首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
泥火山是地球运动和深部含流体物质向表层迁移的一种重要形式, 其喷溢及喷出物对认识地质动力、地层岩性和资源环境具有重要的意义。东沙海区新生界薄(~1km), 中生界厚(>5km), 是南海最典型的中生代沉积区和油气勘探待突破区。区内有众多的海山海丘, 过去都被推测为不利于油气成藏的岩浆火山。但近年来针对这些海山进行的调查发现了大量海底地层底辟形变与断裂、流体充注空白反射带和喷溢释放结构。通过浅表层取样采获了丰富的自生碳酸盐岩结核及深水珊瑚、海绵等生物, 表明众多海山、海丘具有明显的泥火山活动特征。东沙泥火山的发现表明区内具有良好的油气生成和运移条件, 为勘探源于中生界的油气和水合物提供了重要线索; 而大量深水珊瑚和海绵的出现指示东沙泥火山区可能是深水珊瑚礁、海绵礁发育区, 为研究油气泄漏、化养生物和环境三者的关系提供了重要的研究对象。  相似文献   

2.
Mud volcanoes recently discovered on the offshore Calabrian Arc are investigated at two sites 60 km apart, in water depths of 1650--2300 m, using swath bathymetry, 2D&3D multichannel seismic and cores. The seabed and subsurface data provide information on their formation and functioning in relation to tectonic activity during the rapid Plio-Quaternary advance of the accretionary prism. Fore-arc extension and thrust-belt compression are seen to have involved two main phases of activity, separated by a regional unconformity recording a mid-Pliocene (3.5–3.0 Ma) tectonic reorganization. The two sites of mud volcanism lie in contrasting tectonic settings (inner fore-arc basin vs central fold-and-thrust belt) and record differing forms of seabed extrusive activity (twin mud cones and a caldera vs a broad mud pie). At both sites, subsurface data show that mud volcanism took place throughout the second tectonic phase, since the late Pliocene; differing forms of mud extrusion were accompanied by subsidence to form depressions beneath and within extrusive edifices up to 1.5 km thick. The basal subsidence depressions point to sources within the succession of thrusts underlying the inner to central Arc, consistent with microfossils within cored mud breccias from both sites that are derived from strata as old as Late Cretaceous.  相似文献   

3.
东沙群岛西南海区泥火山的地球物理特征   总被引:1,自引:0,他引:1  
多道反射地震和CHIRP浅地层剖面显示在南海东沙群岛西南陆坡和白云凹陷东部陆坡之间的深水(600~1 000m)陆坡上矗立着一系列高出周围海底50~100m的丘形地质体,其内部地层发生褶皱,反射波呈现杂乱和空白,海底声波屏蔽严重。浅地层剖面还显示丘状构造带有气体羽状构造,从海底进入水体高达50m。海底沉积取样分析表明,这些海丘区的表层分布着生物成因的致密碳酸盐结核。可以推断东沙西南的丘形地质体就是泥火山带,并且可能是一个重要的水合物潜在区。东沙西南海区泥火山表现出构造挤压和带状分布的特点,不同于南海北部神狐和九龙甲烷礁已发现水合物区的非泥火山,也不同于全球其他典型被动大陆边缘的泥火山特征,其构造成因和水合物潜力有待进一步研究。  相似文献   

4.
Detailed multibeam, sedimentological, and geophysical surveys provide ample new data to confirm that the Anaximander Mountains (Eastern Mediterranean) are an important area for active mud volcanism and gas hydrate formation. More than 3000 km of multibeam track length was acquired during two recent missions and 80 gravity and box cores were recovered. Morphology and backscatter data of the study area have better resolution than previous surveys, and very detailed morphology maps have been made of the known targeted mud volcanoes (Amsterdam, Kazan and Kula), especially the Amsterdam “crater” and the related mud breccia flows. Gas hydrates collected repeatedly from a large area of Amsterdam mud volcano at a sub-bottom depth of around 0.3–1.5 m resemble compacted snow and have a rather flaky form. New gas hydrate sites were found at Amsterdam mud volcano, including the mud flow sloping off to the south. Gas hydrates sampled for the first time at Kazan mud volcano are dispersed throughout the core samples deeper than 0.3 m and display a ‘rice’-like appearance. Relative chronology and AMS dating of interbedded pelagic sediments (Late Holocene hemipelagic, sapropel layer S1 and ash layers) within the mud flows indicate that successive eruptions of Kula mud volcano have a periodicity of about 5–10 kyrs. New mud volcanoes identified on the basis of multibeam backscatter intensity were sampled, documented as active and named “Athina” and “Thessaloniki”. Gas hydrates were sampled also in Thessaloniki mud volcano, the shallowest (1264 m) among all the active Mediterranean sites, at the boundary of the gas hydrate stability zone. Biostratigraphical analyses of mud breccia clasts indicated that the source of the subsurface sedimentary sequences consists of Late Cretaceous limestones, Paleocene siliciclastic rocks, Eocene biogenic limestones and Miocene mudstones. Rough estimations of the total capacity of the Anaximander mud volcanoes in methane gas are 2.56–6.40 km3.  相似文献   

5.
This paper documents and describes through the use of 3D seismic data a prolific mud volcano province within the Eastern Mediterranean. As many as 386 mud volcanoes were mapped within the post-salt succession of the western slope of the Nile Cone, offshore Egypt, using high resolution 3D seismic data. The mud volcanoes within this field display significant geometrical variability in diameter (c. 550 m to c. 5660 m), height (c. 25 m to c. 510 m) and volume (c. 0.1 km3 to c. 3.3 km3) and lie at depths ranging from c. > 6000 m subsea to c. 3100 m at the seafloor. A close spatial relationship between mud volcanoes and base-salt depressions and regions of anomalous thinning within the immediate pre-salt succession, combined with documented core samples taken from mud volcanoes within this region present a powerful argument for a pre-salt source of mud. 3D seismic interpretation and volumetric analysis of these mud volcanoes and their source region permit the definition and quantification of their depletion zones. A conceptual model for a dynamic liquefaction and sediment withdrawal process is proposed whereby mud is fed into a central conduit as the depletion zone propagates radially and episodically outwards resulting in a the formation of a concentric depletion zones. Prolonged mud volcanism within this region over the last ∼5.3 Ma implies the potential for long lived pre-salt overpressure and continued mud volcanism following the catastrophic hydrodynamic impact of the Messinian Salinity Crisis. It is suggested that the scale of mud volcanism means that this region should be considered as among the largest mud volcano provinces in the world.  相似文献   

6.
Four mud volcanoes of several kilometres diameter named Amon, Osiris, Isis, and North Alex and located above gas chimneys on the Central Nile Deep Sea Fan, were investigated for the first time with the submersible Nautile. One of the objectives was to characterize the seafloor morphology and the seepage activity across the mud volcanoes. The seepage activity was dominated by emissions of methane and heavier hydrocarbons associated with a major thermal contribution. The most active parts of the mud volcanoes were highly gas-saturated (methane concentrations in the water and in the sediments, respectively, of several hundreds of nmol/L and several mmol/L of wet sediment) and associated with significantly high thermal gradients (at 10 m below the seafloor, the recorded temperatures reached more than 40 °C). Patches of highly reduced blackish sediments, mats of sulphide-oxidizing bacteria, and precipitates of authigenic carbonate were detected, indicative of anaerobic methane consumption. The chemosynthetic fauna was, however, not very abundant, inhibited most likely by the high and vigorous fluxes, and was associated mainly with carbonate-crust-covered seafloor encountered on the southwestern flank of Amon. Mud expulsions are not very common at present and were found limited to the most active emission centres of two mud volcanoes, where slow extrusion of mud occurs. Each of the mud volcanoes is fed principally by a main narrow channel located below the most elevated areas, most commonly in the centres of the structures. The distribution, shape, and seafloor morphology of the mud volcanoes and associated seeps over the Central Nile Deep Sea Fan are clearly tectonically controlled.  相似文献   

7.
A global database of gas composition and methane stable isotopes of 143 terrestrial mud volcanoes from 12 countries and 60 seeps independent from mud volcanism from eight countries, was compiled and examined in order to provide the first worldwide statistics on the origin of methane seeping at the earth's surface. Sixteen seep data were coupled with their associated subsurface reservoirs.  相似文献   

8.
Two highly active mud volcanoes located in 990–1,265 m water depths were mapped on the northern Egyptian continental slope during the BIONIL expedition of R/V Meteor in October 2006. High-resolution swath bathymetry and backscatter imagery were acquired with an autonomous underwater vehicle (AUV)-mounted multibeam echosounder, operating at a frequency of 200 kHz. Data allowed for the construction of ~1 m pixel bathymetry and backscatter maps. The newly produced maps provide details of the seabed morphology and texture, and insights into the formation of the two mud volcanoes. They also contain key indicators on the distribution of seepage and its tectonic control. The acquisition of high-resolution seafloor bathymetry and acoustic imagery maps with an AUV-mounted multibeam echosounder fills the gap in spatial scale between conventional multibeam data collected from a surface vessel and in situ video observations made from a manned submersible or a remotely operating vehicle.  相似文献   

9.
The present study is the first to directly address the issue of gas hydrates offshore West Greenland, where numerous occurrences of shallow hydrocarbons have been documented in the vicinity of Disko Bugt (Bay). Furthermore, decomposing gas hydrate has been implied to explain seabed features in this climate-sensitive area. The study is based on archive data and new (2011, 2012) shallow seismic and sediment core data. Archive seismic records crossing an elongated depression (20×35 km large, 575 m deep) on the inner shelf west of Disko Bugt (Bay) show a bottom simulating reflector (BSR) within faulted Mesozoic strata, consistent with the occurrence of gas hydrates. Moreover, the more recently acquired shallow seismic data reveal gas/fluid-related features in the overlying sediments, and geochemical data point to methane migration from a deeper-lying petroleum system. By contrast, hydrocarbon signatures within faulted Mesozoic strata below the strait known as the Vaigat can be inferred on archive seismics, but no BSR was visible. New seismic data provide evidence of various gas/fluid-releasing features in the overlying sediments. Flares were detected by the echo-sounder in July 2012, and cores contained ikaite and showed gas-releasing cracks and bubbles, all pointing to ongoing methane seepage in the strait. Observed seabed mounds also sustain gas seepages. For areas where crystalline bedrock is covered only by Pleistocene–Holocene deposits, methane was found only in the Egedesminde Dyb (Trough). There was a strong increase in methane concentration with depth, but no free gas. This is likely due to the formation of gas hydrate and the limited thickness of the sediment infill. Seabed depressions off Ilulissat Isfjord (Icefjord) previously inferred to express ongoing gas release from decomposing gas hydrate show no evidence of gas seepage, and are more likely a result of neo-tectonism.  相似文献   

10.
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to ∼650 mmol L−1 at ∼150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at ∼60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (δD-CH4 = −170.8‰ (SMOW), δ13C-CH4 = −61.0‰ (V-PDB), δ13C-C2H6 = −44.0‰ (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 × 106 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.  相似文献   

11.
The Menes caldera is a fault-controlled depression (~8 km in diameter) at ~3,000 m water depth in the western province of the Nile deep-sea fan off NW Egypt, comprising seven mud volcanoes (MVs) of which two are active. Based on multichannel and chirp seismic data, temperature profiles, and high-resolution bathymetric data collected during the 2000 Fanil, 2004 Mimes and 2007 Medeco2 expeditions, the present study investigates factors controlling MV morphology, the geometry of feeder channels, and the origin of emitted fluids. The active Cheops and Chephren MVs are 1,500 m wide with subcircular craters at their summits, about 250 m in diameter, generally a few tens of metres deep, and filled with methane-rich muddy brines with temperatures reaching 42 °C and 57 °C respectively. Deployments of CTDs and corers with attached temperature sensors tracked these warm temperatures down to almost 0.5 km depth below the brine lake surface at the Cheops MV, in a feeder channel probably only a few tens of metres wide. Thermogenic processes involve the dissolution of Messinian evaporites by warm fluids likely sourced even deeper, i.e. 1.7 and 2.6 km below the seabed at the Cheops and Chephren MVs respectively, and which ascend along listric faults. Seepage activity appears broadly persistent since the initiation of mud volcanism in the Early Pliocene, possibly accompanied by lateral migration of feeder channels.  相似文献   

12.
Mud volcanoes and gas vents in the Okhotsk Sea area   总被引:5,自引:0,他引:5  
Gas emissions from mud volcanoes on Sakhalin Island and water-column gas flares arising from cold seeps in the Okhotsk Sea appear to be related. They are likely activated by tectonic movements along the transform plate boundary separating the Okhotsk Sea Plate from the Eurasian and Amur plates. Gas vents (flares) and methane anomalies occur in the waters offshore Sakhalin Island, along with NE-SW-trending mounds and fluid escape structures on the seafloor. The intersection of the NE-striking transverse faults on land with the Central Sakhalin and Hokkaido-Sakhalin shear zones apparently determines the sites of mud volcanoes, a pattern that continues offshore where the intersection with the East Sakhalin and West Derugin shear zones determines the sites of the submarine gas vents.  相似文献   

13.
A shallow gas depth-contour map covering the Skagerrak-western Baltic Sea region has been constructed using a relatively dense grid of existing shallow seismic lines. The digital map is stored as an ESRI® shape file in order to facilitate comparison with other data from the region. Free gas usually occurs in mud and sandy mud but is observed only when sediment thickness exceeds a certain threshold value, depending on the water depth of the area in question. Gassy sediments exist at all water depths from approx. 20 m in the coastal waters of the Kattegat to 360 m in the Skagerrak. In spite of the large difference in water depths, the depth of free gas below seabed varies only little within the region, indicating a relatively fast movement of methane in the gas phase towards the seabed compared to the rate of diffusion of dissolved methane. Seeps of old microbial methane occur in the northern Kattegat where a relatively thin cover of sandy sediments exists over shallow, glacially deformed Pleistocene marine sediments. Previous estimates of total methane escape from the area may be correct but the extrapolation of local methane seepage rate data to much larger areas on the continental shelf is probably not justified. Preliminary data on porewater chemistry were compared with the free gas depth contours in the Aarhus Bay area, which occasionally suffers from oxygen deficiency, in order to examine if acoustic gas mapping may be used for monitoring the condition of the bay.  相似文献   

14.
The sediment–water interface is usually marked by an increase in acoustic impedance and is therefore displayed in a seismic section as a positive polarity reflection. Here, we use the term “seabed phase reversal” to describe areas of seafloor which are instead expressed as a negative polarity reflection in seismic data. We describe in detail a number of examples of seafloor phase reversals and use a simple one-dimensional geophysical model to test the hypothesis that they are the result of the presence of gas within the seafloor sediment. Our examples are all related to seismically imaged mud volcanoes located within the South Caspian Sea. Sections of phase-reversed seafloor at the summit area of these volcanoes have been mapped to reveal the existence of seafloor mud pools (salses) and recently erupted mud flows which show a strong similarity to smaller-scale features at onshore volcanoes in Azerbaijan. Synthetic geophysical modelling indicates that under the physical conditions likely to occur when the seabed sediment is gas-bearing, the seafloor will be expressed as a strong negative polarity reflection. Unlike other indicators of seafloor gas, such as pockmarks, which merely record the transient expulsion of fluids from sedimentary basins, seafloor phase reversals indicate the presence of gas in marine sediment at the time of survey acquisition. They therefore are of significance to engineering and site survey operations as well as the identification of biological communities and gas flux calculations.  相似文献   

15.
During the Antarctic summer of 2003–2004, new geophysical data were acquired from aboard the R/V OGS Explora in the BSR-rich area discovered in 1996–1997 along the South Shetland continental margin off the Antarctic Peninsula. The objective of the research program, supported by the Italian National Antarctic Program (PNRA), was to verify the existence of a potential gas hydrate reservoir and to reconstruct the tectonic setting of the margin, which probably controls the extent and character of the diffused and discontinuous bottom simulating reflections. The new dataset, i.e. multibeam bathymetry, seismic profiles (airgun and chirp), and two gravity cores analysed by computer-aided tomography as well as for gas composition and content, clearly shows active mud volcanism sustained by hydrocarbon venting in the region: several vents, located mainly close to mud volcanoes, were imaged during the cruise and their occurrence identified in the sediment samples. Mud volcanoes, vents and recent slides border the gas hydrate reservoir discovered in 1996–1997. The cores are composed of stiff silty mud. In core GC01, collected in the proximity of a mud volcano ridge, the following gases were identified (maximum contents in brackets): methane (46 μg/kg), pentane (45), ethane (35), propane (34), hexane (29) and butane (28). In core GC02, collected on the flank of the Vualt mud volcano, the corresponding data are methane (0 μg/kg), pentane (45), ethane (22), propane (0), hexane (27) and butane (25).  相似文献   

16.
High-resolution single channel and multichannel seismic reflection profiles and multibeam bathymetric and backscatter data collected during several cruises over the period 1999 to 2007 have enabled characterising not only the seabed morphology but also the subsurface structural elements of the Yuma, Ginsburg, Jesús Baraza and Tasyo mud volcanoes (MVs) in the Gulf of Cádiz at 1,050–1,250 m water depth. These MVs vary strongly in morphology and size. The data reveal elongated cone-shaped edifices, rimmed depressions, and scarps interpreted as flank failures developed by collapse, faulting, compaction and gravitational processes. MV architecture is characterised by both extrusive and intrusive complexes, comprising stacked edifices (including seabed cones and up to four buried bicones) underlain by chaotic vertical zones and downward-tapering cones suggesting feeder systems. These intrusive structures represent the upper layer of the feeder system linking the fluid mud sources with the constructional edifices. The overall architecture is interpreted to be the result of successive events of mud extrusion and outbuilding alternating with periods of dormancy. Each mud extrusion phase is connected with the development of an edifice, represented by a seabed cone or a buried bicone. In all four MVs, the stacked edifices and the intrusive complexes penetrate Late Miocene–Quaternary units and are rooted in the Gulf of Cádiz wedge emplaced during the late Tortonian. Major phases of mud extrusion and outbuilding took place since the Late Pliocene, even though in the Yuma and Jesús Baraza MVs mud volcanism started in the Late Miocene shortly after the emplacement of the Gulf of Cádiz wedge. This study shows that fluid venting in the eastern sector of the Gulf of Cádiz promoted the outbuilding of large long-lived mud volcanoes active since the Late Miocene, and which have been reactivated repeatedly until recent times.  相似文献   

17.
《Marine Geology》2001,172(1-2):57-73
Conical mounds, 1–1.5 km in diameter, and up to 65 m high were mapped at the foot of the active Makran continental margin. The mounds developed seaward of the accretionary front in a relatively planar zone where the beginning of build-up of tectonic pressure initiates deformation. Based on shallow high-resolution 4 kHz sediment echosounding, the sedimentary sequence in this area is generally well stratified, as indicated by closely spaced horizontal reflections. However, in the vicinity of the mounds the sediment is characterised by many acoustically transparent zones, which are 100–300 m in diameter and cut near-vertically through the horizontal reflectors.Two sediment cores from the top of the largest cone and a neighbouring acoustically transparent zone reveal small-scale post-depositional deformation in a stratified sequence and methane concentrations up to 40,000 ng/g. This deformation and disruption of potential reflectors provides a clue to explain the acoustic transparency: we interpret it as caused by the rise of charged fluids and mud, leading initially to the (slight) disturbance of the generally good acoustic reflectors and eventually to the formation of conical mud mounds (mud volcanoes). MCS data, showing a buried mound in an analogous structural position, support the idea of tectonically induced mud/fluid expulsion seaward of the accretionary front.  相似文献   

18.
南海东北部陆坡天然气水合物区的滑塌和泥火山活动   总被引:2,自引:1,他引:1  
本文研究了南海东北部陆坡天然气水合物区滑塌和泥火山活动的特征及表现形式,探讨了滑塌和泥火山活动对天然气水合物成藏的影响,提出了滑塌主导和滑塌、泥火山共同作用两种控制模式。根据地震数据、浅层剖面和海底地形数据解释,将研究区划分为规则滑塌区和泥火山活动影响区,并识别出泥火山、泥火山脊、凹槽、凹坑等特征地形。滑塌和泥火山活动是陆坡天然气水合物发育区重要的地形控制因素,两种活动共同作用产生复杂的地形特征。综合多条地震测线中似海底反射层(BSR)形态、连续性和滑塌、泥火山活动的关系,认为滑塌控制的区域,BSR连续,天然气水合物储藏较完整,泥火山活动区天然气水合物储藏也仅受到局部破坏。同时指出滑塌和泥火山活动对研究区长期天然气渗漏活动具有重要作用。  相似文献   

19.
孟宪伟  张俊  夏鹏 《海洋学报》2014,36(2):33-39
深海,特别是天然气水合物区的沉积物-孔隙水体系中,Ba循环受到孔隙水中的硫酸盐(SO24-)和甲烷(CH4)之间的氧化还原反应的强烈制约。沉积物中"Ba峰"的存在体现了SO2-4亏损的长时间累积效应,并与海平面变化制约下的天然气水合物分解有关。南海北部陆坡ODP1146站钻孔上部深度185m沉积物中发育了4个"Ba峰",其中发育于深度约58m的"Ba峰"(F3)与当前SO2-4-CH4反应界面(SMI)深度一致,推断其他3个"Ba峰"(F1、F2和F4)对应的SMI深度分别约为24m、46m和84m。"Ba峰"最大峰值与沉积物Cl通量减小和冰期-间冰期转换带的对应性表明:在冰期,海平面大幅度降低诱发的浅水区(如东沙群岛附近)天然气水合物的分解持续释放了低盐度、高浓度CH4流体,其中部分流体迁移至ODP1146站所在的陆坡区沉积物中,导致了间隙水中SO2-4的持续亏损和自生Ba的长时间累积,结果在冰期-间冰期转换阶段形成显著的"Ba峰";同时,部分逸散于大气中的CH4加快了冰期的结束。在距今约50万年的冰期-间冰期旋回制约下的海平面周期性变化过程中,南海北部浅水区天然气水合物分解释放的低盐度和高浓度CH4流体也间歇地迁移至深水陆坡沉积区,导致了多个"Ba峰"的形成和沉积埋藏。"Ba峰"可以用于评价历史时期南海北部陆坡天然气水合物分解释放甲烷通量的变化。  相似文献   

20.
 A newly discovered area of mud volcanism, about 170 km south of Crete, in the central–eastern part of the Mediterranean Ridge, was named the “United Nations Rise” (UNR). A survey of the UNR area with the deep-towed ORE tech side-scan sonar equipped with a subbottom profiler revealed the presence of some mud volcanoes and also showed various other sea-floor features, including slumps, escarpments and pockmark-type depressions. Several of our interpretations were ground-truthed by coring. The UNR area appears to belong to the Inner deformation front of the Mediterranean Ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号