首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Qiangtang Basin is a significant prospective area for hydrocarbon and gas hydrate resources in the Tibetan Plateau, China. However, relatively little work has been performed to characterise heat flow in this basin, which has restricted petroleum and gas hydrate exploration. In this study, we compare present and palaeo-heat flow in the Qiangtang Basin to provide information on geothermal regime, hydrocarbon generation and permafrost that is necessary for further petroleum and gas hydrate exploration. We base our study on temperature data from a thermometer well, thermal conductivity tests, vitrinite reflectance data, homogenisation temperature data from fluid inclusions, stratigraphic information and a time-independent modelling approach. Our results indicate that in the central Qiangtang Basin, the present thermal gradient is approximately 15.5 °C/km, and heat flow is approximately 46.69 mW/m2. Heat flow in the Qiangtang Basin is not relatively stable since the Early Jurassic, as previous research has suggested, and it is generally decreasing with time. Additionally, there is a clear difference between the hottest thermal regime of the southern and northern Qiangtang Depressions during Cretaceous to Pleistocene time. In the southern Qiangtang Depression, the palaeogeothermal gradient is approximately 32.0 °C/km, and palaeo-heat flow is approximately 70 mW/m2. However, in the northern Qiangtang Depression, the palaeogeothermal gradient exceeds 81.8 °C/km, and palaeo-heat flow is greater than 172.09 mW/m2. The high thermal regime in the northern Qiangtang Depression is driven mainly by hydrothermal convection. Gas reservoirs are possible targets for hydrocarbon exploration in this depression. Currently, the northwestern part of the northern Qiangtang Depression is the most favourable area for gas hydrate exploration in the Qiangtang Basin.  相似文献   

2.
This paper discusses origin and charging directions of oil fields on the Shaleitian Uplift, Bohai Bay basin. The Shaleitian Uplift is a footwall uplift surrounded by three sags containing mature source rocks. The origins of the four oil fields on the Shaleitian Uplift, both in terms of source rock intervals and in terms of generative kitchens, were studied using biomarker distributions for 61 source rock samples and 27 oil samples. Hierarchical cluster analysis using 12 parameters known to be effective indicators of organic matter input and/or depositional conditions allowed the identification of six oil types or classes. These six oil classes could then be linked to three distinct source rock intervals ranging in age from 43.0 Ma to 30.3 Ma. The third member (43.0–38.0 Ma in age) and first member (35.8–32.8 Ma) of the Eocene Shahejie Formation, and the third member of the Oligocene Dongying Formation (32.8–30.3 Ma) each sourced one class of oil. The other three classes represent mixtures of oil generated from multiple source rock intervals. Traps on the Shaleitian Uplift were charged in the east by oil generated from the Eocene Shahejie Formation in the Bozhong Sag, in the southeast by oil generated from the Eocene Shahejie and then Oligocene Dongying formations in the southwestern part of the Bozhong Sag and/or in the eastern part of the Shanan Sag, and in the southwest by oil generated from the Eocene Shahejie Formation in the western part of the Shanan Sag. The estimated migration distances range from less than 5 km to about 20 km. The compositional heterogeneity within fields and multiple-parameter comparisons between oils from nearby wells in different fields have proven to be a powerful tool to determine the in-filling histories of oil fields in cases where multiple source rock intervals and multiple generative kitchens exist.  相似文献   

3.
We use a simple approach to estimate the present-day thermal regime along the northwestern part of the Western Indian Passive Margin, offshore Pakistan. A compilation of bottom borehole temperatures and geothermal gradients derived from new observations of bottom-simulating reflections (BSRs) allows us to constrain the relationship between the thermal regime and the known tectonic and sedimentary framework along this margin. Effects of basin and crustal structure on the estimation of thermal gradients and heat flow are discussed. A hydrate system is located within the sedimentary deep marine setting and compared to other provinces on other continental margins. We calculate the potential radiogenic contribution to the surface heat flow along a profile across the margin. Measurements across the continental shelf show intermediate thermal gradients of 38–44 °C/km. The onshore Indus Basin shows a lower range of values spanning 18–31 °C/km. The Indus Fan slope and continental rise show an increasing gradient from 37 to 55 °C/km, with higher values associated with the thick depocenter. The gradient drops to 33 °C/km along the Somnath Ridge, which is a syn-rift volcanic construct located in a landward position relative to the latest spreading center around the Cretaceous–Paleogene transition.  相似文献   

4.
Two seismic sections offshore Arauco and Coyhaique, Chile, have been analysed to better define the seismic character of hydrate-bearing sediments. The velocity analysis was used to estimate the gas-phase concentration, which can serve to correlate hydrate presence to the geological features. The velocity model allowed us to recognise the hydrate layer above the bottom simulating reflector (BSR), and the free gas layer below it. The velocity field is affected by strong lateral variation, showing maximum (above the BSR) and minimum (below the BSR) values in the southern sector. Here, highest gas hydrate and free gas concentrations were calculated (15% and 2.7% of total volume respectively). The estimated geothermal gradient ranges from 35 to 95°C/km. In the northern sector, the highest gas hydrate and free gas concentrations are 15% and 0.2% of total volume respectively, and the geothermal gradient is uniform and equal to about 30°C/km.  相似文献   

5.
The studied area is a 130 km long fast spreading graben in Central Greece. Its complex geodynamical setting includes both the presence of a subduction slab at depth responsible for the recent (Quaternary) volcanic activity in the area and the western termination of a tectonic lineament of regional importance (the North-Anatolian fault). A high geothermal gradient is made evident by the presence of many thermal springs with temperatures from 19 to 82 °C, that discharge along the normal faults bordering the graben.In the period 2004–2012, 58 gas and 69 water samples were collected and their chemical and isotopic analysis revealed a wide range of compositions.Two main groups of thermal waters can be distinguished on the basis of their chemical composition. The first, represented by dilute waters (E.C. <0.6 mS/cm) of the westernmost sites, is characterised by the presence of CH4-rich and mixed N2–CH4 gases. The second displays higher salinities (E.C. from 12 to 56 mS/cm) due to mixing with a modified marine component. Reservoir temperatures of 150–160 °C were estimated with cationic geothermometers at the easternmost sites.Along the graben, from west to east, the gas composition changes from CH4- to CO2-dominated through mixed N2–CH4 and N2–CO2 compositions, while at the same time the He isotopic composition goes from typical crustal values (<0.1 R/RA) up to 0.87 R/RA, showing in the easternmost sites a small (3–11%) but significant mantle input. The δ13C values of the CO2-rich samples suggest a mixed origin (mantle and marine carbonates).  相似文献   

6.
The multichannel seismic data along one long-offset survey line from Krishna-Godavari (K-G) basin in the eastern margin of India were analyzed to define the seismic character of the gas hydrate/free gas bearing sediments. The discontinuous nature of bottom simulating reflection (BSR) was carefully examined. The presence of active faults and possible upward fluid circulation explain the discontinuous nature and low amplitude of the BSR. The study reveals free gas below gas hydrates, which is also indicated by enhancement of seismic amplitudes with offsets from BSR. These findings were characterized by computing seismic attributes such as the reflection strength and instantaneous frequency along the line. Geothermal gradients were computed for 18°C and 20°C temperature at the depth of BSR to understand the geothermal anomaly that can explain the dispersed nature of BSR. The estimated geothermal gradient shows an increase from 32°C/km in the slope region to 41°C/km in the deeper part, where free gas is present. The ray-based travel time inversion of identifiable reflected phases was also carried out along the line. The result of velocity tomography delineates the high-velocity (1.85–2.0 km/s) gas hydrate bearing sediments and low-velocity (1.45–1.5 km/s) free gas bearing sediments across the BSR.  相似文献   

7.
The Pearl River Mouth Basin (PRMB) and Qiongdongnan Basin (QDNB) are oil and gas bearing basins in the northern margin of the South China Sea (SCS). Geothermal survey is an important tool in petroleum exploration. A large data set comprised of 199 thermal conductivities, 40 radioactive heat productions, 543 measured geothermal gradient values, and 224 heat flow values has been obtained from the two basins. However, the measured geothermal gradient data originated from diverse depth range make spatial comparison a challenging task. Taking into account the variation of conductivity and heat production of rocks, we use a “uniform geothermal gradient” to characterize the geothermal gradient distribution of the PRMB and QDNB. Results show that, in the depth interval of 0–5 km, the “uniform geothermal gradient” in the PRMB varies from 17.8 °C/km to 50.2 °C/km, with an average of 32.1 ± 6.0 °C/km. In comparison, the QDNB has an average “uniform geothermal gradient” of 31.9 ± 5.6 °C/km and a range between 19.7 °C/km and 39.5 °C/km. Heat flows in the PRMB and QDNB are 71.3 ± 13.5 mW/m2 and 72.9 ± 14.2 mW/m2, respectively. The heat flow and geothermal gradient of the PRMB and QDNB tend to increase from the continental shelf to continental slope owing to the lithosphereic/crustal thinning in the Cenozoic.  相似文献   

8.
Reservoirs where tectonic fractures significantly impact fluid flow are widespread. Industrial-level shale gas production has been established from the Lower Cambrian Niutitang Formation in the Cen'gong block, South China; the practice of exploration and development of shale gas in the Cen'gong block shows that the abundance of gas in different layers and wells is closely related to the degree of development of fractures. In this study, the data obtained from outcrop, cores, and logs were used to determine the developmental characteristics of such tectonic fractures. By doing an analysis of structural evolution, acoustic emission, burial history, logging evaluation, seismic inversion, and rock mechanics tests, 3-D heterogeneous geomechanical models were established by using a finite element method (FEM) stress analysis approach to simulate paleotectonic stress fields during the Late Hercynian—Early Indo-Chinese and Middle-Late Yanshanian periods. The effects of faulting, folding, and variations of mechanical parameters on the development of fractures could then be identified. A fracture density calculation model was established to determine the quantitative development of fractures in different stages and layers. Favorable areas for shale gas exploration were determined by examining the relationship between fracture density and gas content of three wells. The simulation results indicate the magnitude of minimum principal stress during the Late Hercynian — Early Indo-Chinese period within the Cen'gong block is −100 ∼ −110 MPa with a direction of SE-NW (140°–320°), and the magnitude of the maximum principal stress during the Middle-Late Yanshanian period within the Cen'gong block is 150–170 MPa with a direction of NNW-SSE (345°–165°). During the Late Hercynian — Early Indo-Chinese period, the mechanical parameters and faults play an important role in the development of fractures, and fractures at the downthrown side of the fault are more developed than those at the uplifted side; folding plays an important role in the development of fractures in the Middle-Late Yanshanian period, and faulting is a secondary control. This 3-D heterogeneous geomechanical modelling method and fracture density calculation modelling are not only significant for prediction of shale fractures in complex structural areas, but also have a practical significance for the prediction of other reservoir fractures.  相似文献   

9.
《Marine and Petroleum Geology》2012,29(10):1932-1942
A dense seismic reflection survey with up to 250-m line-spacing has been conducted in a 15 × 15 km wide area offshore southwestern Taiwan where Bottom Simulating Reflector is highly concentrated and geochemical signals for the presence of gas hydrate are strong. A complex interplay between north–south trending thrust faults and northwest–southeast oblique ramps exists in this region, leading to the formation of 3 plunging anticlines arranged in a relay pattern. Landward in the slope basin, a north–south trending diapiric fold, accompanied by bright reflections and numerous diffractions on the seismic profiles, extends across the entire survey area. This fold is bounded to the west by a minor east-verging back-thrust and assumes a symmetric shape, except at the northern and southern edges of this area, where it actively overrides the anticlines along a west-verging thrust, forming a duplex structure. A clear BSR is observed along 67% of the acquired profiles. The BSR is almost continuous in the slope basin but poorly imaged near the crest of the anticlines. Local geothermal gradient values estimated from BSR sub-bottom depths are low along the western limb and crest of the anticlines ranging from 40 to 50 °C/km, increase toward 50–60 °C/km in the slope basin and 55–65 °C/km along the diapiric fold, and reach maximum values of 70 °C/km at the southern tip of the Good Weather Ridge. Furthermore, the local dips of BSR and sedimentary strata that crosscut the BSR at intersections of any 2 seismic profiles have been computed. The stratigraphic dips indicated a dominant east–west shortening in the study area, but strata near the crest of the plunging anticlines generally strike to southwest almost perpendicular to the direction of plate convergence. The intensity of the estimated bedding-guided fluid and gas flux into the hydrate stability zone is weaker than 2 in the slope basin and the south-central half of the diapiric fold, increases to 7 in the northern half of the diapiric fold and plunging anticlines, and reaches a maximum of 16 at the western frontal thrust system. Rapid sedimentation, active tectonics and fluid migration paths with significant dissolved gas content impact on the mechanism for BSR formation and gas hydrate accumulation. As we begin to integrate the results from these studies, we are able to outline the regional variations, and discuss the importance of structural controls in the mechanisms leading to the gas hydrate emplacements.  相似文献   

10.
Natural fractures observed within the Lower Jurassic shales of the Cleveland Basin show evidence that pore pressure must have exceeded the lithostatic pressure in order to initiate horizontal fractures observed in cliff sections. Other field localities do not show horizontal fracturing, indicating lower pore pressures there. Deriving the burial history of the basin from outcrop, VR and heat-flow data gives values of sedimentation rates and periods of depositional hiatus which can be used to assess the porosity and pore pressure evolution within the shales. This gives us our estimate of overpressure caused by disequilibrium compaction alone, of 11 MPa, not sufficient to initiate horizontal fractures. However, as the thermal information shows us that temperatures were in excess of 95 °C, secondary overpressure mechanisms such as clay diagenesis and hydrocarbon generation occurred, contributing an extra 11 MPa of overpressure. The remaining 8.5 MPa of overpressure required to initiate horizontal fractures was caused by fluid expansion due to hydrocarbon generation and tectonic compression related to Alpine orogenic and Atlantic opening events. Where horizontal fractures are not present within the Lower Jurassic shales, overpressure was unable to build up as high due to proximity to the lateral draining of pressure within the Dogger Formation. The palaeopressure reconstruction techniques used within this study give a quick assessment of the pressure history of a basin and help to identify shales which may currently have enhanced permeability due to naturally-occurring hydraulic fractures.  相似文献   

11.
Shales of the Silurian Dadaş Formation exposed in the southeast Anatolia were investigated by organic geochemical methods. The TOC contents range from 0.24 to 1.48 wt% for the Hazro samples and 0.19 to 3.58 wt% for the Korudağ samples. Tmax values between 438 and 440 °C in the Hazro samples indicate thermal maturity; Tmax values ranging from 456 to 541 °C in the Korudağ samples indicate late to over-maturity. Based on the calculated vitrinite reflectance and measured vitrinite equivalent reflectance values, the Korudağ samples have a maximum of 1.91%R(g-v), in the gas generation window, while a maximum value of 0.79%R(amor-v) of one sample from the Hazro section is in the oil generation window. Illite crystallinity (IC) values of all samples are consistent with maturity results.Pr/Ph ratios ranging from 1.32 to 2.28 and C29/C30 hopane ratios > 1.0 indicate an anoxic to sub-oxic marine-carbonate depositional environment.The Hazro shales do not have any shale oil or shale gas potential because of their low oil saturation index values and early to moderate thermal maturation. At first glance, the Korudağ shales can be considered a shale gas formation because of their organic richness, thickness and thermal over-maturity. However, the low silica content and brittle index values of these shales are preventing their suitability as shale gas resource systems.  相似文献   

12.
The petroleum generation and charge history of the northern Dongying Depression, Bohai Bay Basin was investigated using an integrated fluid inclusion analysis workflow and geohistory modelling. One and two-dimensional basin modelling was performed to unravel the oil generation history of the Eocene Shahejie Formation (Es3 and Es4) source rocks based on the reconstruction of the burial, thermal and maturity history. Calibration of the model with thermal maturity and borehole temperature data using a rift basin heat flow model indicates that the upper interval of the Es4 source rocks began to generate oil at around 35 Ma, reached a maturity level of 0.7% Ro at 31–30 Ma and a peak hydrocarbon generation at 24–23 Ma. The lower interval of the Es3 source rocks began to generate oil at around 33–32 Ma and reached a maturity of 0.7% Ro at about 27–26 Ma. Oil generation from the lower Es3 and upper Es4 source rocks occurred in three phases with the first phase from approximately 30–20 Ma; the second phase from approximately 20–5 Ma; and the third phase from 5 Ma to the present day. The first and third phases were the two predominant phases of intense oil generation.Samples from the Es3 and Es4 reservoir intervals in 12 wells at depth intervals between 2677.7 m and 4323.0 m were investigated using an integrated fluid inclusion workflow including petrography, fluorescence spectroscopy and microthermometry to determine the petroleum charge history in the northern Dongying Depression. Abundant oil inclusions with a range of fluorescence colours from near yellow to near blue were observed and were interpreted to represent two episodes of hydrocarbon charge based on the fluid inclusion petrography, fluorescence spectroscopy and microthermometry data. Two episodes of oil charge were determined at 24–20 Ma and 4–3 Ma, respectively with the second episode being the predominant period for the oil accumulation in the northern Dongying Depression. The oil charge occurred during or immediately after the modelled intense oil generation and coincided with a regional uplift and a rapid subsidence, suggesting that the hydrocarbon migration from the already overpressured source rocks may have been triggered by the regional uplift and rapid subsidence. The expelled oil was then charged to the already established traps in the northern Dongying Depression. The proximal locations of the reservoirs to the generative kitchens and the short oil migration distance facilitate the intimate relationship between oil generation, migration and accumulation.  相似文献   

13.
Structured organic matters of the Palynomorphs of mainly dinoflagellate cysts are used in this study for dating the limestone, black shale, and marl of the Middle Jurassic (Bajocian–Bathonian) Sargelu Formation, Upper Jurassic (Upper Callovian – Lower Oxfordian) Naokelekan Formation, Upper Jurassic (Kimeridgian and Oxfordian) Gotnia and Barsarine Formations, and Upper Jurassic – Lower Cretaceous (Tithonian-Beriassian) Chia Gara source rock Formations while spore species of Cyathidites australis and Glechenidites senonicus are used for maturation assessments of this succession. Materials' used for this palynological study are 320 core and cutting samples of twelve oil wells and three outcrops in North Iraq.Terpane and sterane biomarker distributions, as well as stable isotope values, were determined for oils potential source rock extracts of Jurassic-Lower Cretaceous strata to determine valid oil-to-source rock correlations in North Iraq. Two subfamily carbonate oil types-one of Middle Jurassic age (Sargelu) carbonate rock and the other of mixed Upper Jurassic/Cretaceous age (Chia Gara) with Sargelu sources as well as a different oil family related to Triassic marls, were identified based on multivariate statistical analysis (HCA & PCA). Middle Jurassic subfamily A oils from Demir Dagh oil field correlate well with rich, marginally mature, Sargelu source rocks in well Mk-2 near the city of Baiji. In contrast, subfamily B oils have a greater proportion of C28/C29 steranes, indicating they were generated from Upper Jurassic/Lower Cretaceous carbonates such as those at Gillabat oil field north of Mansuriyah Lake. Oils from Gillabat field thus indicate a lower degree of correlation with the Sargelu source rocks than do oils from Demir Dagh field.Palynofacies assessments are performed for this studied succession by ternary kerogen plots of the phytoclast, amorphous organic matters, and palynomorphs. From the diagram of these plots and maturation analysis, it could be assessed that the formations of Chia Gara and Sargelu are both deposited in distal suboxic to anoxic basin and can be correlated with kerogens classified microscopically as Type A and Type B and chemically as Type II. The organic matter, comprised principally of brazinophyte algae, dinoflagellate cysts, spores, pollen, foraminifera test linings, and phytoclasts in all these formations and hence affected with upwelling current. These deposit contain up to 18 wt% total organic matters that are capable to generate hydrocarbons within mature stage of thermal alteration index (TAI) range in Stalplin's scale (Staplin, 1969) of 2.7–3.0 for the Chia Gara Formation and 2.9–3.1 for the Sargelu Formation. Case study examples of these oil prone strata are; one 7-m (23-ft) thick section of the Sargelu Formation averages 44.2 mg HC/g S2 and 439 °C Tmax (Rock-Eval pyrolysis analyses) and 16 wt% TOC especially in well Mk-2 whereas, one 8-m (26-ft) thick section of the Chia Gara and 1-m (3-ft) section of Naokelekan Formations average 44.5 mg HC/g S2 and 440 °C Tmax and 14 wt% TOC especially in well Aj-8. One-dimension, petroleum system models of key wells using IES PetroMod Software can confirm their oil generation capability.These hydrocarbon type accumulation sites are illustrated in structural cross sections and maps in North Iraq.  相似文献   

14.
This study is the first attempt which provides information regarding the bulk and quantitative pyrolysis results of the Chia Gara Formation from the Kurdistan region, northern Iraq. Ten representative early-mature to mature samples from the Chia Gara Formation were investigated for TOC contents, Rock Eval pyrolysis, pyrolysis-GC and bulk kinetic parameters. These analyses were used to characterize the petroleum generated during thermal maturation of the Chia Gara source rock and to clarify the quantity of the organic matter and its effect on the timing of petroleum generation.Pyrolysis HI data identified two organic facies with different petroleum generation characteristics; Type II–III kerogen with HI values of >250 mg HC/g TOC, and Type III kerogen with HI values < 100 mg HC/g TOC. These types of kerogen can generate liquid HCs and gas. This is supported by the products of pyrolysis–gas chromatography (Py–GC) analysis of the extracted rock samples. Pyrolysis products show a dominance of a marine organic matter with variable contributions from terrestrial organic matter (Types II–III and III kerogen), and produces mainly paraffinic-naphthenic-aromatic low wax oils with condensate and gas.Bulk kinetic analysis of the Chia Gara source rock indicates a heterogeneous organic matter assemblage, typical of restricted marine environments in general. The activation energy distributions reveal relatively broad and high values, ranging from 40 to 64 kcal/mol with pre-exponential factors varying from 2.2835 E+12/sec to 4.0920 E+13/sec. The predicted petroleum formation temperature of onset (TR 10%) temperatures ranges from 110 to 135 °C, and peak generation temperatures (geological Tmax) between 137 °C and 152 °C. The peak generation temperatures reach a transformation ratio in the range of 42–50% TR, thus the Chia Gara source rock could have generated and expelled significant quantities of petroleum hydrocarbons in the Kurdistan of Iraq.  相似文献   

15.
Significant oil and gas accumulations occur in and around Lougheed Island, Arctic Canada, where hydrocarbon prospectivity is controlled by potential source rock distribution and composition. The Middle to Upper Triassic rocks of the Schei Point Group (e.g. Murray Harbour and Hoyle Bay formations) contain a mixture of Types I and II organic matter (Tasmanales marine algae, amorphous fluorescing bituminite). These source rocks are within the oil generation zone and have HI values up to 600 mg HC/g Corg. The younger source rocks of the Lower Jurassic Jameson Bay and the Upper Jurassic Ringnes formations contain mainly gas-prone Type II/III organic matter and are marginally mature. Vitrinite reflectance profiles suggest an effective geothermal gradient essentially similar to the present-day gradient (20 to 30°C/km). Maturation gradients are low, ranging from 0.125 to 0.185 log%Ro/km. Increases in subsidence rate in the Early Cretaceous suggest that the actual heat flow history was variable and has probably diminished from that time. The high deposition rates of the Christopher Formation shales coincide with the main phase of rifting in Aptian-Albian times. Uplift and increased sediment supply in the Maastrichtian resulted in a new sedimentary and tectonic regime, which culminated in the final phase of the Eurekan Orogeny. Burial history models indicate that hydrocarbon generation in the Schei Point Group took place during rifting in Early Cretaceous, long before any Eurekan deformation.  相似文献   

16.
Thermal history, petroleum system, structural, and tectonic constraints are reviewed and integrated in order to derive a new conceptual model for the Norman Wells oil field, and a new play type for tectonically active foreland regions. The thermal history recorded by Devonian rocks suggests that source rocks experienced peak thermal conditions in the Triassic–Jurassic, during which time oil was likely generated. After initial oil generation and expulsion, the Canol Formation oil shale retained a certain fraction of hydrocarbons. The shallow reservoir (650–350 m) is a Devonian carbonate bank overlain by the Canol Formation and resides within a hanging wall block of the Norman Range thrust fault. Both reservoir and source rocks are naturally fractured and have produced high API non-biodegraded oil. Thrust faults in the region formed after the Paleocene, and a structural cross-section of the field shows that the source and reservoir rocks at Norman Wells have been exhumed by over 1 km since then.The key proposition of the exhumation model is that as Canol Formation rocks underwent thrust-driven exhumation, they crossed a ductile–brittle transition zone and dip-oriented fractures formed sympathetic to the thrust fault. The combination of pore overpressure and new dip-directed subvertical fractures liberated oil from the Canol Formation and allowed for up-dip oil migration. Reservoir rocks were similarly fractured and improved permeability enhanced charging and pooling of oil. GPS and seismicity data indicate that strain transfer across the northern Cordillera is a response to accretion of the Yakutat terrane along the northern Pacific margin of North America, which is also the probable driving force for foreland shortening and rock exhumation at Norman Wells.  相似文献   

17.
Deposition of organic rich black shales and dark gray limestones in the Berriasian-Turonian interval has been documented in many parts of the world. The Early Cretaceous Garau Formation is well exposed in Lurestan zone in Iran and is composed of organic-rich shales and argillaceous limestones. The present study focuses on organic matter characterization and source rock potential of the Garau Formations in central part of Lurestan zone. A total of 81 core samples from 12 exploratory wells were subjected to detailed geochemical analyses. These samples have been investigated to determine the type and origin of the organic matter as well as their petroleum-generation potential by using Rock-Eval/TOC pyrolysis, GC and GCMS techniques. The results showed that TOC content ranges from 0.5 to 4.95 percent, PI and Tmax values are in the range of 0.2 and 0.6, and 437 and 502 °C. Most organic matter is marine in origin with sub ordinary amounts of terrestrial input suggesting kerogen types II-III and III. Measured vitrinite reflectance (Rrandom%) values varying between 0.78 and 1.21% indicating that the Garau sediments are thermally mature and represent peak to late stage of hydrocarbon generation window. Hydrocarbon potentiality of this formation is assessed fair to very good capable of generating chiefly gas and some oil. Biomarker characteristics are used to provide information about source and maturity of organic matter input and depositional environment. The relevant data include normal alkane and acyclic isoprenoids, distribution of the terpane and sterane aliphatic biomarkers. The Garau Formation is characterized by low Pr/Ph ratio (<1.0), high concentrations of C27 regular steranes and the presence of tricyclic terpanes. These data indicated a carbonate/shale source rock containing a mixture of aquatic (algal and bacterial) organic matter with a minor terrigenous organic matter contribution that was deposited in a marine environment under reducing conditions. The results obtained from biomarker characteristics also suggest that the Garau Formation is thermally mature which is in agreement with the results of Rock-Eval pyrolysis.  相似文献   

18.
Drilling/coring activities onboard JOIDES Resolution for hydrate resource estimation have confirmed gas hydrate in the continental slope of Krishna-Godavari (KG) basin, Bay of Bengal and the expedition recovered fracture filled gas hydrate at the site NGHP-01-10. In this paper we analyze high resolution multi-channel seismic (MCS), high resolution sparker (HRS), bathymetry, and sub-bottom profiler data in the vicinity of site NGHP-01-10 to understand the fault system and thermal regime. We interpreted the large-scale fault system (>5 km) predominantly oriented in NNW-SSE direction near NGHP-01-10 site, which plays an important role in gas hydrate formation and its distribution. The increase in interval velocity from the baseline velocity of 1600 m/s to 1750–1800 m/s within the gas hydrate stability zone (GHSZ) is considered as a proxy for the gas hydrate occurrence, whereas the drop in interval velocity to 1400 m/s suggest the presence of free gas below the GHSZ. The analysis of interval velocity suggests that the high concentration of gas hydrate occurs close to the large-scale fault system. We conclude that the gas hydrate concentration near site NGHP-01-10, and likely in the entire KG Basin, is controlled primarily by the faults and therefore has high spatial variability.We also estimated the heat flow and geothermal gradient (GTG) in the vicinity of NGHP-01-10 site using depth and temperature of the seafloor and the BSR. We observed an abnormal GTG increase from 38 °C/km to 45 °C/km at the top of the mound, which remarkably agrees with the measured temperature gradient at the mound (NGHP-01-10) and away from the mound (NGHP-01-03). We analyze various geological scenarios such as topography, salinity, thermal non-equilibrium of BSR and fluid/gas advection along the fault system to explain the observed increase in GTG. The geophysical data along with the coring results suggest that the fluid advection along the fault system is the primary mechanism that explains the increase in GTG. The approximate advective fluid flux estimated based on the thermal measurement is of the order of few tenths of mm/yr (0.37–0.6 mm/yr).  相似文献   

19.
A wide-spread bottom simulating reflector (BSR), interpreted to mark the thermally controlled base of the gas hydrate stability zone, is observed over a close grid of multichannel seismic profiles in the Krishna Godavari Basin of the eastern continental margin of India. The seismic data reveal that gas hydrate occurs in the Krishna Godavari Basin at places where water depths exceed 850 m. The thickness of the gas hydrate stability zone inferred from the BSR ranges up to 250 m. A conductive model was used to determine geothermal gradients and heat flow. Ground truth for the assessment and constraints on the model were provided by downhole measurements obtained during the National Gas Hydrate Program Expedition 01 of India at various sites in the Krishna Godavari Basin. Measured downhole temperature gradients and seafloor-temperatures, sediment thermal conductivities, and seismic velocity are utilized to generate regression functions for these parameters as function of overall water depth. In the first approach the base of gas hydrate stability is predicted from seafloor bathymetry using these regression functions and heat flow and geothermal gradient are calculated. In a second approach the observed BSR depth from the seismic profiles (measured in two-way travel time) is converted into heat flow and geothermal gradient using the same ground-truth data. The geothermal gradient estimated from the BSR varies from 27 to 67°C/km. Corresponding heat flow values range from 24 to 60 mW/m2. The geothermal modeling shows a close match of the predicted base of the gas hydrate stability zone with the observed BSR depths.  相似文献   

20.
The physical and chemical changes associated with the thermal maturation of organic-rich shale have affected the paleomagnetic and rock magnetic characteristics of the Devonian Duvernay Formation in the Western Canada Sedimentary Basin. This formation has several lithofacies that correspond to deposition in platform, slope and deeper water settings under varied redox conditions. Shale, laminated mudstone and some massive mudstone facies show evidence of magnetic changes associated with maturation but wackestone, packstone and some massive mudstone facies appear to be unaffected by the process. Rock magnetic evidence suggests that thermal maturation induces a change in the magnetization carrier from magnetite and hematite to solely magnetite.The packstone and wackestone facies commonly show a reversed characteristic magnetization with a paleopole at 194°E, 70°N (A95=13.2) of Late Cretaceous-age. Shale and laminated mudstone facies in immature areas of the basin have inclination-only characteristic remanent magnetization (ChRM) means that range from 55 to 67 °C, requiring a pre-Cretaceous magnetization age. Shale and laminated mudstone facies in mature areas of the basin have a much steeper ChRM in direction ranging from 77 to 83 °C. Their very steep nature suggests that step demagnetization has not completely removed a drilling-induced remanence in some wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号