首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sediment study suggests that Washington and Norfolk canyons off the Mid-Atlantic States are not inactive, but have served periodically since the Late Pleistocene as conduits of sediment originating on the adjacent shelf and upper slope. Large quantities of sand occur in the canyon heads as thin beds and laminae, and on the continental slope as mixtures of sand (to >40%), silt and clay that are extensively reworked by burrowing organisms. Sandy turbidites occur in the canyons on the rise. Basinward dispersal, from the outer shelf and uppermost slope, is recorded by heavy mineral suites and bioclastic components, primarily foraminifera of shallow marine origin, in the lower slope and upper continental rise canyon cores. The down-axis movement of material, presumably episodic, in the Holocene to recent results from offshelf spillover into canyon heads, failure on the steep walls bordering canyons on the slope, and resuspension by bottom currents.  相似文献   

2.
Holocene sand layers cored from the central Aleutian Trench are dominated by volcaniclastic debris, and the only likely source is the central Aleutian volcanic arc. This creates something of an enigma because bathymetric obstructions seemingly prevent direct delivery of sediment via transverse canyons or channels. Turbidity currents are funneled through submarine canyons on the upper trench slope, but the flows become unconfined as they cross the midslope Aleutian Terrace. Evidently, the turbid flows maintain high enough velocities to climb over the trench-slope break; acceleration down the lower trench slope then allows forearc bypassing to occur without the aid of through-going channels.  相似文献   

3.
P.J Ramsay 《Marine Geology》1994,120(3-4):225-247
The geostrophic current-controlled northern Zululand shelf displays a unique assemblage of interesting physical, sedimentological and biological phenomena. The shelf in this area is extremely narrow (3 km) and is characterised by submarine canyons, coral reefs, and steep gradients on the continental slope. Three submarine canyons occur in the study area and are classified as mature- or youthful-phase canyons depending on the degree to which they breach the shelf. These canyons originated as mass-wasting features which were exploited by palaeo-drainage during sea-level regressions. Shelf lithology is dominated by a series of coast-parallel patch coral reefs which have colonised beachrock and aeolianite sequences that extend semi-continuously from −5 to −95 m, and delineate late Pleistocene palaeocoastline events. The unconsolidated sediment on the shelf is either shelf sand (mainly terrigenous quartz grains) or bioclastic sediment. Large-scale subaqueous dunes commonly form in the unconsolidated sediment on the outer-shelf due to the Agulhas Current flow. These dunes occur as two distinct fields at depths of −35 to −70 m; the major sediment transport direction is towards the south, but occasional bedload parting zones exist where the bedform migration direction changes from south to north.  相似文献   

4.
Shallow 3D seismic data show contrasting depositional patterns in Pleistocene deepwater slopes of offshore East Kalimantan, Indonesia. The northern East Kalimantan slope is dominated by valleys and canyons, while the central slope is dominated by unconfined channel–levee complexes. The Mahakam delta is immediately landward of the central slope and provided large amounts of sediments to the central slope during Pleistocene lowstands of sea level. In the central area, the upper slope contains relatively straight and deep channels. Sinuous channel–levee complexes occur on the middle and lower slope, where channels migrated laterally, then aggraded and avulsed. Younger channel–levee complexes avoided bathymetric highs created by previous channel–levee complexes. Levees decrease in thickness down slope. Relief between channels and levees also decreases down slope.North of the Mahakam delta, siliciclastic sediment supply was limited during the Pleistocene, and the slope is dominated by valleys and canyons. Late Pleistocene rivers and deltas were generally not present on the northern outer shelf. Only one lowstand delta was present on the northern shelf margin during the upper Pleistocene, and sediments from that lowstand delta filled a pre-existing slope valley complex and formed a basin-floor fan. Except for that basin-floor fan, the northern basin floor shows no evidence of sand-rich channels or fans, but contains broad areas with chaotic reflectors interpreted as mass transport complexes. This suggests that slope valleys and canyons formed by slope failures, not by erosion associated with turbidite sands from rivers or deltas. In summary, amount of sediment coming onto the slope determines slope morphology. Large, relatively steady input of sediment from the Pleistocene paleo-Mahakam delta apparently prevented large valleys and canyons from developing on the central slope. In contrast, deep valleys and canyons developed on the northern slope that was relatively “starved” for siliciclastic sediment.  相似文献   

5.
海底峡谷在全球陆缘广泛分布,是浅海沉积物向深海运移的主要通道,对于理解深海浊流触发机制、深海沉积物的搬运模式、深海扇的发育历史和深海油气资源勘探等均具有重要意义。本文基于高分辨率高精度的多波束测深数据,首次对南海东北部海底峡谷体系进行了研究,精细刻画了高屏海底峡谷、澎湖海底峡谷、台湾浅滩南海底峡谷和东沙海底峡谷等4条大型海底峡谷的地貌特征并分析其发育控制因素。海底坡度、构造运动、海山与海丘是影响南海东北部峡谷群走向与特征的重要因素,其中,海底坡度对于峡谷上游多分支与“V”字特征有显著的控制作用;构造运动是控制高屏海底峡谷走向的因素,澎湖海底峡谷的走向则与菲律宾海板块与欧亚板块碰撞有关,东沙海底峡谷的走向则与东沙运动相关,台湾浅滩南海底峡谷上段受NW向断裂构造的控制;海山的阻挡作用造成峡谷局部走向和特征改变。海底峡谷群输送大量陆源沉积物到深海盆并形成大面积的沉积物波,海山和沉积物波的发育导致东沙海底峡谷下段“回春”和转向。  相似文献   

6.
Located in the south-eastern part of the Bay of Biscay, the Capbreton Canyon incises the continental shelf up to the 30 m isobath contour, and acts as a natural conduit for continental and shelf-derived sediments. EM1000 multibeam bathymetry shows two main features characterising the canyon — a deeply entrenched meandering channel, bordered by fluvial-like terraces constituting large sediment traps. A dataset of cores and seismic profiles together with a multibeam bathymetry map has enabled the characterisation of recent sedimentary activity in the axial channel and on the terraces. Data analysis evidenced the major role of the canyon head in recent sediment dynamics. This part of the canyon is a temporary reservoir for sediments, accumulated by coastal hydrodynamic processes. Exceptional climatic, tectonic or hydrodynamic events can mobilise the sediments and generate gravity-driven flows. Under the present-day sea-level highstand conditions, these flows are not powerful enough to bring their bedload to the deep sea, and are confined mainly to the upper part of the canyon. Turbidity currents model the axial channel pathway and are at the origin of terrace formation. Terraces in the Capbreton Canyon are not typical but rather are reduced to confined levees. Three factors control the vertical growth of a terrace: (1) the amount of overspilled sediments brought by turbidity currents, (2) hemipelagic sedimentation and (3) terrace height. The amount of sediment spilling over a terrace decreases with increased terrace elevation. Concurrently, the proportion of hemipelagic fallout depositing on a terrace increases. Terraces are considered to be fossil when the height of the terrace prevents further deposition by overspilling. The terraces studied in this paper are interpreted as having formed during the Holocene, implying that the sediment dynamics of the Capbreton Canyon is continuous through time. Highstand periods differ from lowstand periods because they show a decrease in the energy of erosive processes. Temporal variations in erosive and depositional processes in the canyon are controlled by the Adour River, which delivers large amounts of sediment to the system.  相似文献   

7.
A series of submarine canyons on the southwest slope of Orphan Basin experienced complex failure at 7–8 cal ka that resulted in the formation of a large variety of mass-transport deposits (MTDs) and sediment gravity flows. Ultra-high-resolution seismic-reflection profiles and multiple sediment cores indicate that evacuation zones and sediment slides characterize the canyon walls, whereas the canyon floors and inner-banks are occupied by cohesive debris-flow deposits, which at the mouths of the canyons on the continental rise form large, coalescing lobes (up to 20 m thick and 50 km long). Erosional channels, extending throughout the length of the study area (<250 km), are observed on the top of the lobes. Piston cores show that the channels are partially filled by poorly sorted muddy sand and gravel, capped by inversely to normally graded gravel and sand. Such deposits are interpreted to originate from multi-phase gravity flows, consisting of a lower part behaving as a cohesionless debris flow and an upper part that was fully turbulent.The Holocene age and the widespread synchronous occurrence of these failures indicate a large magnitude earthquake as their possible triggering mechanism. The large debris-flow deposits on the continental rise originated from large failures on the upper continental slope, involving proglacial sediments. Retrogression of these failures led to the eventual failure of marginal sandy till deposits on the upper slope and outer shelf, which due to their low cohesion disintegrated into multi-phase gravity flows. The evacuation zones and slide deposits on the canyon walls were triggered either by the earthquake, or from erosion of the canyon walls by the debris flows. The slides, debris-flows, and multi-phase gravity flows observed in this study are petrographically different, indicating different sediment sources. This indicates that not all failures lead through flow transformation to the production of a multi-phase gravity flow, but only when the sediment source contains ample coarse-grained material. The spatial segregation of the slide, debris-flow, and multi-phase gravity-flow deposits is attributed to the different mobility of each transport process.  相似文献   

8.
The Var turbidite system is a small sandy system located in the Ligurian Basin. It was deposited during the Pliocene-Quaternary in a flat-floored basin formed during the Messinian salinity crisis. The system was fed through time by the Var and Paillon canyons that connect directly to the Var and Paillon rivers. It is still active during the present sea-level highstand. Two main mechanisms are responsible for gravity-flow triggering in the Var turbidite system: (1) mass-wasting events affect mainly the upper part of the continental slope, in areas where volumes of fresh sediment delivered by rivers are highest, and result from the under-consolidation state of slope sediments and earthquakes, and (2) high-magnitude river floods resulting from melting of snow and convective rainfall during fall and spring seasons, and generating hyperpycnal turbidity currents at river mouths when the density of freshwater transporting suspended particles exceeds that of ambient seawater. Failure- and flood-induced gravity flows are involved through time in the construction of the Var Sedimentary Ridge, the prominent right-hand levee of the Var system, and sediment waves. Processes of construction of both the Var Ridge and sediment waves are closely connected. Sandy deposits are thick and abundant in the eastern (downchannel) part of the ridge. Their distribution is highly constrained by the strong difference of depositional processes across the sediment waves, potentially resulting through time in the individualization of large and interconnected sand bodies.  相似文献   

9.
Multi-beam,sub-bottom and multichannel seismic data acquired from the western Nigerian continental margin are analysed and interpreted to examine the architectural characteristics of the lower parts of the submarine canyons on the margin.The presence of four canyons: Avon,Mahin,Benin,and Escravos,are confirmed from the multi-beam data map and identified as cutting across the shelf and slope areas,with morphological features ranging from axial channels,moderate to high sinuosity indices,scarps,terraces and nickpoints which are interpreted as resulting from erosional and depositional activities within and around the canyons.The Avon Canyon,in particular,is characterised by various branches and sub-branches with complex morphologies.The canyons are mostly U-shaped in these lower parts with occasional V-shapes down their courses.Their typical orientation is NE–SW.Sedimentary processes are proposed as being a major controlling factor in these canyons.Sediments appear to have been discharged directly into the canyons by rivers during the late Quaternary low sea level which allows river mouths to extend as far as the shelf edge.The current sediment supply is still primarily sourced from these rivers in the case of the Benin and Escravos Canyons,but indirectly in the case of the Avon and Mahin Canyons where the rivers discharge sediments into the lagoons and the lagoons bring the sediments on to the continental shelf before they are dispersed into the canyon heads.Ancient canyons that have long been buried underneath the Avon Canyon are identified in the multichannel seismic profile across the head of the Avon Canyon,while a number of normal faults around the walls of the Avon and Mahin Canyons are observed in the selected sub-bottom profiles.The occurrence of these faults,especially in the irregular portions of the canyon walls,suggests that they also have some effect on the canyon architecture.The formation of the canyons is attributed to the exposure of the upper marginal area to incisions from erosion during the sea level lowstand of the glacial period.The incisions are widened and lengthened by contouric currents,turbidity currents and slope failures resulting in the canyons.  相似文献   

10.
The continental shelf and the upper slope of the Gulf of Palermo (Southern Tyrrhenian Sea) in the depth interval ranging from 50 to 1,500 m were mapped for the first time with Multi Beam echosounder and high resolution seismic. Seven submarine canyons are confined to the upper slope or indent the shelf-edge and enter the Palermo intraslope basin at a depth of around 1,300 m. The canyons evolved through concurrent top-down turbiditic processes and bottom-up retrogressive mass failures. Most of the mass failure features of the area are related to canyon-shaping processes and only few of them are not confined to the upper slope. In general, these features probably do not represent a significant tsunami hazard along the coast. The geological element that controls the evolution of the canyons and induces sediment instability corresponds to the steep slope gradient, especially in the western sector of the Gulf, where the steepest canyons are located. The structural features mapped in the Palermo offshore contributed to the regulation of mass failure processes in the area, with direct faults and antiform structures coinciding with some of the canyon heads. Furthermore, the occurrence of pockmarks and highs that probably consist of authigenic carbonates above faulted and folded strata suggests a local relationship between structural control, fluid escape processes and mass failure. This paper presents a valuable high-resolution morphologic dataset of the Gulf of Palermo, which constitutes a reliable base for evaluating the geo-hazard potential related to slope failure in the area.  相似文献   

11.
Offshore exploration during the 1960's for gold off southern New South Wales and for tin in Tasmanian waters did not result in the discovery of economic deposits. Although very rich gold-bearing beach placers were worked in the past, individual deposits were small and rested on bed rock; the chances of locating and exploiting similar deposits offshore appear to be remote. In the case of tin, sub-economic resources were outlined in submerged river channels at a number of places off northeastern Tasmania. Such channels can be outlined by seismic methods, but to locate workable tin deposits in the buried alluvium by drilling alone is likely to be impracticable and successful exploration may depend on the development of other geophysical prospecting techniques.

Large resources of rutile- and zircon-bearing heavy-mineral sands have been indicated off the east Australian coast by mining company work, but no economic deposits have been found to date. Studies of the morphology of the eastern shelf by the Bureau of Mineral Resources have revealed linear features believed to be related to shore lines developed during Quaternary low sea-level still stands. The most persistent of these off northern N.S.W. are about 105 m, 85 m, and between 35 and 45 m below present sea level. A widespread change of slope at a depth of 20–30 m marks the base of the main body of the present-day paralic-zone wedge of sediment, but seismic profiles indicate that a veneer of recent sediment commonly extends seawards into water depths of about 100 m. Much of the outer shelf is floored by relict sediments and extensive areas of bed rock crop out on the middle shelf.

Virtually all sub-surface data from company drilling for heavy-mineral sands relates to the present-day paralic-zone wedge of sediments; this wedge includes undisturbed sedimentary sequences deposited during pre-Holocene high sea-level periods. No large economic-grade deposits have been outlined by this work offshore, and there is reason to believe that the bulk of the heavy-mineral deposits formed during Holocene and previous high sea-level stands are located above present sea level. In addition, the best-developed submerged strand lines are in deep water probably inaccessible to mining. Nevertheless, the possibility that substantial deposits occur offshore in moderate water depths exists.

Outcrops of bed rock are extensive in the mid-shelf zone in the southern part of the area, but north of 29° S they are much less common. Significant areas with sediment thicknesses greater than 20 m in water depths of less than 60 m occur to the east of Newcastle, to the southeast of Smoky Cape, and to the north of Yamba. Two sediment sequences, an upper and a lower, are recognizable. Highest heavy-mineral values in surface sediments occur offshore from the Permo-Triassic basins. Subsurface enrichment may occur at the junction of the upper and lower sequences, or where the upper sequence overlies basement. The abundance of heavy minerals is a function of the total sediment throughput, and the intensity and direction of shore-line sorting, so that the highest potential for accumulation occurs in the northern part of the area.

The most likely prospective areas occur mainly near Cape Byron and near Sugarloaf Point. These areas have been defined on the basis of the thickness of sediments, the depth to the base of the upper sequence, the distribution of ancient strand lines, and the abundance of heavy minerals in the surface sediments.  相似文献   


12.
A set of multi-channel seismic profiles (∼15,000 km) is used to study the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge, below the upper parts of the continental rise, herein termed the Cosmonaut Sea Wedge. The wedge is situated stratigraphically below the inferred glaciomarine section and extends for at least 1,200 km along the continental margin with a width that ranges from 80 to about 250 km. The morphology of the wedge and its associated depositional features indicate a complex depositional history, where the deep marine depositional sites were influenced by both downslope and alongslope processes. This interaction resulted in the formation of several proximal depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits indicates that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems. The wide spectrum of depositional geometries in the stratigraphic column reflects dramatic variations in sediment supply from the continental margin as well as varying interaction between downslope and alongslope processes.  相似文献   

13.
Sedimentary, isotopic and bulk geochemical proxies measured in sediment samples of five gravity cores collected in the distal part of the Ogooue turbidite system (around 4000 m-depth) were used to develop a conceptual model to describe the accumulation of terrigenous organic matter (OM) during the last 200,000 yrs BP in the eastern part of the Gulf of Guinea. This model takes into account the influence of the different depositional processes (turbiditic vs hemipelagic sedimentation), geomorphological features and sea-level variations.Total organic carbon (TOC) and the stable organic carbon isotopes of the OM (δ13C) variability follow the highstand/lowstand (interglacial/glacial) cyclicity with a very low accumulation rate of terrigenous OM during periods of high sea-level and higher accumulation rate during period of low sea-level. A sea-level of 80–120 m below present day seems to favor the transfer of terrigenous sediments to the deep offshore environment through the turbidite system and thanks to the connection of the canyons heads with the river system presently located at the shelf edge at −120 m water depth.In this system, terrigenous OM matter delivered by the river accumulate in the sediments via two main processes. Indeed, a part of the terrigenous OM settles in combination with the finest particles forming hemipelagites, while another part, formed of very well preserved land plant debris, is transported and deposited far offshore with turbidity currents. The proportion of terrigenous OM accumulated due to turbidity currents is important as it can represent more than 70% of the carbon accumulated during sea-level lowstand. Moreover, terrigenous OM seems to preferentially accumulate in the levees and the lobes of the system notably due to the higher frequency of organic-rich turbidites.This study demonstrates that gravity flows, influenced by the sea-level variations, can significantly affect the terrigenous OM budget of the deep offshore Atlantic margins and that channel-levee complexes as well as turbidite lobes can be regarded as good sink for terrestrial organic carbon. These processes should be taken into consideration in the context of source rocks exploration but also for the estimation of the general carbon accumulation in ocean sediment.  相似文献   

14.
The continental-shelf morphology is dominated by glacial erosion and deposition. Erosion is prominent on the near-shore shelf and deposition along the outer shelf edge. The continental slope is characterized by delta-shaped progradations (glaciomarine-sediment fans) seaward of the shelf channels. Canyons cross the continental slope only in the region southeast of Cape Farewell. The continental rise is incised by a number of submarine canyons. Broad sediment ridges on the upper continental rise are probably canyon-eroded remains of extensive Plio-Pleistocene fans. A mid-ocean channel which crosses the continental rise is possibly related to the axis of maximum depth of Denmark Strait. Despite the presence of strong bottom currents, there is no indication of depositional sediment drifts along the continental margin of Greenland between Cape Farewell and Denmark Strait. This may be a function of high current velocity or low sediment load.Sea floor older than 60 m.y. B.P. is present just seaward of the Greenland continental margin implying either downwarped continental material or an early rift formed prior to the separation of Greenland from the European plate. A left lateral offset of anomalies 20 and 21 at 65°N indicates a major fracture zone related to the Greenland continental margin offset nearby.  相似文献   

15.
A high-resolution marine geophysical study was conducted during October-November 2006 in the northern Gulf of Aqaba/Eilat, providing the first multibeam imaging of the seafloor across the entire gulf head spanning both Israeli and Jordanian territorial waters. Analyses of the seafloor morphology show that the gulf head can be subdivided into the Eilat and Aqaba subbasins separated by the north-south-trending Ayla high. The Aqaba submarine basin appears starved of sediment supply, apparently causing erosion and a landward retreat of the shelf edge. Along the eastern border of this subbasin, the shelf is largely absent and its margin is influenced by the Aqaba Fault zone that forms a steep slope partially covered by sedimentary fan deltas from the adjacent ephemeral drainages. The Eilat subbasin, west of the Ayla high, receives a large amount of sediment derived from the extensive drainage basins of the Arava Valley (Wadi ’Arabah) and Yutim River to the north–northeast. These sediments and those entering from canyons on the south-western border of this subbasin are transported to the deep basin by turbidity currents and gravity slides, forming the Arava submarine fan. Large detached blocks and collapsed walls of submarine canyons and the western gulf margin indicate that mass wasting may be triggered by seismic activity. Seafloor lineaments defined by slope gradient analyses suggest that the Eilat Canyon and the boundaries of the Ayla high align along north- to northwest-striking fault systems—the Evrona Fault zone to the west and the Ayla Fault zone to the east. The shelf–slope break that lies along the 100 m isobath in the Eilat subbasin, and shallower (70–80 m isobaths) in the Aqaba subbasin, is offset by approx. 150 m along the eastern edge of the Ayla high. This offset might be the result of horizontal and vertical movements along what we call the Ayla Fault on the east side of the structure. Remnants of two marine terraces at 100 m and approx. 150 m water depths line the southwest margin of the gulf. These terraces are truncated by faulting along their northern end. Fossil coral reefs, which have a similar morphological appearance to the present-day, basin margin reefs, crop out along these deeper submarine terraces and along the shelf–slope break. One fossil reef is exposed on the shelf across the Ayla high at about 60–63 m water depth but is either covered or eroded in the adjacent subbasins. The offshore extension of the Evrona Fault offsets a fossil reef along the shelf and extends south of the canyon to linear fractures on the deep basin floor.  相似文献   

16.
High-resolution multi-channel seismic data from continental slopes with minor sediment input off southwest Mallorca Island, the Bay of Oran (Algeria) and the Alboran Ridge reveal evidence that the Messinian erosional surface is terraced at an almost constant depth interval between 320 and 380 m below present-day sea level. It is proposed that these several hundred- to 2,000-m-wide terraces were eroded contemporaneously and essentially at the same depth. Present-day differences in these depths result from subsidence or uplift in the individual realms. The terraces are thought to have evolved during one or multiple periods of sea-level stagnancy in the Western Mediterranean Basin. According to several published scenarios, a single or multiple periods of relative sea-level stillstand occurred during the Messinian desiccation event, generally known as the Messinian Salinity Crisis. Some authors suggest that the stagnancy started during the refilling phase of the Mediterranean basins. When the rising sea level reached the height of the Sicily Sill, the water spilled over this swell into the eastern basin. The stagnancy persisted until sea level in the eastern basin caught up with the western Mediterranean water level. Other authors assigned periods of sea-level stagnancy to drawdown phases, when inflowing waters from the Atlantic kept the western sea level constant at the depth of the Sicily Sill. Our findings corroborate all those Messinian sea-level reconstructions, forwarding that a single or multiple sea-level stagnancies at the depth of the Sicily Sill lasted long enough to significantly erode the upper slope. Our data also have implications for the ongoing debate of the palaeo-depth of the Sicily Sill. Since the Mallorcan plateau experienced the least vertical movement, the observed terrace depth of 380 m there is inferred to be close to the Messinian depth of this swell.  相似文献   

17.
The numerous submarine and elevated terraces that fringe shorelines of the Hawaiian Islands have been used as classic examples of mid-ocean Quaternary eustatic terraces. Submarine canyons are important geomorphic features of island slopes. Later reef growth often partly masks both the terraces and canyons. Although difficult to match from one side of an island to the other, some of the terraces have been correlated to successions of higher and lower Quaternary sea levels determined elsewhere in the world. Subbottom seismic reflection profiling now permits a new view of the problem, especially as related to the most recent marine history of Oahu. The geophysical work allows a partial deciphering of former terraces, now buried by younger reefs and sand, and at the same time shows that the heads of submarine canyons do connect with subaerial valleys beneath the succession of Quaternary nearshore deposits. However, the work has disclosed so many additional buried terraces as to raise serious doubts whether it will be possible, without improved techniques of dating the deposits themselves, to unravel the history of Quaternary sea-level changes in Hawaii, much less to correlate them with events recorded elsewhere.  相似文献   

18.
The continental margin of Western Australia is a rifted or “Atlantic”-type margin, with a complex physiography. The margin comprises a shelf, an upper and lower continental slope, marginal plateaus, a continental rise, and rise or lower slope foothills. Notches or terraces on the shelf reflect pre-Holocene deposition of prograded sediment, whose seaward limit was determined by variations in relative sea level, wave energy, and sediment size and volume. The upper continental slope has four physiographic forms: convex, due to sediment outbuilding (progradation) over a subsiding marginal plateau; scarped, due to erosion of convex slopes; stepped, due to deposition at the base of a scarped slope; and smooth, due to progradation of an upper slope in the absence of a marginal plateau. Lying at the same level as the upper/lower slope boundary are two extensive marginal plateaus: Exmouth and Scott. They represent continental crust which subsided after continental rupture by sea-floor spreading. Differential subsidence, probably along faults, gave rise to the various physiographic features of the plateaus. The deep lower continental slope is broken into straight northeasterly-trending segments, that parallel the Upper Jurassic/Lower Cretaceous rift axis, and northwesterly-trending segments that parallel the transform direction. The trends of the slope foothills are subparallel to the rift direction. The four abyssal plains of the region (Perth, Cuvier, Gascoyne and Argo) indicate a long history of subsidence and sedimentation on Upper Jurassic/Lower Cretaceous oceanic crust.  相似文献   

19.
 Sedimentary processes in the Stromboli Canyon and in the Marsili Basin are studied on the basis of side-scan sonographs. The basin margins are characterized by slump scars, gullies, channels, and large debrites on the Calabrian slope and by straight chutes of fast downslope sediment transport and blocky–hummocky avalanche deposits on the flanks of the Stromboli volcano. In the Stromboli Canyon and in minor deep-sea channels, sediment transport by turbidity currents generates sediment waves. Between the basin margins and the abyssal plain, the outcropping volcanic basement traps part of the sediment coming from the marginal areas. The abyssal plain is characterized by low relief lobes and ponded sediments.  相似文献   

20.
The Golo Margin in eastern Corsica is dissected by four canyons and two gullies which fed turbidite systems. Study of the dispersal of surficial sediments and flow dynamic in the Golo system is based on Kullenberg and interface cores interpreted in relation to a previously published seismic dataset. Cores were described in detail and interpreted within a sedimentary and stratigraphic framework. During the last 42,000 years, gravity processes which occurred in the large systems with a canyon source were mainly slide-induced, differentiated turbulent surges and hyperpycnal flows. Processes occurring in the small system with a gully source are mainly hyperconcentrated and concentrated flows. Deposits from the Corsican Margin can intercalate with products of processes triggered on the Pianosa Ridge located in the eastern part of the basin. During relative sea-level lowstands or during periods of rapid or high-amplitude sea-level fall, only large canyons (South and North Golo) are supplied by carbonate-rich hyperconcentrated and concentrated flows which are channelled in incised valleys on the shelf. During periods of slow or low-amplitude sea-level fall and during sea-level rise, sediments are trapped on a shelf delta and intensely winnowed by shelf hydrodynamic processes. Sand-rich hyperconcentrated and concentrated flows occur. All the systems fed by a canyon are active simultaneously. Gullies form and are active only during periods of sea-level rise. During relative highstands of sea level (Holocene), all the system is draped by hemipelagic sediments. Relative sea-level changes and canyon location relative to river mouths have a strong influence on the nature of sediment input, and the initiation and type of gravity flows which, in turn, control morphology and geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号