首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tidal sand bars and tidal sand ridges are extensively developed in the macrotidal Gulf of Khambhat, offshore western India. The inner and outer regions of the gulf are characterised by the development distinct tidal sand bodies with discrete geometries and dimensions. The outer gulf ridges are long, narrow, curvilinear and several metres high (∼20 m). They are asymmetric in cross-section and migratory in nature, forming ‘ribbon’ like sand bodies separated by tidal channels. Active dunes on these ridges indicate the presence of sand and their orientation parallel to palaeo-shorelines supports a tidal origin. In contrast to the outer gulf tidal sand ridges, sand bars associated with macrotidal estuaries flanking the Gulf of Khambhat typically have an elongate to diamond shape and are only hundreds of metres in width and a few kilometres length. These tidal sand bars occur in the estuary mouths and within the tidally influenced fluvial reaches of the rivers flowing into the gulf. The height of these sand bars is in the range ∼1–3 m. Due to high tidal ranges and bi-directional flow the sand bars do not develop significant height and are formed between the mutually evasive ebb and flow channels. Their bi-directional foresets and the presence of abundant mud drapes associated with the dunes within in-channel sand bars indicate a tidal origin.The Gulf of Khambhat acquired the present configuration in the last few thousand years since the Pleistocene sea-level lowstand (last glacial maximum, ∼18 ka) when the entire continental shelf was subaerially exposed and rivers down-cut into the coastal plain. With increasing sea-level rise, the exposed shelf was drowned, flooding parts of the Modern western Indian peninsula, and large tidal sand ridges formed in the outer gulf. After the fall of sea-level at 2 ka the gulf acquired the Modern configuration with multiple estuaries on both coastlines, rivers supplied the embayment with sandy sediment, and tidal sand bars formed in the Modern estuaries.Quantitative data gathered from the Modern Gulf of Khambhat indicates that for the P50 case, a vertical drill hole will encounter tidal sand bodies (ridges and bars combined) of approximate dimensions 1700 m long, 470 m wide and 1.5 m high, with a spacing of 400 m. In subsurface hydrocarbon reservoirs, where data is sparse and only limited amount of core is available, this quantitative dataset can be useful to constrain subsurface geocellular models. Also, the overall geometry, distribution and aspect ratio of the tidal sand ridges and tidal sand bars can be used to identify ancient counterparts through seismic geomorphology or in core.  相似文献   

2.
Summary

Reids Rise is a remnant of a marine sand body that accumulated in the inner neritic zone of the continental shelf south‐west of Westport during the Last Interglacial. The sand body is notable for its spectacular sedimentary structures and consists of an upper unit that is characterised by trough cross‐lamination, locally forming mesoscopic ridges, and a lower unit that is characterised by horizontal lamination. The sand body is underlain by gravels of probable alluvial origin.

The trough cross‐laminated sets of the upper unit dip off near‐symmetrical ridges that probably formed as subaqueous bars. The dip azimuths of the cross‐laminae have a polymodal distribution with two bimodal maxima, one almost perpendicular to, and the second roughly parallel to the shoreline formed during the Last Interglacial. Magnitude of dip varies from horizontal to over 40°.

The sediment is clean, fine sand composed predominantly of angular grains. Sample to sample variation in grain size statistical parameters is small. The most notable feature is the extremely good sorting of the sand. Inclusive graphic standard deviation values range over 0.17–0.24? with 0.20? the modal value.

The mineralogy of the sand points to two main source areas, the Alpine metamorphic rocks to the south and south‐east, and the plutonic rocks of the Paparoa Range immediately east and south‐east of the study area.

The stratigraphic sequence is interpreted as being the product of deposition in a high energy, wave‐, tidal‐current‐, and longshore‐current‐dominated shallow neritic zone on an open coast during a transgressive cycle.  相似文献   

3.
The northeastern shelf margin of the South China Sea(SCS) is characterized by the development of large scale foresets complexes since Quaternary. Based on integral analysis of the seismic, well logging and paleontological data, successions since ~3.0 Ma can be defined as one composite sequence, consist of a set of regional transgressive to regressive sequences. They can be further divided into six 3 rd order sequences(SQ0–SQ5) based on the Exxon sequence stratigraphic model. Since ~1.6 Ma, five sets of deltaic systems characterized by development of wedge-shaped foresets complexes or clinoforms had been identified. High-resolution seismic data and the thick foresets allowed further divided of sub-depositional sequences(4 th order) of regression to transgression, which is basically consistent with published stacked benthic foram O-isotope records. Depositional systems identified in the study area include deltaic deposits(inner-shelf deltas and shelf-edge deltas), incised valleys, and slope slumping massive deposits. Since ~1.6 Ma, clinoforms prograded from the southern Panyu Lower Uplift toward the northern Baiyun Depression, shelf slope break migrated seaward, whereas the shelf edge of SQ0 migrated landward. The development of incised valleys in the continental shelf increased upward,especially intensive on the SB3 and SB2. The slumping massive deposits increased abruptly since SB2, which corresponds to the development of incised valleys. The evolution of depositional systems of continental slope mainly controlled by the combined influence of sea level changes, tectonic movements, sediment supply and climate changes. Since ~3.0 Ma, relative sea level of the northern SCS had been experienced transgression(~3.0 Ma BP) to regression(~1.6 Ma BP). The regional regression and maximum transgressions of the composite sequences were apparently enhanced by uplift or subsidence related to tectono-thermal events. In addition,climatic variations including monsoon intensification and the mid-Pleistocene transition may have enhanced sediment supply by increasing erosion rate and have an indispensable influence on the development of the incised valleys and 5 sets of deltaic systems since ~1.6 Ma.  相似文献   

4.
Depositional environment can change through geological time. This paper describes a delta that evolved from river-dominated into tide-dominated. The delta is located in the Ya13-1 field of the South China Sea. Understanding the change that occurred in the deltaic setting is important because the change in depositional environments led to changes in spatial distribution of facies and other rock properties.The Oligocene sediments of the third member of the Lingshui Formation in the Ya13-1 field were deposited in a river-dominated delta, and later impacted by marine flooding, fluvial and tidal currents. As a result of these different influences, the early-stage depositional micro-facies and the sandbody distributions are quite different from those of the later stage. At the early stage, fluvial influences prevailed, resulting in a fluvial-dominated delta plain and deposition of many linguoid sand bars in the delta front. During the late stage of deposition, tide-dominated delta fronts were developed extensively and finger sand bars deposited abundantly in the delta front as a result of the tidal influence.Ya13-1 gas field is laterally divided into two large subareas and vertically into eight stratigraphic packages. Because of the different influences of marine flooding that resulted in different interbeds and intercalations, the number of stratigraphic packages in the south is different from that in the north. The change of deltaic depositional environments also resulted in different reservoir properties between the northern and southern regions as the reservoir properties of mouth bars are generally better than distributary channels. These depositional characteristics significantly impact the development of the field.  相似文献   

5.
中国陆架潮流沉积体系和模式   总被引:27,自引:1,他引:26  
在1991年中法合作渤海潮流沉积研究的基础上,查阅了国内外有关研究成果,分析了中国陆架的水深地形、沉积地貌与潮流动力的关系,认为潮流对中国陆架的海底地貌和沉积的形成发育起了主导作用。当潮流流速大于3节时,潮流的侵蚀作用是主要的,往复潮流多形成冲刷深槽,大大刷深了海峡或水道。当潮流流速1-3节时,潮流的沉积作用是主要的,多形成浅滩,即潮流沙脊和潮流沙席。以M2分潮椭率绝对值0.4为界,大于0.久者意味着潮流旋转性强,多形成潮流沙席;小于0.4者意味着潮流往复性强,多形成潮流沙脊。提出了我国邻近陆架发育了5个现代潮流沉积地貌体系:(1)黄海东部潮流沉积体系,它由西朝鲜湾潮流沙脊和其南部的沙席两者组成;(2)渤海东部潮流沉积体系,它由老铁山水道冲刷槽,辽东浅滩沙脊和渤中浅滩沙席三者组成;(3)长江口外潮流沉积体系,它由江苏滨外潮流沙脊和长江口浅滩潮流沙席组成;(4)台湾滨外潮流沉积体系,它由台湾海峡冲刷槽、台湾浅滩沙脊、澎湖水道冲刷槽和台中浅滩沙席四者组成;(5)琼州海峡潮流沉积体系,它由琼州海峡冲刷槽、东浅滩沙脊和西浅滩沙脊三者组成。此外,在东海陆架上还有冰后期海侵早期形成的残留潮流沉积体系。全新世陆架浅海潮流沉积模式可分海峡一浅  相似文献   

6.
Multiple stages of large-scale shelf sand ridges, including the shoreface-attached and the offshore types, have developed in the Miocene successions on the mid-shelf region of the Pear River Mouth Basin, northern South China Sea. Utilizing a high-quality 3D seismic data set, accompanying 2D seismic profiles and well logs, the morphology, architecture and genesis of these shelf sand ridges have been systematically investigated in this study. The ridges are of very large scale, with the largest one having a maximum height of 64 m, a width of more than 20 km and a length of 37 km within the 3D survey area. Being mound-shaped, they also display obvious asymmetry character, with the ridge crest preferentially located on the SE side. Three main internal components, including the ridge front, central ridge and the ridge tail, have been recognized through careful anatomy analysis of the two most well-imaged ridges, each displaying distinct expressions on seismic amplitudes and geometries. In the plan view, most of the shelf sand ridges are generally NE–SW oriented and widening to the SW direction. Scouring features can also be clearly observed along the SW direction, including scour depressions and linear sandy remnants. On well logs, the shelf sand ridges are represented by an overall coarsening-upward pattern. Intervals with blocky sandstones are preferentially present on higher locations due to a differential winnowing process controlled by shelf topography.Plenty of evidence indicates that these ridges were primarily formed by the reworking of forced regressive or lowstand deltaic deposits under a persistent southwesterly flowing current during the subsequent transgression. This very current is a composite one, which is speculated to consist of winter oceanic current, SCSBK (South China Sea Branch of Kuroshio) intrusion onto the shelf and internal waves propagating from the Luzon Strait. Tidal currents might have contributed to the SE growth of the ridge. In response to the reglaciation of Antarctic ice-sheet and the closure of Pacific-Indian ocean seaway in the middle Miocene, the intensification of the North Pacific western boundary current was considered to have potential links to the initiation of the shelf sand ridges at ∼12 Ma. The development of shelf ridges was terminated and replaced by rapid deltaic progradation at ∼5.5 Ma.  相似文献   

7.
The Middle–Late Miocene Utsira Formation of the North Sea Basin contains a fully preserved, regional marine sand deposit that records a stable paleogeographic setting of sand transport and accumulation within a deep, epeiric seaway which persisted for >8 Ma. The sediment dispersal system was defined by (1) input through a marginal prograding strandplain platform, coast-to-basin bypass, transport along a narrow strait, and accumulation in strait-mouth shoal complexes within a shelf sea; (2) a high-energy marine regime; (3) very low time-averaged rates of sediment supply and accumulation; and (4) consequent high sediment reworking ratio. Sand distribution and stratal architectures reflect regional along-strike sediment transport and local to sub-regional landward sediment transport. Plume-shaped, south-building, submarine sand shoals that formed along the recurved arc of the strandplain margin nourished the shoal system. Very low-angle sigmoid clinoforms and down-stepping, aggradational top sets are distinctive architectures of these strike-fed sand bodies. The combination of strong marine currents and slow but long-lived sand supply from the Shetland strandplain created regional, sandy shelf shoal depositional systems that individually covered 3,500 to 6,000 km2 of the basin floor. Defining attributes of the shelf shoal systems include their location within the basin axis, abundance of autochthonous sediment, and sandy marine facies composition. Diagnostic depositional architectures include the along-strike-dipping sigmoidal clinoforms, poly-directional low-angle accretionary bedding at both regional and local scales, and mounded depositional topography. Erosional features include regional hummocky, low-relief shelf deflation surfaces, broad, elongate scours and sub-circular scour pits.  相似文献   

8.
为阐明珠三坳陷西北部珠江组一段上亚段浅海陆架砂体成因机制,综合地质与地球物理数据,首先搭建了五级层序地层格架,并以此为约束,开展浅海陆架砂体识别与定量描述,剖析其时空演化规律,进而讨论其成因机制。结果表明:(1)研究区珠江组一段上亚段可划分为4个五级层序,自下向上编号为FS4、FS3、FS2与FS1;(2)研究区发育潮流沙脊与滨外沙坝两种类型陆架砂体,两者整体呈NW-SE向展布,潮流沙脊主要分布于研究区西部,滨外沙坝则集中于东部;(3)FS4、FS3与FS2 3个五级层序中,潮流沙脊与滨外沙坝均呈现较大规模与较多数量,最上部FS1五级层序中,规模与数量达到最小;(4)沉积基准面(水动力)、同沉积地貌、沉积物碎屑供给等因素共同影响了潮流沙脊与滨外沙坝的发育规模、展布特征与时空演化规律等,综合构成了珠三坳陷西北部浅海陆架砂体的成因机制。  相似文献   

9.
Submarine canyons have been the subject of intense studies in recent years because of their close link to deepwater systems. The Central Canyon is a large unusual submarine canyon in the northwestern margin of the South China Sea, has a total length of about 425 km and is oriented sub-parallel to the continental slope. Using integrated 2D/3D seismic, well log, core, and biostratigraphy data, the current study documents the stratigraphic framework, internal architecture, depositional processes, and controlling factors of the segment of the Central Canyon located in the Qiongdongnan Basin.The integrated analysis shows that the canyon fill consists of four 3rd-order sequences, SQ4, SQ3, SQ2, and SQ1. Each of them is bounded by regionally important erosional surfaces (3rd-order sequence boundaries). Within each 3rd-order sequence there is maximum regressive surface separating a regressive systems tract in the lower part and a transgressive systems tract in the upper part. Nine facies are identified and are further grouped into five depositional units, DU1 through DU5.The canyon evolved through four cut-and-fill stages, with a change from predominantly axial cut-and-fill to primarily side cut-and-fill. Axial cut-and-fill dominated during the first stage, and the slope-subparallel paleo Xisha Trough was intensely eroded by large-scale axial gravity flows. During the second cut-and-fill stage, the Central Canyon experienced both axial and side cut-and-fill. The third stage was dominated by side cut-and-fill. The canyon was eroded and fed by slope channels that transported sandy sediments from the shelf to the north during regression, and was covered by side-derived muddy MTCs during transgression. The last stage was also dominated by side cut-and-fill. The canyon, however, was filled predominantly by side-derived muddy MTCs.Evolution and depositional processes in the Central Canyon were likely controlled by slope-subparallel negative-relief induced by paleo-seafloor morphology, structural inversion of the Red River Fault and the slope-subparallel basement faults. Additionally, Coriolis force, sea-level fluctuations, high sedimentation rate, and rapid progradation of the slope also controlled and influenced the depositional processes, and internal architectures of the canyon.  相似文献   

10.
Seismic reflection profiles and vibracores have revealed that an inner shelf, sand-ridge field has developed over the past few thousand years situated on an elevated, broad bedrock terrace. This terrace extends seaward of a major headland associated with the modern barrier-island coastline of west-central Florida. The overall geologic setting is a low-energy, sediment-starved, mixed siliciclastic/carbonate inner continental shelf supporting a thin sedimentary veneer. This veneer is arranged in a series of subparallel, shore-oblique, and to a minor extent, shore-parallel sand ridges. Seven major facies are present beneath the ridges, including a basal Neogene limestone gravel facies and a blue-green clay facies indicative of dominantly authigenic sedimentation. A major sequence boundary separates these older units from Holocene age, organic-rich mud facies (marsh), which grades upward into a muddy sand facies (lagoon or shallow open shelf/seagrass meadows). Cores reveal that the muddy shelf facies is either in sharp contact or grades upward into a shelly sand facies (ravinement or sudden termination of seagrass meadows). The shelly sand facies grades upward to a mixed siliciclastic/carbonate facies, which forms the sand ridges themselves. This mixed siliciclastic/carbonate facies differs from the sediment on the beach and shoreface, suggesting insignificant sediment exchange between the offshore ridges and the modern coastline. Additionally, the lack of early Holocene, pre-ridge facies in the troughs between the ridges suggests that the ridges themselves do not migrate laterally extensively. Radiocarbon dating has indicated that these sand ridges can form relatively quickly (1.3 ka) on relatively low-energy inner shelves once open-marine conditions are available, and that frequent, high-energy, storm-dominated conditions are not necessarily required. We suggest that the two inner shelf depositional models presented (open-shelf vs. migrating barrier-island) may have co-existed spatially and/or temporally to explain the distribution of facies and vertical facies contacts.  相似文献   

11.
东海外陆架晚第四纪若干沉积学问题的研究现状与展望   总被引:1,自引:0,他引:1  
我国东海陆架尤其外陆架的晚第四纪沉积地层、古河道沉积与下切河谷充填沉积、潮流沙脊沉积研究等已经取得较多研究成果,综述已有的研究认识和关键科学问题,讨论地层研究中的氧同位素2期和4期地层划分出现的争议、不同的地层演化模式以及与之紧密相关的末次冰盛期古河道的存在与演化、东海陆架冰后期潮流沙脊成因研究中存在的不同观点,提出未来东海外陆架晚第四纪沉积学研究的思路和工作展望。  相似文献   

12.
The southeastern beaches and inner shelf of the Buenos Aires coastline are dominated by storms coming from the south and southeast. Erosion is dominant at the coastal cliffs and abrasion platforms, while deposition is extended below the 9-m contour depth. In relation to sand abundance on the inner shelf, there is a northward transition between shelly sand sheets, a fine-sand ribbon field, and sand ridges with oblique megaripples. Side-scan records indicate the selective sorting processes that lead to grain size diminishing to the north, and heavy-mineral enrichment, either at the beach or on the shelf. These storm-induced effects should be considered when evaluating placers on the inner shelf or monitoring the heavy-metal content in sediments. Two-way analyses of variance (ANOVA) tests were used to establish the grain-size effects on heavy-metal analysis.  相似文献   

13.
南黄海陆架沙脊的形成与演变   总被引:11,自引:3,他引:11  
本文在对水深较大的滨外沙脊区钻孔、柱状样岩心详细观察的基础上,综合分析已有资料,并对该区浅地震地层剖面和水下沙脊的卫片进行了解译,提出南黄海陆架沙脊最早的形成年代为距今4000年,而现代的潮流沙脊形成于距今2000年以来的最近时期,潮流沙脊是在海面稳定、强潮流发育和大量物质供给的条件下形成和发展的,潮流沙脊的沉积物主要来自黄河和淮河;现代滨外沙脊具有向西北方向迁移、纵向延伸长度不断萎缩的动态演化特征。  相似文献   

14.
通过对辽东湾高分辨率浅地层剖面声学地层与典型钻孔沉积地层的对比分析,揭示了研究区晚第四纪MIS5以来的地层层序。辽东湾高分辨率浅地层剖面自下而上划定的6个声学地层单元(SU5、SU4、SU3、SU2、SU12、SU11)与钻孔岩芯划分的6个沉积地层单元(DU5、DU4、DU3、DU2、DU12、DU11)具有良好的对应关系。分别与MIS4期、MIS2期低海面时期的沉积间断密切相关的两个层序界面R5、R3,将辽东湾识别出的地层单元自下而上划分为3个层序(SQ3、SQ2、SQ1)。其中SQ3仅识别出上部的海侵体系域与高水位体系域,对应MIS5期海平面相对较高时期的滨浅海相沉积(DU5);SQ2自下而上由低水位体系域(MIS4期的河流相与河道充填相沉积(DU4))与海侵体系域(MIS3期早中期滨海相沉积(DU3))组成;SQ1自下而上包括低水位体系域(MIS2期的河流相与河道充填相沉积(DU2))、海侵体系域(全新世早中期滨海相沉积(DU12))高水位体系域(全新世高海面以来的浅海相沉积(DU11))。研究区的海侵体系域厚度较薄且变化较小,分布广泛,而低水位体系域厚度与横向分布均变化较大。  相似文献   

15.
The innermost shelf off Sarasota, Florida was mapped using sidescan-sonar imagery, seismic-reflection profiles, surface sediment samples, and short cores to define the transition between an onshore siliciclastic sand province and an offshore carbonate province and to identify the processes controlling the distribution of these distinctive facies. The transition between these facies is abrupt and closely tied to the morphology of the inner shelf. A series of low-relief nearly shore-normal ridges characterize the inner shelf. Stratigraphically, the ridges are separated from the underlying Pleistocene and Tertiary carbonate strata by the Holocene ravinement surface. While surficial sediment is fine to very-fine siliciclastic sand on the southeastern sides of the ridges and shell hash covers their northwestern sides, the cores of these Holocene deposits are a mixture of both of these facies. Along the southeastern edges of the ridges the facies boundary coincides with the discontinuity that separates the ridge deposits from the underlying strata. The transition from siliciclastic to carbonate sediment on the northwestern sides of the ridges is equally abrupt, but it falls along the crests of the ridges rather than at their edges. Here the facies transition lies within the Holocene deposit, and appears to be the result of sediment reworking by modern processes. This facies distribution primarily appears to result from south-flowing currents generated during winter storms that winnow the fine siliciclastic sediment from the troughs and steeper northwestern sides of the ridges. A coarse shell lag is left armoring the steeper northwestern sides of the ridges, and the fine sediment is deposited on the gentler southeastern sides of the ridges. This pronounced partitioning of the surficial sediment appears to be the result of the siliciclastic sand being winnowed and transported by these currents while the carbonate shell hash falls below the threshold of sediment movement and is left as a lag. The resulting facies boundaries on this low-energy, sediment-starved inner continental shelf are of two origins which both are tied to the remarkably subtle ridge morphology. Along the southeastern sides of the ridges the facies boundary coincides with a stratigraphic discontinuity that separates Holocene from the older deposits while the transition along the northwestern sides of the ridges is within the Holocene deposit and is the result of sediment redistribution by modern processes.  相似文献   

16.
Switched sequence stratigraphic architectural units were developed in the Eocene Wenchang Formation stratigraphic section of the Pearl River Mouth Basin (PRMB), northern South China Sea. Utilizing a high-quality 3D seismic data set, well logs and restored paleogeomorphology, the architecture and genesis of switched sequence stratigraphic units have been systematically investigated. The Wenchang Formation, a second-order sequence, can be subdivided into seven third-order sequences (from base to top: SQ1, SQ2, SQ3, SQ4, SQ5, SQ6, and SQ7). The sequence stratigraphic architecture of the Wenchang Formation is characterized by continuous lateral stacking patterns from sequences SQ1 to SQ7. Sequences SQ1–SQ4 mainly developed in the HZ26 sag, whereas sequences SQ5–SQ7 mainly developed in the XJ24 sag. The depositional centres of the Wenchang Formation appear to have migrated from the HZ26 sag to the XJ24 sag-along the northwest direction from sequences SQ1 to SQ7. Multiple tectonic activation episodes or alternating tectonic subsidence of the HZ26 and XJ24 sags resulted in the distinctive geomorphological features that effected the development of the switched sequence stratigraphic architecture in the study area. The switched sequence stratigraphic architecture presented in this study may provide new insights into a better understanding of sequence stratigraphic stacking patterns in continental lacustrine rift basins.  相似文献   

17.
R.Craig Shipp   《Marine Geology》1984,60(1-4):235-259
The depositional sedimentary structures and textures of a single-barred nearshore system on the Atlantic coast of eastern Long Island, New York, were studied along seven shore-normal transects. Data along these transects consisted of textural analysis of 160 sediment samples, temporal bedform observations, and 42 can cores for the analysis of sedimentary structures.

Six sedimentary subenvironments were observed, based on distinct combinations of sediment color and texture, bedforms, physical, and biogenic sedimentary structures, and benthic infaunal communities. The shoreface environment is divided into the upper shoreface, the longshore trough, and the longshore bar. The divisions of the inner shelf environment are the shoreface-inner shelf transition, the offshore, and the coarse-grained deposit. The first five subenvironments are arranged in bands parallel to the shoreline, whereas the coarse-grained deposit occurs in patches across the inner shelf.

The location of fair-weather wave base, coinciding with a reduction in slope (3.0–0.3°) from the shoreface to the inner shelf, is characterized by the cessation of debris surge in the troughs of ripples, the formation of a “rust layer” of microorganisms over the bedform surface, and a sediment color change caused by an increase in organic detritus. The sequence of bedforms and physical sedimentary structures observed in this system fits well with existing wave-generated (oscillatory) flow regime models. These models explain the observed sequences as a response to the degree of asymmetric flow created by shoaling waves. Distribution of biogenic structures and assemblages of infaunal organisms is influenced by the distance landward or seaward of fair-weather wave base.

The overall relationships of this nearshore system can then be summarized as a hypothetical prograding stratigraphic sequence. The entire sequence is underlain by organic-rich, bioturbated, offshore deposits. Overlying the offshore is the planar-laminated sediments of the transition. Grading upward from the transition are the cleaner, planar-laminated, seaward slope deposits of the longshore bar. Above this, is a distinct erosional surface indicating the base of the massive to cross-laminated coarse sediments of the longshore trough. Capping the sequence are the cross- to planar-laminated, clean sands of the upper shoreface and foreshore.  相似文献   


18.
Based on multi-beam echo soundings and high-resolution single-channel seismic profiles, linear sand ridges in U14 and U2 on the East China Sea (ECS) shelf are identified and compared in detail. Linear sand ridges in U14 are buried sand ridges, which are 90 m below the seafloor. It is presumed that these buried sand ridges belong to the transgressive systems tract (TST) formed 320–200 ka ago and that their top interface is the maximal flooding surface (MFS). Linear sand ridges in U2 are regressive sand ridges. It is presumed that these buried sand ridges belong to the TST of the last glacial maximum (LGM) and that their top interface is the MFS of the LGM. Four sub-stage sand ridges of U2 are discerned from the high-resolution single-channel seismic profile and four strikes of regressive sand ridges are distinguished from the submarine topographic map based on the multi-beam echo soundings. These multi-stage and multi-strike linear sand ridges are the response of, and evidence for, the evolution of submarine topography with respect to sea-level fluctuations since the LGM. Although the difference in the age of formation between U14 and U2 is 200 ka and their sequences are 90 m apart, the general strikes of the sand ridges are similar. This indicates that the basic configuration of tidal waves on the ECS shelf has been stable for the last 200 ka. A basic evolutionary model of the strata of the ECS shelf is proposed, in which sea-level change is the controlling factor. During the sea-level change of about 100 ka, five to six strata are developed and the sand ridges develop in the TST. A similar story of the evolution of paleo-topography on the ECS shelf has been repeated during the last 300 ka.  相似文献   

19.
Erosional shelf ridges in the mid-eastern Yellow Sea   总被引:1,自引:0,他引:1  
In the mid-eastern Yellow Sea, closely spaced high-resolution seismic profiles and a 44-m-long sediment core (YSDP-104) were analyzed to reveal the internal structures and stratigraphy of the shelf ridges currently shaped by tidal currents. Three depositional sequences (sequences I, II and III in descending order) can be recognized. Sequence III, the substratum of the ridges, consists of coarse-grained sediments in the lower part (non-marine deposits) and tide-influenced muddy sediments in the upper part (probable transgressive to highstand systems tract). Sequence II represents internal ridge sediments, similar in character to sequence III, but is demarcated by an undulatory ridge topography. According to radiocarbon dating of marine muds, these sequences range in age from 47,000 to 28,000 years B.P., representing two cycles of short-term sea-level fluctuations during oxygen isotope stage 3. Sequence I consists mostly of late-Holocene transgressive sand veneer on the ridge surface. It also includes minor amounts of early-Holocene muddy sediments occasionally underlying the sand. Most of the ridges are presently undergoing erosion by tidal currents, forming widespread sand dunes on the entire surface.  相似文献   

20.
东海陆架冰后期潮流沙脊地貌与内部结构特征   总被引:14,自引:0,他引:14  
印萍 《海洋科学进展》2003,21(2):181-187
东海陆架以宽平的地形、充分的陆源沉积物供应、快速沉降和强动力场为特征,中外陆架发育大规模潮流沙脊地貌。潮流沙脊走向大致为NW—SE向分布,与区域潮流主方向一致或成较小交角。东海陆架冰后期潮流沙脊以不对称横剖面为特征,陡坡倾向SW。沙脊内部发育典型的高角度前积斜层理,倾向与沙脊横剖面陡坡方向一致。这些斜层理可以划分为高达4组不同特征的组合,分别代表潮流沙脊发育的不同阶段,对应于冰后期海平面上升的不同时期。东海陆架潮流沙脊主体形成于冰后期海侵阶段,目前仍然受到陆架潮流场的影响,沙脊顶部为再沉积活动层。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号