首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Understanding the internal stratigraphic architecture of sand-dominated deltas is critical to assessing the extent and distribution of petroleum reservoirs. The stratigraphic architecture and evolution of a major Early–Middle Jurassic fluvio-deltaic system (Plover Formation) on the Australian North West Shelf has been established through integrated analysis of core, borehole image logs and wireline logs for the Calliance field in the Browse Basin. Six facies associations identified in cored intervals are interpreted as tidally influenced channel- and tidal channel-fill complexes (FA1–FA2), crevasse-splay deposits and interchannel marshes (FA3), heterolithic mouthbars and sandflats (FA4), sandy mouthbars (FA5) and offshore transition to offshore (FA6). Therefore, the overall depositional system in the study area is proposed to be a tidally influenced deltaic system, in which FA6 represents prodelta deposits, FA5 and FA4 constitute distributary mouthbar deposits of the delta front and tidally influenced channel and interchannel deposits represent the lower delta plain (FA2, FA1, FA3). Analysis of image lithology and fabric are used to extend interpretation to uncored intervals and to identify intrusive and extrusive igneous units and associated volcaniclastic facies within the formation. Five third-order stratigraphic sequences (S1–S5) record progradational (S1, S2 and S4) and retrogradational (S3 and S5) phases of delta evolution. Paleocurrent indicators derived from borehole image logs indicate common southerly directed sediment dispersal in S2 and S3 and increasingly complex with westerly directions in S4 and S5. Two rift-related depositional phases are recognised separated by a phase of uplift between S3 and S4. The stratigraphic succession of S2 is consistent with the depositional pattern expected in a synrift setting and deposition of the over-thickened sandy succession (FA5 in S4), which is also the major reservoir interval, was most likely controlled by syn-tectonic faulting.  相似文献   

2.
The depositional environments of the wave-dominant successions in the middle to late Miocene Belait and Sandakan Formations in northwestern and northern Borneo, respectively, were determined based on grain size distributions, sedimentary structures and facies successions, as well as trace and microfossil assemblages. Generally, progradational shoreface successions in the Belait Formation were deposited in very low wave energy environments where longshore currents were too weak to generate trough cross-bedding. Shoreface sands are laterally continuous for several km and follow the basin contours, suggesting attached beaches similar to the modern Brunei coastline. In contrast, trough cross-bedding is common in the coarser Sandakan Formation and back-barrier mangrove swamp deposits cap the progradational succession as on the modern northern Dent Peninsula coastline, indicating barrier development and higher wave energy conditions than in the Belait Formation. The Borneo examples indicate that barrier systems that include significant tidal facies form under higher wave energy conditions than attached beaches with virtually no tidal facies. Also, Borneo’s low latitude climate promotes back-barrier mangrove which reduces tidal exchange and reduces tidal influence relative to comparable temperate climate systems. The results of the study indicate that depositional systems on low energy, wave-dominated coasts are highly variable, as are the sand bodies and facies associations they generate.  相似文献   

3.
In order to assess the controlling factors on the evolution of a shelf margin and the timing of sediment transfer to deep waters, a seismic stratigraphic investigation was carried out in the Eocene interval of northern Santos Basin, offshore Brazil. The studied succession configures a complex of prograding slope clinoforms formed in a passive margin and encompasses five seismic facies and their respective depositional settings: shelf-margin deltas/shorefaces, oblique slope clinoforms, sigmoidal slope clinoforms, continental to shelfal deposits and mass-transport deposits. These are stratigraphically arranged as seven depositional sequences recording a total shelf-edge progradation of about 35 km and a progradation rate of 1,75 km/My. Two main types of sequences can be recognized, the first one (type A) being dominated by oblique slope clinoforms and shelf-margin deltas/shorefaces in which shelf-edge trajectories were essentially flat to descending and extensive sandy turbidites were deposited on the foreset to bottomset zones. Sequences of this type are dominated by forced-regressive units deposited during extensive periods of relative sea-level fall. Type B comprises an upper part represented by aggradational shelfal deposits and a lower part composed of mass-transport deposits and high-relief sigmoidal clinoforms with descending shelf-edge trajectory. Steep slump scars deeply cut the shelfal strata and constitutes the boundary between the two intervals observed in type B sequences. Sandy turbidites occur at the same frequency in both forced- and normal-regressive units but are more voluminous within forced-regressive clinoforms associated with shelf-margin deltas/shorefaces. Major slope failures and mass-transport deposits, by the other hand, occurred exclusively in type B sequences during the onset of sea-level fall and their volume are directly related to the thickness of the shelfal sediments formed during the pre-failure normal regressions.  相似文献   

4.
Exceptionally high shelf-subsidence rates (0.8–6.0+ mm/yr), a marked basinward stepping (to east and northeast) of the paleo-Orinoco shelf prism and post-Pliocene uplift of Trinidad all allow the sedimentary facies, process regime and the evolution of the Late Miocene Orinoco Delta to be evaluated from extensive outcrops along the southwest, and south coasts of Trinidad. The ca. 200 km easterly growth (late Miocene to present) of the Orinoco shelf-margin was generated by repeated cross-shelf, regressive–transgressive transits of the Orinoco Delta system. The studied Late Pliocene segment of this shelf-margin prism allows insight to how this margin was built. The Morne L'Enfer Formation (Late Pliocene) along Cedros Bay and Erin Bay in SW Trinidad, provides a window into the facies and process regime of the ca. 850 m-thick deltaic succession at an inner-shelf location some 100 km landward of the coeval shelf edge. Regressive facies associations include tide-influenced delta-front to prodelta deposits (FA1) within upward coarsening units, shoreface to offshore deposits, possibly with prograding mud cape deposits (FA2), and fluvial distributary channel infills (FA3), as well as muddy sediments of floodbasins and coastal embayments between the distributary channels (FA4), and tide-influenced bay-head delta deposits (FA5). Transgressive facies associations show an overall upward fining of grain size and include inner estuary distributary channels with minimal brackish-water or tidal influence (FA6), transition zone fluvial-tidal distributary channels (FA7), tide-dominated mid-outer estuary channel-bars (FA8), and intertidal to supratidal flat units (FA9). The tidal signals in both deltaic and estuarine units include bi-directional paleocurrents (channels), frequent mud drapes within stacked sets of cross-strata (delta-front), fluid mud layers, flaser, wavy and lenticular bedding, and ubiquitous spring-neap stratal bundling. The tide dominated nature of the paleo-delta in SW Trinidad was likely due to its location within an embayed proto-Columbus Channel, though by analogy with the modern Orinoco Delta, it is predicted that the same succession becomes wave dominated to the east as the delta emerged to the open ocean and approached the outer shelf and shelf-edge region. It is difficult to estimate how much of the abundant mud in the Pliocene deltaic sequences was derived from inner-shelf littoral currents with suspended Amazon River mud. The studied Late Pliocene Morne L'Enfer succession contains some 17 high-frequency transgressive–regressive sequences, each ca. 40–60 m thick, estimated to have an average time duration of 90–120 Ky. By analogy, the last glacial cycle on the Orinoco shelf saw the delta prograding across the 200 km-wide shelf to the shelf edge in ca. 100 Ky, then transgressing back to its present position in 20 Ky. A predicted model of the linkage between the study succession on SW Trinidad and its eastward continuation offshore towards the outer shelf and shelf edge in the Columbus Basin is suggested.  相似文献   

5.
The Baram Delta Province is located in the northern part of Sarawak (West Baram Delta) and extends north-eastward into Brunei and further into the south-western part of Sabah (East Baram Delta). The delta is a Neogene basin which developed over an accretionary wedge implying Cretaceous to Eocene sediments during the Late Eocene to Late Miocene times (Tongkul, 1991; Hutchison et al., 2000; Morley et al., 2003; Sapin et al., 2011).Facies and well log analyses were carried out on core and well data for the Late Miocene successions of Baram field, a medium-sized oilfield located in the north-eastern flank of the Baram Delta Oil Province, offshore Sarawak. A numerical model of sea-level fluctuations and progradational basin-fill was generated using the Clastic Modeling Program (Hardy and Waltham, 1992a and 1992b; Waltham, 1992) software to evaluate the possible controls of sea-level changes in the development of the siliciclastic successions and their bounding surfaces. This model was based on four lines of evidence, namely core data, fieldwide wireline logs correlation, seismic sections and average thickness variations across the field.Cored intervals of the Upper Cycle V (Late Miocene) display reservoir successions dominated by thick swaley cross-stratified (SCS) sandstones, thin hummocky cross-stratified sandstones and other shallow marine, wave and storm-dominated facies, interbedded with laminated shelfal mudstones. The vertical facies organisation suggests deposition during shoreface progradation associated with a fall of relative sea level.Analysis and correlation of well logs reveal stacking patterns comprising three scales of depositional cyclicity: the parasequences (∼10–∼30 m thick), the parasequence sets (∼45–∼130 m thick) and the major cycles (∼600–800 m thick).Field-wide, dip-oriented seismic sections show very well-developed horizontal to slightly upward convex layers traceable over great distances, which suggests a ramp-type margin, in which the basin floor dipped gradually seaward and lacked a distinct shelf-slope margin.The evidences gathered demonstrate that the deposition and build-up stratigraphy of the Late Miocene sedimentary successions could have been strongly controlled by superimposed short-term, medium-term and long-term sea-level changes.The simulated sea level and sedimentary basin-fill model, generated by the Clastic Modelling Program, match to the well log correlation. This model illustrates that high frequency sea-level fluctuations enable sands to be distributed over large areas within a shallow, low gradient shelf. Our study shows that integrated studies incorporating cores, well logs, seismic sections and simulated models can be employed as important tools for correlation and reservoir modelling.  相似文献   

6.
The Ostreaelv Formation (latest Pliensbachian–Toarcian) of the Neill Klinter Group is exposed along a >105 km wide, ENE-trending section in Jameson Land, East Greenland. Deposition took place in a large embayment (Jameson Land Basin) that was connected to the proto-Norwegian-Greenland Sea. Lithofacies in the Ostreaelv Formation range from clean sandstone to muddy heterolithic facies typified by strong grain-size contrasts.The Ostreaelv Formation is divided into four distinct and overall retrograding allostratigraphic units each composed of a characteristic set of tide-influenced, tide-dominated and wave-influenced facies associations. The allostratigraphic units are bounded by subaerial unconformities, interpreted as sequence boundaries, and are up to 75 m thick and 16 to >20 km in width. The allostratigraphic units include a sandy heterolithic estuary bay-head delta succession overlain by two sandy tide-dominated estuary fill successions, interbedded with a muddy heterolithic offshore marine succession. Each of the three estuarine allostratigraphic units was accumulated in an incised valley formed during fall in relative sea level and filled during successive transgressions with sediment supplied from marine and reworked fluvial deposits.In the three incised valleys fluvial sediments were deposited on top of an initial subaerial unconformity surface (SU) and were later reworked by succeeding transgressive ravinement along a transgressive surface (TS), thus creating combined SU/TS sequence boundaries. The data from the Ostreaelv Formation also provides knowledge and conceptual understanding of valley infill processes (tidal current, wave and fluvial energy), and both lateral and vertical variations in lithofacies architecture within incised valleys.Moreover, the study provides quantitative input data, such as incised valley dimensions, sand-containing capacity, and geometry to subsurface reservoir characterisation and modelling efforts of estuary fill successions.  相似文献   

7.
Tidal rhythmites have been documented from modern continental shelves and distal offshore settings. In significant contrast to their modern counterparts, sedimentological studies of ancient tidal rhythmites formed in distal offshore settings and quantification of tidal rhythms encoded therein are, however, scarce. This paper presents sedimentological analysis of vertically accreted tidal rhythmites from the Palaeoproterozoic Chaibasa shale facies in India, and quantification of their tidal rhythms. The facies characteristics of the Chaibasa Shale coupled with harmonic analysis of the laminae thicknesses of the sandstone inter-layers corroborate a distal shelf palaeogeography for the generation of the vertically accreted tidal rhythmites. The latter are the distal counterparts of laterally accreted, tidal “bundle” deposits, well preserved within the shallow marine Chaibasa sandstones. The number of lunar days in a synodic month (∼23) estimated from the Chaibasa shale facies is, however, considerably lower than that estimated from the Chaibasa sandstone facies (∼32) suggesting that the tidal record encoded from the Chaibasa shale facies is incomplete.  相似文献   

8.
We analyse tectonic and sedimentary field and subsurface data for the Angola onshore margin together with free-air gravity anomaly data for the offshore margin. This enables us to characterize the mode of syn-rift tectonism inherited from the Precambrian and its impact on the segmentation of the Angola margin. We illustrate that segmentation by the progressive transition from the Benguela transform-rifted margin segment to the oblique-rifted South Kwanza and orthogonal-rifted North Kwanza margin segments. The spatial variation in the intensity of post-rift uplift is demonstrated by the study of a set of geomorphic markers detected in the post-rift succession of the coastal Benguela and Kwanza Basins: Upper Cretaceous to Cenozoic uplifted palaeodeltas, erosional unconformities, palaeovalleys, Quaternary marine terraces and perched Gilbert deltas. The onshore Benguela transform margin has a distinctive, mainly progradational stratigraphic architecture with long-term sedimentary gaps and high-elevation marine terraces resulting from moderate Upper Cretaceous–Cenozoic to major Quaternary uplifting (i.e. 775–1775 mm/ky or m/Ma). By contrast, repeated synchronous episodes of minor Cenozoic to Quaternary uplift occurred along the orthogonal-rifted North Kwanza segment with its Cenozoic aggradational architecture, short-term sedimentary gaps and low-elevation Pleistocene terraces. Margin style likewise governs spatial variations in the volume of offshore sediment dispersed in the associated deep-sea fans. Along the low-lying North Kwanza margin, sedimentation of the broad Cenozoic to Pleistocene Kwanza submarine fan was probably governed by the width of the Kwanza interior palaeodrainage basin combined with the wet tropical Neogene climate. Along the high-rising Benguela margin, the small size of the Benguela deep-sea fan is related to the interplay between moderate continental sediment dispersal from long-lived small catchments and a warm, very arid Neogene climate. However, the driving forces behind the epeirogenic post-rift uplift of the Angola coastal bulge remain a matter of speculation.  相似文献   

9.
The Sardinian Graben System was a part of a NE-SW-oriented extensional basin, rotated counter-clockwise into a N-S-elongate basin, as consequence of the eastward migration of the Apennine orogenic front, in the western Mediterranean during the Neogene.Starting from the early Miocene, the Sardinian Graben was inundated by marine waters, turning progressively into a seaway, characterized by a tidal circulation as consequence of the connection between the Atlantic Ocean to the west and the Paratethys Ocean to the east.In this work, we investigate an area located marginally to the mid-seaway, whose well-exposed volcaniclastic deposits record the local expression of a tidal amplification occurring in a coastal peripheral embayment of the wider Sardinian Seaway.The studied succession is ca. 140 m thick and includes three main units: (i) the 20-m-thick lowermost unit consists of fluvio-lacustrine sandstones and conglomerates belonging to lower delta-plain and delta-platform environments; (ii) the second unit is 60–70 m thick and includes heterolithic sandstones and mudstones, exhibiting a variety of tidal sedimentary structures, and lies on the previous deposits through a tidal ravinement surface; these two units are mostly volcaniclastic in composition, reflecting the dominance of a magmatic source over other extrabasinal components; (iii) the uppermost unit is ca. 50 m thick, erosionally overlies the previous deposits and is made up of shoreface sandstones and open-shelf mudstones, whose composition indicates even less volcaniclastic elements and the prevalence of other clastic alongshore-derived components.Based on the results of the facies analysis, the study succession is interpreted as the infill of an incised valley along the southern flank of a structural high. The valley was excavated during a phase of relative sea-level lowstand (Aquitanian?) preceding a subsequent stage of major transgression (Burdigalian). Initially, a fluvial system impinged the valley from the west favoring the progradation of a deltaic system in a shallow-marine embayment. During an early stage of transgression, the isolation of a part of this coastal area generated by the building of a barrier island, produced the onset of a tidal-flat sedimentation over the previous deposits. A late transgression occurred through the inundation of this coastal area by marine waters and the consequent back-stepping of beach-barrier and open-shelf strata.The sedimentological features of this stratigraphic succession indicate as this valley was filled in a tectonic setting with a high rate of accommodation, where the tidal influence progressively increased during sediment accumulation, possibly due to the marginal position respect to a wider tide-dominated marine conduit.The present paper thus: (i) documents for the first time a tidal signature in the lower Miocene strata of Sardinia; (ii) indicates new possible relationships with other, coeval seaway successions of the western and northern Mediterranean area; (iii) suggests constrains for palaeogeographic reconstructions; (iv) and throws the basis for future researches on the Sardinian Seaway.  相似文献   

10.
Five depositional bodies occur within the Quaternary deposits of the northwestern Alboran Sea: Guadalmedina-Guadalhorce prodelta, shelf-edge wedges, progradational packages, Guadiaro channel-levee complex, and debris flow deposits. The sedimentary structure reflects two styles of margin growth characterized: 1) by an essentially sediment-starved outer, shelf and upper slope and by divergent slope seismic facies; 2) by a prograding sediment outer shelf, and parallel slope seismic facies. Eustatic oscillations, sediment supply, and tectonic tilting have controlled the type of growth pattern, and the occurrence of the depositional bodies. Debris flows were also controlled locally by diapirism.  相似文献   

11.
The present paper highlights the sequence development within the Mesoproterozoic Koldaha Shale Member of the Kheinjua Formation, Vindhyan Supergroup which records the occurrence of a forced regressive wedge and associated discontinuity surfaces at the base of the wedge. Nine lithofacies have been identified within the study area that are grouped into three lithofacies associations varying in depositional setting from outer shelf, through shoreface-foreshore-beach to continental braidplain. The outer shelf sediments are aggradational to slightly progradational representing highstand systems tract. The rapidly progradational, wedge-shaped shoreface to foreshore-beach succession occurs sharply or erosively above the outer shelf sediments and is bounded by a regressive surface of marine erosion (RSME) at the base and by a subaerial unconformity at the top. This, along with its downstepping trajectory, supports deposition of this sedimentary wedge during falling sea level. A laterally extensive soft sediment deformation zone occurs at the base of the wedge.The forced regressive wedge is incised by fluvial braidplain deposits that rest on an erosive surface representing a sequence boundary. The thin braidplain deposits are the product of aggradation during a subsequent early rise in relative sea level, and thus, they are inferred to represent a lowstand systems tract. The constituent architectural elements that characterize the braidplain deposits are downstream accretion elements and small channel elements. Further landward, the base and top of the shoreface wedge merge to form an unconformity across deposits that rest directly on the outer shelf sediments. The identification of forced regressive wedges has significant economic importance in view of the potential occurrence of hydrocarbons within the Proterozoic formations.  相似文献   

12.
The Plio-Pleistocene stratigraphic record of the Peri-Adriatic basin (eastern central Italy) is well exposed along the uplifted western margin of the basin and consists of a series of coarse-grained slope canyon fills encased in a thick succession of hemipelagic mudstones. This study deals with the detailed sedimentology, stratal architecture, and sequence-stratigraphic interpretation of two of these submarine canyon-fills (namely CMC1 and CMC2) exposed at Colle Montarone. These strata contain widespread evidence of gravity-driven sedimentation processes, with high- and low-density turbidity currents, slumps and cohesive debris flows being responsible for most of the sediment transport and deposition. Beds are organised into four recurrent lithofacies, each corresponding to a specific deep-water depositional element: (i) clast-supported conglomerates (channel complexes); (ii) thin-bedded sandstones and mudstones (levee-overbank); (iii) very thinly-bedded mudstones (tributary channels); (iv) pebbly mudstones and chaotically bedded mudstones (mass-transport complexes).  相似文献   

13.
Triassic platform-margin deltas in the western Barents Sea   总被引:1,自引:0,他引:1  
The Early to Middle Triassic in the Barents Sea was dominated by prograding transgressive-regressive sequences. Internal clinoform geometries indicate that sediments were derived from the Baltic Shield in the south and the Uralian Mountains in the east and southeast. These systems were formed in a large, relatively shallow epicontinental basin, where modest variations in relative sea-level relocated the shoreline significantly. This study shows the development of strike elongated depositional wedges that thicken just basinward of the platform-edge. Seismic facies and time-thickness maps show the position and development of platform-margin delta complexes within each sequence. Seismic clinoforms and trajectory analysis show significant lateral variation from the axis of the delta complex to areas adjacent to the main delivery system. Frequent toplap geometries are observed in proximity to coarse-grained deposits, while aggradation of seismic clinoforms characterizes areas laterally to the platform-margin deltas. Complex shifts in depocenters are revealed by large-scale compensational stacking pattern and relict platform breaks. Locally, relict breaks are created due to pre-existing paleo-topography. Platform-margin deltas can be identified by careful mapping of clinoform geometries, clinoform angles and trajectories. However, seismic analysis of prograding clinoform units indicate that the shoreline and delta complexes commonly are positioned landward of the platform-edge. Deposition of platform-margin deltas is sometimes caused by locally increased sediment supply during slightly rising relative sea-level, and occasionally caused by a regional drop in relative sea-level with significant shelf bypass.Development, position, thickness and facies distribution of platform deltas and platform-margin deltas of very broad low-relief basins, like the Triassic of the epicontinental Barents Sea basin, are strongly sensitive to changes in relative sea-level due to rapid emergence and submergence of wide areas, and to changes in position of major rivers supplying sand to the delta systems. In this respect, the depositional model of the present study deviates from models of clinoform successions obtained from small and narrow basins or siliciclastic platforms with high coarse-clastic sediment supply.  相似文献   

14.
The evolution of paleo-Changjiang incised-valley fills in relation to step-like, postglacial sea-level rises is presented, based on sedimentary facies analyses and 14C age dating on three sediment cores. Timing of rapid transgressions deduced from the succession of incised-valley fills correlate well with Barbados's very rapid, sea-level rise periods. By contrast, estuarine deposits aggraded actively, and the coastline did not retreat markedly during the Younger Dryas (YD) cooling event when the rising rate decelerated considerably relative to stages before and after the YD.  相似文献   

15.
磁性矿物的早期成岩作用是沉积物埋藏后的重要过程,辨别早期成岩作用,才能更好地解释地层的矿物磁性变化。本研究对珠江三角洲顺德平原全新世钻孔MZ孔进行沉积相和室温磁性分析,并辅以热磁分析鉴定磁性矿物,以探讨钻孔不同深度和沉积相的早期成岩作用阶段。结果表明,MZ孔全新世地层自下而上包括感潮河道、河口湾和三角洲相。室温磁性特征与沉积相缺乏明显关联,表现出强烈的早期成岩作用。此外,全新世晚期岩芯磁性特征还受人类活动影响。该孔早期成岩作用以磁性矿物溶解和形成自生黄铁矿为主。在三角洲前缘相的上部和河口湾相底部保存了硫复铁矿。根据矿物组合推测以4.51~4.56 m和30.4~30.5 m两个深度为代表的硫复铁矿形成机制不同,即三角洲前缘相中硫复铁矿可能形成于早期成岩作用的硫酸盐还原阶段,而河口湾相的硫复铁矿形成于甲烷厌氧氧化阶段,后者的含量随着深度增加逐渐增多。上述现象说明,沉积环境可以通过影响有机质和硫酸根离子的供应量,决定磁性矿物所达到的早期成岩作用阶段。  相似文献   

16.
Remnants of an Eocene fan system are preserved onshore at San Diego and in the central part of the southern California borderland. Even though faults and erosion have truncated its margins, geophysical data and exploratory wells indicate that remaining parts of the fan extend beneath an offshore area nearly 400-km long and 40- to 100-km wide. Environments representing fluvial, fan-delta, shelf-channel, overlapping inner- to outer-fan, and basin-plain facies are recognized or inferred. Three progradational cycles onshore and two distinct pulses of sand accumulation offshore are attributable to eustatic low sea-level stands rather than to tectonic uplift or shifts in depositional patterns.  相似文献   

17.
The Wollaston Forland Basin, NE Greenland, is a half-graben with a Middle Jurassic to Lower Cretaceous basin-fill. In this outcrop study we investigate the facies, architectural elements, depositional environments and sediment delivery systems of the deep marine syn-rift succession. Coarse-grained sand and gravel, as well as large boulders, were emplaced by rock-falls, debris flows and turbulent flows sourced from the immediate footwall. The bulk of these sediments were point-sourced and accumulated in a system of coalescing fans that formed a clastic wedge along the boundary fault system. In addition, this clastic wedge was supplied by a sand-rich turbidite system that is interpreted to have entered the basin axially, possibly via a prominent relay ramp within the main fault system. The proximal part of the clastic wedge consists of a steeply dipping, conformable succession of thick-bedded deposits from gravity flows that transformed down-slope from laminar to turbulent flow behaviour. Pervasive scour-and-fill features are observed at the base of the depositional slope of the clastic wedge, c. 5 km into the basin. These scour-fills are interpreted to have formed from high-density turbulent flows that were forced to decelerate and likely became subject to a hydraulic jump, forming plunge pools at the base of slope. The distal part of the wedge represents a basin plain environment and is characterised by a series of crude fining upward successions that are interpreted to reflect changes in the rate of accommodation generation and sediment supply, following from periodic increases in fault activity. This study demonstrates how rift basin physiography directly influences the behaviour of gravity flows. Conceptual models for the stratigraphic response to periodic fault activity, and the transformation and deposition of coarse-grained gravity flows in a deep water basin with strong contrasts in slope gradients, are presented and discussed.  相似文献   

18.
The sequence-stratigraphic investigation by Very High-Resolution (VHR) seismic profiles allowed recognition of the detailed architecture of the late Pleistocene and Holocene succession of the Venice area. In this way deposits previously known by the analyses of scattered cores, mainly taken along the lagoon margin and the littoral strips, have been correlated at regional scale including the near offshore sector and the result has pointed out the lateral variability of the stratal architecture. Late Pleistocene deposits consist of an aggrading floodplain and fluvial channel fills accumulated during decreasing eustatic sea level, and they are coeval with offlapping forced regressive marine wedges in the Central Adriatic basin. The Holocene sequence is composed of three main seismic units separated by major stratal surfaces. Unit 1 (up to 9 m thick) is formed by channelized deposits separated by areas showing sub-horizontal and hummocky reflectors, and is bounded at the base by a surface that records prolonged conditions of subaerial exposure and at the top by a flatter surface resulting from erosion by marine processes. Deposits of Unit 1 are interpreted as estuarine and distributary channel fills, and back-barrier strata. Unit 2 is well distinguishable from Unit 1 only in the offshore area and at the barrier island bounding the Venice Lagoon, and is composed of a prograding marine wedge (up to 10 m thick) that interacts laterally with ebb tidal deltas. Unit 3 consists of a tidal channel complex and inlet deposits, which testify the evolution of the lagoon area. Tidal channels are entrenched in the lagoon mud flat (coeval with Units 1–2) and cut the Pleistocene–Holocene boundary in several places.Following current sequence-stratigraphic concepts, the Holocene sequence is composed of a paralic transgressive systems tract (TST) (Unit 1) overlying a sequence boundary (the Pleistocene–Holocene boundary) and overlain by a marine highstand systems tract (HST) (Unit 2) in seaward locations and by highstand lagoonal deposits landwards. TST and HST are separated by a downlap surface that is amalgamated with a wave ravinement surface in several places. Unit 3 is coeval with the upper part of Unit 2, and its development has been favoured by human interventions, which led to a transgression limited to the lagoon area.Local factors during the deposition, i.e. subsidence, sediment supply, physiography, and current/wave regimes, led to a significant lateral variability in the architecture of the Holocene sequence, as evidenced by the extreme thickness variation of the TST along both depositional strike and dip. The HST, instead, shows less pronounced strike variations in the stratal architecture. Also, present data clearly evidence that the human impact has a great relevance in influencing the late Holocene sedimentation.  相似文献   

19.
《Marine Geology》2001,172(3-4):225-241
The Piedras Estuary is one of the most significative estuarine systems on the mesotidal Huelva Coast, in the Northwestern portion of the Cadix Gulf. The river mouth is presently an estuarine lagoon partially closed by a large spit constructed from an old barrier island system. This estuary is in an advanced state of infilling and its tidal prism has decreased during the Holocene causing instability and clogging of old inlets and transforming the barrier island chain into a spit. Sedimentation is controlled by the interaction of ebb tide currents and the prevailing SW waves. The main sediment supply is provided by an intensive West-to-East longshore current, transporting sand material from Portuguese cliffs and the Guadiana River. Tidal range is mesotidal (2.0 m) and the mean significant wave height is 0.6 m with an average period of 3.6 s.A boxcore study allowed five depositional facies to be distinguished in the Piedras Estuary mouth: (1) main ebb channels; (2) marginal flood channels; (3) ebb-tidal delta lobes; (4) marginal levees; and (5) curved spits. The recent evolution studied in this area suggests a cyclic evolutionary model for the ebb-tidal delta system. The architectural facies relations shown by the vibracore/boxcore study confirm that the apical growth of the spit occurred over the innermost of these ebb-tidal deltas. Consequently the preserved sequence shows the ebb-tidal delta facies under the spit facies.  相似文献   

20.
A progradational sedimentary body, the infralittoral prograding wedge (IPW), has been developing from the mean fair-weather wave-base level to the storm wave-base level between the onshore (beach) and the offshore (inner continental shelf) depositional zones along the Spanish coast during the Late Holocene. The main sedimentary body is composed of large inclined master beds which prograde seawards parallel to the shoreline, formed by sediments swept offshore by waves from shallow-water littoral environments. The inclined beds downlap onto finer-grained offshore sediments and, in turn, are overlain by shoreface deposits. The IPW is generated by downwelling storm currents and associated seaward transport of sediment. It represents a new depositional model for clastic wave-dominated coasts, and its identification requires a new subdivision of the nearshore environment. Received: 10 June 1999 / Revision accepted: 15 February 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号