a variety of scales. It exhibits both coarsening and fining sequences which have locally well-developed capping hardgrounds and burrowed horizons. The Great Oolite Limestone is subdivided into three Members: the lowest (the Humbly Grove Member), and the highest (the Herriard Member) begin with massive shoal oolite deposition, but each then pass upward into more interbedded sequences representing a more transgressive environment. The middle member (the Hoddington) is a thin but widely correlatable wackestone. The overlying Forest Marble commences abruptly in claystones, but there is an upward increase in both the incidence and thickness of discrete oolitic limestones. Both the Great Oolite Limestone and Forest Marble were affected by early fresh-water dissolution and cementation in addition to the localized development of submarine cements. The top of the Great Oolite Group is represented by the Cornbrash. The Lower Cornbrash is a thin micritic limestone while the Upper Cornbrash is a calcareous claystone which passes upwards into the Kellaways Clay. The Bathonian sequence overlies the dolomitic limestones of the Inferior Oolite, the Lower Fuller's Earth claystones being interpreted as a basinal marine mudstone sequence, marking a substantial deepening and transgressive phase at the opening of the Bathonian. These mudstones shoal upwards into the quiet, but photic, water deposits of the Fuller's Earth Rock. The Hester's Copse Formation represents the temporary development of wave-dominated terrigenous shoreface and lagoonal conditions. Renewed transgression established a high-energy, tide-dominated, carbonate shelf upon which the Great Oolite Limestone was deposited as a series of shoal oolites, channels, tidal deltas and spill-overs. Periodic exposure of the carbonate sand-bodies led to the production of early dissolutional and cementation fabrics that post-date (and largely obliterate) submarine cements. The Forest Marble opened with a further phase of deepening, and the temporary establishment of muddy facies. Subsequently discrete tide-dominated ridges and linear channelized oolitic sands prograded into the area. The latest Bathonian is marked by subsidence of the carbonate ramp to the south of the London Platform, the Cornbrash-Kellaways Clay sequence accumulating under progressively deepening waters.  相似文献   

4.
基于桩海地区下古生界碳酸盐岩古潜山储层的孔隙特征,分析了研究区不同潜山区块有效孔隙的空间组合特征,探讨了影响研究区下古生界孔隙类型及储层在空间上的组合特征的主控因素。下古生界碳酸盐岩古潜山以裂缝-扩溶缝-溶蚀孔洞为主,原生孔隙基本消失,具有储集意义的主要为次生孔隙。储层在空间上的组合形式主要包括非常发育的潜山内幕储层,且与风化壳储层不具有统一油水界面,深部溶蚀特征明显;太古界变质岩与下古生界碳酸盐岩之间往往具有统一的油水界面;许多下古生界古潜山带具有"上缝下洞"的储集空间特征等。孔隙的次生性及多样化的空间组合形式导致不同潜山区块储集能力的明显差异。多级不整合面古岩溶作用形成相时早期的溶蚀孔隙和潜山内幕储层;深埋藏溶蚀作用对碳酸盐岩先成孔隙的溶蚀改造和太古界与下古生界之间统一油水界面的形成具重要影响;新构造运动和埋藏期溶蚀作用相结合可合理解释研究区下古生界古潜山带"上缝下洞"的储集空间组合形式。  相似文献   

5.
A great difference exists between the hydrocarbon charging characteristics of different Tertiary lacustrine turbidites in the Jiyang Super-depression of the Bohai Bay Basin, east China. Based on wireline log data, core observation and thin-section analyses, this study presents detailed reservoir property data and their controlling effects from several case studies and discusses the geological factors that govern the hydrocarbon accumulation in turbidite reservoirs. The lacustrine fluxoturbidite bodies investigated are typically distributed in an area of 0.5–10 km2, with a thickness of 5–20 m. The sandstones of the Tertiary turbidites in the Jiyang Super-depression have been strongly altered diagenetically by mechanical compaction, cementation and mineral dissolution. The effect of compaction caused the porosity to decrease drastically with the burial depths, especially during the early diagenesis when the porosity was reduced by over 15%. The effect of cementation and mineral dissolution during the late-stage diagenesis is dominated by carbonate cementation in sandstones. High carbonate cement content is usually associated with low porosity and permeability. Carbonate dissolution (secondary porosity zone) and primary calcite dissolution is believed to be related to thermal maturation of organic matter and clay mineral reactions in the surrounding shales and mudstone. Two stages of carbonate cementation were identified: the precipitation from pore-water during sedimentation and secondary precipitation in sandstones from the organic acid-dissolved carbonate minerals from source rocks. Petrophysical properties have controlled hydrocarbon accumulation in turbidite sandstones: high porosity and permeability sandstones have high oil saturation and are excellent producing reservoirs. It is also noticed that interstitial matter content affects the oil-bearing property to some degree. There are three essential elements for high oil-bearing turbidite reservoirs: excellent pore types, low carbonate cement (<5%) and good petrophysical properties with average porosity >15% and average permeability >10 mD.  相似文献   

6.
This paper investigates the reservoir potential of deeply-buried Eocene sublacustrine fan sandstones in the Bohai Bay Basin, China by evaluating the link between depositional lithofacies that controlled primary sediment compositions, and diagenetic processes that involved dissolution, precipitation and transformation of minerals. This petrographic, mineralogical, and geochemical study recognizes a complex diagenetic history which reflects both the depositional and burial history of the sandstones. Eogenetic alterations of the sandstones include: 1) mechanical compaction; and 2) partial to extensive non-ferroan carbonate and gypsum cementation. Typical mesogenetic alterations include: (1) dissolution of feldspar, non-ferroan carbonate cements, gypsum and anhydrite; (2) precipitation of quartz, kaolinite and ferroan carbonate cements; (3) transformation of smectite and kaolinite to illite and conversion of gypsum to anhydrite. This study demonstrates that: 1) depositional lithofacies critically influenced diagenesis, which resulted in good reservoir quality of the better-sorted, middle-fan, but poor reservoir quality in the inner- and outer-fan lithofacies; 2) formation of secondary porosity was spatially associated with other mineral reactions that caused precipitation of cements within sandstone reservoirs and did not greatly enhance reservoir quality; and 3) oil emplacement during early mesodiagenesis (temperatures > 70 °C) protected reservoirs from cementation and compaction.  相似文献   

7.
Ancient lacustrine storm-deposits that act as petroleum reservoirs are seldom reported. The Lijin Sag, which is located in the southeastern corner of the Bohai Bay Basin in East China, is a NE–SW trending Cenozoic half-graben basin. Some of its Eocene deposits (Bindong deposits) were interpreted as lacustrine tempestites. The Bindong tempestites, which developed in the lower part of the upper fourth member of the Shahejie Formation (Es41), constitute a new kind of petroleum reservoir and are novel petroleum exploration targets in the Bindong Area. However, the characteristics of the Es41 Bindong tempestite reservoirs and their controlling factors are poorly understood. Point-count analyses of thin sections, scanning electron microscope image analyses, X-ray diffractometry data, and the petrophysical parameters of the Bindong tempestite reservoirs were utilized to estimate the reservoir quality. The reservoirs have undergone significant diagenetic alteration, which can be divided into negative and positive aspects. The negative alteration includes compaction, authigenic minerals, and cementation such as carbonates, clay minerals and overgrowths of quartz and feldspar. The uneven distribution of carbonate cement increased the reservoir’s heterogeneity, with carbonate cement commonly precipitating along the sandstone-mudstone contacts. The primary porosity was severely reduced because of compaction and extensive carbonate cementation. Positive alteration includes dissolution, carbonate cementation, undercompaction and fractures. Carbonate cementation exhibited both positive and negative effects on the reservoir quality. Overall, the objective reservoir quality is quite poor. A quantitative evaluation of the reservoirs’ potential was conducted. The cutoff values of several of the reservoir’s parameters were calculated. The lower limits of the porosity and permeability are 8.35–5.85% and 1.2587–0.2753 × 10–3 μm2, respectively, depending on the depth. The upper limits of the carbonate and mud content are approximately 18.5% and 9–10%, respectively. A fundamental understanding of these characteristics will provide necessary information for extracting hydrocarbons from analogous subsurface reservoirs.  相似文献   

8.
Thin-bedded beach-bar sandstone reservoirs are common in the Eocene Shahejie Formation (Es4s) of Niuzhuang Sag, along the southern gentle slope of the Dongying Depression. Here we report on the link between sequence stratigraphy, sedimentary facies and diagenetic effects on reservoir quality. Seismic data, wireline logs, core observations and analyses are used to interpret depositional settings and sequence stratigraphic framework. Petrographic study based on microscopic observation of optical, cathodoluminescence (CL), confocal laser scanning (LSCM) and scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were used to describe the fabric, texture, allogenic and authigenic mineralogy of these highly heterogeneous sandstone reservoirs. The Es4s interval is interpreted as third-order sequence, composed of a lowstand systems tract (LST), a transgressive systems tract (TST) and a highstand systems tract (HST). On the fourth order, twenty-nine parasequences and seven parasequence sets have been identified. Sand bodies were deposited mainly in the shoreface shallow lake beach-bar (clastic beach-bar), semi-deep lake (carbonate beach-bar) and the fluvial channels. The depositional and diagenetic heterogeneities were mainly due to the following factors: (1) fine grain size, poor sorting, and continuous thin inter-bedded mud layers with siltstone/fine-sandstone having argillaceous layers in regular intervals, (2) immature sediment composition, and (3) even with the dissolution of grains and several fractures, destruction of porosity by cementation and compaction. Secondary pores from feldspar dissolution are better developed in sandstones with increased cementation. Grain coating smectite clays preserved the primary porosity at places while dominating pore filling authigenic illite and illite/smectite clays reduced permeability with little impact on porosity. Due to the high degree of heterogeneity in the Es4s beach-bar interval, it is recognized as middle to low permeable reservoir. The aforementioned study reflects significant insight into the understanding of the properties of the beach-bar sands and valuable for the comprehensive reservoir characterization and overall reservoir bed quality.  相似文献   

9.
The Daxing conglomerate reservoir has become an important exploration target in the Langgu Depression of the Bohai Bay Basin. In this paper, gravel composition, void space, poroperm characteristics and hydrocarbon productivity of the Daxing conglomerate in the third member of the Oligocene Shahejie Formation (Es3) are studied in detail to understand the impact of gravel type on reservoir quality based on cores, petrographic thin-sections, scanning electron microscope (SEM) photos, porosity, permeability and well test data. The Daxing conglomerate is composed of limestone and dolomite gravels. The void space of the Daxing conglomerate includes intragravel and intergravel pores as well as fissures. Intragravel pores are dominated by gravel type. They develop as intergranular pores, intergranular dissolved pores, intragranular dissolved pores and few intercrystalline pores in limestone gravels, whereas in dolomite gravels they develop as intercrystalline pores, intercrystalline dissolved pores, dissolved pores and cavities, few intergranular pores and intergranular dissolved pores. The analysis shows that dolomite conglomerates provide better reservoir quality than limestone conglomerates. Microscopically, areal porosity in dolomite gravels is higher than that in limestone gravels. Macroscopically, porosity and permeability of conglomerates that are dominated by dolomite gravels (dolomite conglomerates) are better than those of conglomerates dominated by limestone gravels (limestone conglomerates). The dolomite conglomerates are superior to the limestone conglomerate with regard to hydrocarbon productivity at the level of parent rock and gravel properties. Poroperm characteristics and hydrocarbon productivity of dolomite reservoirs in the middle Proterozoic Changcheng and Jixian Systems (parent rocks of dolomite gravels) are better than those of the limestone reservoirs in the lower Paleozoic, Cambrian and Ordovician (parent rocks of limestone gravels). Gravel properties, including grain structure, physical nature and dissolution velocity cause the dolomite conglomerates to have more intercrystalline pores, fissures and secondary dissolved pores than limestone conglomerates.  相似文献   

10.
渤东低凸起东营组储集层以低渗为特征,低渗成为制约该区东营组勘探的重要因素.通过多种分析测试方法,研究了渤东低凸起L3构造东营组低渗储集层特征,探讨了低渗储集层成因.L3构造东营组储集层砂岩溶蚀作用发育,斜长石含量低,碳酸盐胶结物含量低,高岭石含量高,石英加大明显.储集层主要以中孔低—特低渗为主,孔径小,连通差,吼道窄,排驱压力大.微量元素分析表明,研究区东营组沉积时为淡水环境;测井和岩心观察证实,地层中含多层碳质泥岩和煤层.早期腐殖酸的溶蚀作用,造成低温下不稳定的斜长石大量溶蚀,这些溶蚀孔隙在后期深埋过程中受压实和成岩作用影响被复杂化、细小化是储集层低渗的主要原因.早期碳酸盐胶结物少,岩石抗压实能力差也是储层低渗的重要原因.  相似文献   

11.
The Upper Triassic Chang 6 sandstone, an important exploration target in the Ordos Basin, is a typical tight oil reservoir. Reservoir quality is a critical factor for tight oil exploration. Based on thin sections, scanning electron microscopy (SEM), X-ray diffraction (XRD), stable isotopes, and fluid inclusions, the diagenetic processes and their impact on the reservoir quality of the Chang 6 sandstones in the Zhenjing area were quantitatively analysed. The initial porosity of the Chang 6 sandstones is 39.2%, as calculated from point counting and grain size analysis. Mechanical and chemical compaction are the dominant processes for the destruction of pore spaces, leading to a porosity reduction of 14.2%–20.2% during progressive burial. The porosity continually decreased from 4.3% to 12.4% due to carbonate cementation, quartz overgrowth and clay mineral precipitation. Diagenetic processes were influenced by grain size, sorting and mineral compositions. Evaluation of petrographic observations indicates that different extents of compaction and calcite cementation are responsible for the formation of high-porosity and low-porosity reservoirs. Secondary porosity formed due to the burial dissolution of feldspar, rock fragments and laumontite in the Chang 6 sandstones. However, in a relatively closed geochemical system, products of dissolution cannot be transported away over a long distance. As a result, they precipitated in nearby pores and pore throats. In addition, quantitative calculations showed that the dissolution and associated precipitation of products of dissolution were nearly balanced. Consequently, the total porosity of the Chang 6 sandstones increased slightly due to burial dissolution, but the permeability decreased significantly because of the occlusion of pore throats by the dissolution-associated precipitation of authigenic minerals. Therefore, the limited increase in net-porosity from dissolution, combined with intense compaction and cementation, account for the low permeability and strong heterogeneity in the Chang 6 sandstones in the Zhenjing area.  相似文献   

12.
西湖凹陷KX构造始新统平湖组是重要产气层系.利用大量薄片、岩心和分析化验资料,对该平湖组储集层进行了详细的岩石学特征、储层物性分析以及影响储层发育的主控因素的研究.结果表明,该套储层的岩石类型以长石岩屑质石英砂岩主,填隙物丰富、分选中等—好、成分成熟度低、磨圆程度高;孔隙类型以次生孔隙为主;喉道类型以片状、弯曲片状喉道为主;孔喉组合类型为中孔小喉、小孔小喉组合;储层物性较差,为低孔低渗储层;平湖组储层主要受潮汐改造的分流河道微相控制,压实作用、胶结作用、溶蚀作用和破裂作用等成岩作用是研究区储集层物性的主要控制因素.  相似文献   

13.
The preservation of good petrophysical properties (high porosity/high permeability) at great depth in carbonate rocks may lead to the existence of a deeply buried reservoir (DBR), a target of interest for the oil industry. One of the key processes controlling diagenesis of the burial environment is Pressure Solution Creep (PSC), an efficient compaction process responsible for the evolution of porosity and permeability in many carbonate reservoirs. In this experimental study, we examine the effect of i) the presence of oil in the pore space and ii) its timing of injection on the PSC process and the petrophysical properties of a carbonate rock. The experiments were performed using a flow-through high-pressure cell, allowing the simulation of the pressure/stresses and temperature conditions of a DBR. Multi-disciplinary data (mechanical, chemical, petrographical and petrophysical) demonstrate that, without oil in the pore space, the main diagenetic process is the PSC, a process reducing by three the initial porosity but having no influence on intrinsic water permeability. An early injection of oil prior to water circulation causes the inhibition of PSC by the coating of the grains, leading to the preservation of porosity. Conversely, a late injection of oil does not preserve initial porosity. The dataset obtained from these experiments show the importance of the timing of oil charging in a reservoir in the preservation of initial porosity at great depth by the inhibition of PSC. However, the coating of grains by hydrocarbons may also inhibit further diagenetic processes leading to a creation of secondary porosity at depth.  相似文献   

14.
Deeply buried (4500–7000 m) Ordovician carbonate reservoirs in the Tazhong area, Tarim Basin, NW China show obvious heterogeneity with porosity from null in limestones and sweet dolostones to 27.8% in sour dolostones, from which economically important oils, sour gas and condensates are currently being produced. Petrographic features, C, O, Sr isotopes were determined, and fluid inclusions were analyzed on diagenetic calcite, dolomite and barite from Ordovician reservoirs to understand controls on the porosity distribution. Ordovician carbonate reservoirs in the Tazhong area are controlled mainly by initial sedimentary environments and eo-genetic and near-surface diagenetic processes. However, vugs and pores generated from eogenetic and telogenetic meteoric dissolution were observed to have partially been destroyed due to subsequent compaction, filling and cementation. In some locations or wells (especially ZG5-ZG7 Oilfield nearby ZG5 Fault), burial diagenesis (e.g. thermochemical sulfate reduction, TSR) probably played an important role in quality improvement towards high-quality reservoirs. C2 calcite and dolomite cements and barite have fluid inclusions homogenization temperatures (Ths) from 86 to 113 °C, from 96 to 128 °C and from 128 to 151 °C, respectively. We observed petrographically corroded edges of these high-temperature minerals with oil inclusions, indicating the dissolution must have occurred under deep-burial conditions. The occurrence of TSR within Ordovician carbonate reservoirs is supported by C3 calcite replacement of barite, and the association of sulfur species including pyrite, anhydrite or barite and elemental sulfur with hydrocarbon and 12C-rich (as low as −7.2‰ V-PDB) C3 calcite with elevated Ths (135–153 °C). The TSR may have induced burial dissolution of dolomite and thus probably improved porosity of the sour dolostones reservoirs at least in some locations. In contrast, no significant burial dissolution occurred in limestone reservoirs and non-TSR dolostone reservoirs. The deeply buried sour dolostone reservoirs may therefore be potential exploration targets in Tarim Basin or elsewhere in the world.  相似文献   

15.
通过对莱州湾凹陷区域构造地质背景、岩石学特征、沉积环境等分析,认为莱州湾凹陷南部地区古近系沙三下亚段的地层埋藏浅,广泛发育湖相碳酸盐岩与陆源碎屑岩的混合沉积,混合沉积特征主要为结构混合和互层混合。考虑到混积岩成分和成因的复杂性,本文在岩心、壁心观察、铸体薄片鉴定、荧光薄片鉴定和扫描电镜分析的基础上,对莱州湾凹陷南部地区混积岩样品进行了X-射线衍射分析和岩石有机质中碳氢氧元素分析,分析了碳酸盐岩和陆源碎屑岩混积的岩石学特征。结果显示:莱州湾凹陷南部地区浅层沙三下亚段混积岩中陆源碎屑平均含量为60.5%,碳酸盐矿物含量为28.2%,属于碳酸盐质陆源碎屑岩,混积岩主要为泥灰岩、灰质砂岩和砂质白云岩。其中,碎屑矿物主要以细-粉砂级石英为主,碳酸盐矿物主要为泥晶方解石;粘土矿物组合主要为伊蒙混层,其次为伊利石、高岭石和绿泥石;且三者呈均匀混合的特征。同时通过铸体薄片、扫描电镜和储层流体包裹体观察,综合分析成岩作用表明,埋藏浅的沙三下亚段混积岩储层主要经历了压实、压溶作用、溶蚀作用、胶结交代作用,其中胶结交代作用较强,而研究区压实、压溶作用对比渤海湾盆地大部分埋藏较深的古近系地层都弱,储集空间以原生粒间孔为主,其次为粒内溶蚀孔和微缝。压实、压溶作用弱和溶蚀作用强是研究区沙三下亚段储层物性好的主要原因。  相似文献   

16.
首次分析睡宝盆地A井区古近系成岩演化序列并提出其储层处于中成岩A1-A2期,此成岩阶段有利于次生孔隙的保护。研究区古近系储层成岩演化序列具有特殊性:第一期胶结作用为硅质胶结,早于机械压实作用或者同时进行,强烈的机械压实作用使得孔隙度减小15%,此后第二期碳酸盐胶结作用占主导,镜下统计两期胶结作用的减孔量为4%~6%;渐新世受到挤压构造运动和表生成岩作用的双重影响,紧临渐新统不整合面以下的储层由于碳酸盐胶结物溶解而形成次生孔隙。2009年中海油新钻井地处冲起构造,后期的这种构造变形对始新统及其以下的核部地层产生侧向挤压形成构造压实效应,原始孔隙遭到更多的破坏,而对渐新统起到构造托举的作用,可以减缓上覆沉积物的静岩压实效应。成岩演化序列的特殊性和多期构造运动使得古近系储层物性出现差异,总结储集性好的储层并分析其成因机制,对睡宝盆地下一步勘探具有重要指导意义。  相似文献   

17.
Understanding the pore structure characteristics of tight gas sandstones is the primary purpose of reservoir evaluation and efforts to characterize tight gas transport and storage mechanisms and their controls. Due to the various pore types and multi-scale pore sizes in tight reservoirs, it is essential to combine several techniques to characterize pore structure. Scanning electron microscopy (SEM), nitrogen gas adsorption (N2GA), mercury intrusion porosimetry (MIP) and nuclear magnetic resonance (NMR) were conducted on tight sandstones from the Lower Cretaceous Shahezi Formation in the northern Songliao Basin to investigate pore structure characteristics systematically (e.g., type and size distribution of pores) and to establish how significant porosity and permeability are for different pore types. The studied tight sandstones are composed of intergranular pores, dissolution pores and intercrystalline pores. The integration of N2GA and NMR can be used as an efficient method to uncover full pore size distribution (PSD) of tight sandstones, with pore sizes ranging from 2 nm to dozens of microns. The full PSDs indicate that the pore sizes of tight sandstones are primarily distributed within 1.0 μm. With an increase in porosity and permeability, pores with larger sizes contribute more to porosity. Intercrystalline pores and intergranular/dissolution pores can be clearly distinguished on the basis of mercury intrusion and surface fractal. The relative contribution of intercrystalline pores to porosity ranges from 58.43% to 91.74% with an average of 79.74%. The intercrystalline pores are the primary contributor to pore space, whereas intergranular/dissolution pores make a considerably greater contribution to permeability. A specific quantity of intergranular/dissolution pores is the key to producing high porosity and permeability in tight sandstone reservoirs. The new two permeability estimation models show an applicable estimation of permeability with R2 values of 0.955 and 0.962 for models using Dmax (pore diameter corresponding to displacement pressure) and Df (pore diameter at inflection point), respectively. These results indicate that both Dmax and Df are key factors in determining permeability.  相似文献   

18.
Halimeda is one of the major reef-building algas in the middle Miocene of Xisha, and one of the significant reefbuilding algas in the algal reef oil and gas field of the South China Sea. However, there have been few reports regarding the characteristics of mineral rocks, reservoir porosity and permeability layers, and sedimentationdiagenetic-evolution of fossil Halimeda systems. The present paper briefly introduces the relevant studies on chlorophyta Halimeda and the research status of oil and gas exploration. Through the 1 043 m core of the Xichen-1 well, we studied the characteristics of the mineral rocks and porosity and permeability of the middle Miocene Halimeda of the Yongle Atoll, identified and described the segments of fossil Halimeda, and pointed out that most of the segment slides are vertical sections in ovular, irregular or long strips. The overwhelming majority of these fossil Halimeda found and studied are vertical sections instead of cross sections. In this paper, knowledge regarding the cross sections of fossil Halimeda is reported and proven to be similar with the microscopic characteristics of modern living Halimeda; fossil Halimeda are buried in superposition; it is shown that there are different structures present, including typical bio-segment structure, and due to its feature of coexisting with red alga, tying structure, twining structure and encrusting structure are all present; and finally, it is suggested to classify the fossil Halimeda into segment algal reef dolomites. In addition, all of the studied intervals are moderately dolomitized. Secondary microcrystalline-dolosparite dominates the original aragonite raphide zones,and aphanitic-micrite dolomite plays the leading role in the cortexes and medullas; in the aragonite raphide zones between medulla and cysts, secondary dissolved pores and intercrystalline pores are formed inside the segments, and algal frame holes are formed between segments; therefore, a pore space network system(dissolved pores + intragranular dissolved pores—intercrystalline pores + algal frame holes) is established. Segment Halimeda dolomite has a porosity of 16.2%–46.1%, a permeability of 0.203×10–3–2 641×10–3 μm2, and a throatradius of 23.42–90.43 μm, therefore it is shown to be a good oil and gas reservoir. For the reasons mentioned above, we suggest building the neogene organic reef-modern reef sedimentation-diagenetic-evolution models for the Xisha Islands.  相似文献   

19.
This study aims at unravelling the diagenetic history and its effect on the pore system evolution of the Triassic redbeds exposed in SE Spain (TIBEM1), an outcrop analogue of the TAGI (Trias Argilo-Gréseux Inférieur) reservoir (Berkine-Ghadames Basin, Algeria). Similar climatic, base level and tectonic conditions of aforementioned alluvial formations developed analogue fluvial facies stacking patterns. Furthermore, interplay of similar detrital composition and depositional facies in both formations resulted in analogue early diagenetic features. Petrographic observations indicate lithic subarkosic (floodplain facies) and subarkosic (braidplain facies) compositions which are considered suitable frameworks for potential reservoir rocks. Primary porosity is mainly reduced during early diagenesis through moderate mechanical compaction and formation of K-feldspar overgrowth, gypsum, dolomite and phyllosilicate cements. Early mesodiagenesis is testified by low chemical compaction and quartz cementation. Telodiagenetic calcite filling fractures and K-feldspar dissolution determined the final configuration of analysed sandstones. Mercury injection-capillary pressure technique reveals overbank deposits in the floodplain as the least suitable potential reservoirs because of their lowest open porosity (OP < 16%), permeability (k < 5 mD) and small dimensions. On the other hand, braidplain deposits show the highest values of such properties (OP up to 31.6% and k > 95 mD) and greater thickness and lateral continuity, so being considered the best potential reservoir. The accurate estimation of TIBEM microscale attributes can provide important input for appraisal and enhanced oil recovery performance in TAGI and in others reservoirs consisting on similar fluvial sandy facies.  相似文献   

20.
The Jiaolai Basin (Fig. 1) is an under-explored rift basin that has produced minor oil from Lower Cretaceous lacustrine deltaic sandstones. The reservoir quality is highly heterogeneous and is an important exploratory unknown in the basin. This study investigates how reservoir porosity and permeability vary with diagenetic minerals and burial history, particularly the effects of fracturing on the diagenesis and reservoir deliverability. The Laiyang sandstones are tight reservoirs with low porosity and permeability (Φ < 10% and K < 1 mD). Spatial variations in detrital supply and burial history significantly affected the diagenetic alterations during burial. In the western Laiyang Sag, the rocks are primarily feldspathic litharenites that underwent progressive burial, and thus, the primary porosity was partially to completely eliminated as a result of significant mechanical compaction of ductile grains. In contrast, in the eastern Laiyang Sag, the rocks are lithic arkoses that were uplifted to the surface and extensively eroded, which resulted in less porosity reduction by compaction. The tectonic uplift could promote leaching by meteoric water and the dissolution of remaining feldspars and calcite cement. Relatively high-quality reservoirs are preferentially developed in distributary channel and mouth-bar sandstones with chlorite rims on detrital quartz grains, which are also the locations of aqueous fluid flow that produced secondary porosity. The fold-related fractures are primarily developed in the silt–sandstones of Longwangzhuang and Shuinan members in the eastern Laiyang Sag. Quartz is the most prevalent fracture filling mineral in the Laiyang sandstones, and most of the small-aperture fractures are completely sealed, whereas the large-aperture fractures in a given set may be only partially sealed. The greatest fracture density is in the silt–sandstones containing more brittle minerals such as calcite and quartz cement. The wide apertures are crucial to preservation of the fracture porosity, and the great variation in the distribution of fracture-filling cements presents an opportunity for targeting fractures that contribute to fluid flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号