首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
基于挪威海洋技术研究所 (MARINTEK) 和挪威科技大学 (NTNU) 共同研发的VIVANA模型,编制了一个基于频率响应法的海底悬跨管道涡激振动预报程序,其计算结果与VIVANA符合得较好.应用所编制的程序分析在不同流速条件下海底悬跨管道的涡激振动响应及响应频率的特征,对不同悬跨长度、不同截面特征、具有简单边界的海底悬跨管道涡激振动响应和响应频率进行了计算,给出位移和应力沿管跨的分布及响应频率的变化规律.  相似文献   

2.
海底管道在服役期间由于各种原因会在某些管段形成悬跨。这些悬跨在海流力作用下,将产生涡激振动。这种涡激振动最终可能导致管道疲劳失效。管道在海流力作用下发生的涡激振动是管道振动和漩涡尾流振动耦合的结果。在建立管道振动模型和Matteoluca尾流振子模型基础上,对管道涡激振动动力响应特性进行分析。依据Miner线性损伤累积理论,采用S—N曲线法分析计算管道疲劳寿命。最后,针对海洋油气开发与生产,提出延长海底管道疲劳寿命的方法和措施。  相似文献   

3.
海底管道悬跨管段在波流联合作用下非常容易发生疲劳破坏.文中通过多项Galerkin方法对海底管跨的涡激振动方程进行求解,获得管跨系统的时域非线性动力响应,分析疲劳裂纹扩展模型MeEvily模型中各个参数对管道疲劳寿命的影响,在此基础上提出管道疲劳寿命预报方法.  相似文献   

4.
采用流固耦合分析方法,对某海洋石油开采项目采用的子母管结构进行涡激振动特性研究,并与相同海缆在自由悬跨状态下振动特性进行比较。数值仿真结果显示,受母管影响,子母管中海缆由于涡街效应产生的升力振幅随时间变化不一致,而单根海缆升力幅值稳定;子母管中海缆产生的拖曳力高出单根海缆65%,振动幅值加大,并且沿整根海缆尾流中湍动能分布呈现随机性,导致水动力沿整根海缆分布不均匀。提取海缆升力与垂直水流方向振幅进行比较,发现涡激升力是导致垂直方向振动的主要原因。子母管中海缆在水流阻力和涡激升力共同作用下产生较大的位移和应变,应进一步调整夹具间距和剩余张力来减缓海缆疲劳损伤。  相似文献   

5.
涡激振动是钢悬链立管疲劳损伤的重要诱导因素之一,因此涡激振动分析在钢悬链立管设计中占据重要地位。OrcaFlex在海洋工程领域功能强大、应用广泛,能够提供两种涡激振动疲劳损伤预报方法,分别是基于模态叠加法的频域预报方法和基于Iwan-Blevins尾流振子模型的时域预报方法。OrcaFlex的涡激振动时域预报模型只考虑了横流向涡激振动造成的疲劳损伤,基于OrcaFlex的时域预报方法开发了双自由度涡激振动尾流振子模型的接口,考虑了浮式平台运动对钢悬链立管的涡激振动激励作用,实现了钢悬链立管双自由度涡激振动疲劳损伤预报。  相似文献   

6.
考虑流固耦合时的海底管道悬跨段非线性动力分析   总被引:6,自引:0,他引:6  
通过对管道的涡激振动试验,提出了考虑流固耦合的非线性涡激升力表达式,并用该式进行了海底管线悬跨段非线性动力响应时程分析。对考虑流固耦合与未考虑流固耦合情况下得到的管道动力响应时程进行对比,算例表明:当管外流场流速与管道顺流向振动速度值较接近时,不考虑流固耦合时的计算结果明显小于考虑流固耦合时的计算结果。分析认为,在管外流场流速与管道顺流向振动速度值较接近的情况下,管道的涡激振动计算宜采用非线性涡激力模型。  相似文献   

7.
基于欧拉-伯努力梁理论确定了多跨管道结构振动方程,采用非线性Van der pol方程描述旋涡脱落的尾流动力特性,利用弹簧模拟两端和中间的复杂边界约束,构建了多跨海底管道横流向涡激振动预报模型。基于模态正交性展开流-固耦合作用方程,对各阶主坐标响应进行数值求解。对比了本模型预报结果与试验结果、软件分析以及DNV规范推荐值,吻合情况比较理想。本模型可为深海多跨管道涡激振动的研究、防范和治理提供有效的分析方法。  相似文献   

8.
大长细比柔性杆件涡激振动实验   总被引:3,自引:1,他引:2  
涡激振动(vortex-induced vibration,VIV)是导致深海细长柔性立管发生疲劳破坏的重要因素。采用实验观测手段研究了长细比为1 750的柔性立管多模态涡激振动特性。实验中,通过采用拖车拖拉立管模型在水池中匀速行进来模拟均匀流作用下的涡激振动响应。利用光纤光栅传感器测量立管模型在横流向(cross-flow,CF)和顺流向(in-line,IL)的应变,进而通过模态分解的方法,获得立管模型涡激振动的位移。在此基础上,研究了CF以及IL方向的响应频率、位移标准差的平均值和最大值等随流速的变化规律,并分析了立管模型上测点的运动轨迹及其影响因素。  相似文献   

9.
基于有限元数值模拟,进行了"平台垂荡-顶张力立管涡激振动"整体系统的动响应数值模拟。动响应模型考虑了立管尾迹流场的水动力与结构动力的耦合和垂荡引起的立管结构刚度的时变特性;分析了平台垂荡运动的频率、模态阶数等因素对水下顶张力立管涡激振动的影响。数值结果表明:与不考虑平台运动相比,立管的动响应位移会增大;立管响应幅值随着模态阶数的降低而增大;在响应过程中,尤其对于低阶模态,会出现响应的模态转换现象。鉴于在平台垂荡和涡激振动的共同作用下,立管的动响应会大于涡激振动、参数激励分别单独作用的响应,建议在立管实际工程设计中应该考虑平台运动和涡激振动耦合激励作用下的结构动响应。  相似文献   

10.
大跨度柔性悬跨海管的振动响应及管床碰撞会加剧管道的疲劳损伤,影响管道油气的安全输运。基于高速摄像非介入测试方法捕捉了近底床柔性悬跨海管的振动响应特征及管床拍击过程,对比分析了间隙比G/D及约化速度Ur对振动—拍击耦合响应的影响,辨识并提出了试验观测的管床拍击模式。研究结果表明:悬跨管的均方根振幅Az, rms/D在前二阶主导模态下随约化速度Ur的升高先增大后减小;当间隙比减小时,共振区的振动频率减小,且一阶振动向二阶振动的过渡在更高的约化速度时发生,过渡时存在时间上的模态切换现象。振动平衡位置向远离壁面一侧偏移。根据悬跨管振动的主导模态与拍击特性,通过试验辨识了6种管—床拍击模式,包括一阶模态主导的小段拍击、大段拍击,一阶向二阶模态过渡时的Ⅰ、Ⅱ型拍击,以及二阶模态主导的单段拍击、双段交替拍击。  相似文献   

11.
Gu  Hong-lu  Guo  Hai-yan  Liu  Zhen  Li  Fu-heng  An  Wan-bo  Li  Peng 《中国海洋工程》2020,34(2):151-161
In order to investigate the effect of internal friction of umbilical cable on its vortex-induced vibration(VIV)responses, the experimental study on VIV of bond umbilical cable(BUC) and un-bond umbilical cable(UBUC) was carried out in an experimental tank. A current generator in the laboratory simulated the uniform current, and the current velocities were observed in real time by using a Doppler Velocimeter. In addition, different sizes of top tension were applied to the umbilical cable model. The VIV responses of the umbilical cable model were measured by using Fiber Bragg grating(FBG) strain sensors. The displacement responses of umbilical cable model were reconstructed based on the experimental strain data processed by modal superposition method. In this paper, the traveling wave characteristics, the spatial-temporal distribution characteristics of frequency and fatigue damage of the BUC and UBUC under VIV are studied. The experimental results show that there are obvious differences between BUC and UBUC in the response characteristics of VIV. The UBUC appears the traveling wave sooner than BUC, but its standing wave characteristics are more obvious than those of BUC at high velocities. Compared with BUC, the spatial-temporal distribution of UBUC frequencies appears wide-band distribution sooner, but has narrower bandwidth in the "lock-in" state. The level of fatigue damage of BUC was approximately the same as that of UBUC.  相似文献   

12.
Owing to the complex environmental conditions, suspension could induce complicated forces on submarine pipelines and even cause vortex-induced vibration, resulting in fatigue damage of pipelines. Through aiming at the 28-inch submarine pipeline in the East China Sea, the pipeline was segmented according to the similarity, considering the factors of pipe assembly, typhoon, current, wave and seabed topography. The effects of span length on natural frequency in each section of submarine pipeline were analyzed by finite element model. The maximum safe span length allowed by each pipeline section was verified by fatigue cumulative damage theory, and the fatigue life of each pipeline section were predicted. The results showed that each order natural frequency of the pipeline decreased with the increase of span length. The calculated results of empirical formulas were much smaller than those of the FEM analysis. The increase of the gap between the suspended pipeline and the seabed was beneficial to enhance the fatigue life of the suspended pipeline.  相似文献   

13.
基于ABAQUS/AQUA模块,当Spar平台发生涡激运动时,对与平台相连接的柔性立管进行时域动态响应分析,得到了不同折合速度下柔性立管的应力响应曲线.对立管触地区域和悬垂段进行了细化的分析,并利用S-N曲线和Miner线性累积损伤理论对平台涡激运动引起的柔性立管疲劳损伤进行了计算.研究结果表明:平台涡激运动对立管触地区域和悬垂段的影响较大,这两部分最容易在长时间的工作中产生疲劳损伤.特别是平台运动到近点时,立管触地区域受到的应力急剧增加,这个区域是立管工作的危险区域,应该特别注意.该研究结论可以作为立管结构设计和海底铺设时的参考,通过增加立管触地区域的结构强度和优化铺设方式,从而来提高立管的疲劳寿命和系统的安全性.  相似文献   

14.
- With the rapid development of the offshore oil industries, submarine oil / gas pipelines have been widely used. Under the complicated submarine environmental conditions, the dynamic characteristics of pipelines show some new features due to the existence of both internal and external flows. The paper is intended to investigate the vortex-induced vibration of the suspended pipeline span exposed to submarine steady flow. Especially, the effects of the flow inside the pipeline are taken into account. Its influences on the amplitude of pipeline response, and then on the fatigue life, are given in terms of the velocity of the internal flow.  相似文献   

15.
The dynamic response of two flexible model risers in tandem arrangement immersed in a stepped current was analyzed. The risers, with an external diameter of 20 mm and a total length of 6200 mm, had an aspect ratio of 310. They were hinged to the support structure at the center-to-center distances away 3?12 times the external diameter. The top 1200 mm was exposed to a uniform current at a speed which was up to 0.9 m/s (the Reynolds number was 18000) and the rest in still water. The dynamic responses, which were obtained through the Fiber Bragg Grating strain gauges mounted on the surface, were analyzed by studying the cross-flow amplitudes and modal weights. The cross-flow vibration were observed up to the third mode, and the modal transformation from the second mode to the third mode was clearly observed. The experiment confirmed that the typical vortex-induced vibration (VIV) had occurred on the up-stream riser. But for the down-stream riser, the main excitation mechanism was wake-induced vibration (WIV). The modal transformation of WIV was more complex than that of VIV, which might be helpful for other researchers to study the interference effect.  相似文献   

16.
Steel catenary riser(SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration(VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow(CF) and in-line(IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser.  相似文献   

17.
Steel catenary riser (SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration (VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow (CF) and in-line (IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号