首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Understanding the oil distribution characteristics in unconventional tight reservoirs is crucial for hydrocarbon evaluation and oil/gas extraction from such reservoirs. Previous studies on tight oil distribution characteristics are mostly concerned with the basin scale. Based on Lucaogou core samples, geochemical approaches including Soxhlet extraction, total organic carbon (TOC), and Rock-Eval are combined with reservoir physical approaches including mercury injection capillary pressure (MICP) and porosity-permeability analysis, to quantitatively evaluate oil distribution of tight reservoirs on micro scale. The emphasis is to identify the key geological control factors of micro oil distribution in such tight reservoirs. Dolomicrites and non-detrital mudstones have excellent hydrocarbon generation capacity while detritus-containing dolomites, siltstones, and silty mudstones have higher porosity and oil content, and coarser pore throat radius. Oil content is mainly controlled by porosity, pore throat radius, and hydrocarbon generation capacity. Porosity is positively correlated with oil content in almost all samples including various lithologies, indicating that it is a primary constraint for providing storage space. Pore throat radius is also an important factor, as oil migration is inhibited by the capillary pressure which must be overcome. If the reservoir rock with suitable porosity has no hydrocarbon generation capacity, pore throat radius will be decisive. As tight reservoirs are generally characterized by widely distributed nanoscale pore throats and high capillary pressure, hydrocarbon generation capacity plays an important role in reservoir rocks with suitable porosity and fine pore throats. Because such reservoir rocks cannot be charged completely. The positive correlation between hydrocarbon generation capacity and oil content in three types of high porosity lithologies (detritus-containing dolomites, siltstones, and silty mudstones) supports this assertion.  相似文献   

2.
The middle Permian Lucaogou Formation in the Jimusaer Sag of the southeastern Junggar Basin, NW China, was the site of a recent discovery of a giant tight oil reservoir. This reservoir is unusual as it is hosted by lacustrine mixed dolomitic-clastic rocks, significantly differing from other tight reservoirs that are generally hosted by marine/lacustrine siliciclastic–calcitic sequences. Here, we improve our understanding of this relatively new type of tight oil reservoir by presenting the results of a preliminarily investigation into the basic characteristics and origin of this reservoir using field, petrological, geophysical (including seismic and logging), and geochemical data. Field and well core observations indicate that the Lucaogou Formation is a sequence of mixed carbonate (mainly dolomites) and terrigenous clastic (mainly feldspars) sediments that were deposited in a highly saline environment. The formation is divided into upper and lower cycles based on lithological variations between coarse- and fine-grained rocks; in particular, dolomites and siltstones are interbedded with organic-rich mudstones in the lower part of each cycle, whereas the upper part of each cycle contains few dolomites and siltstones. Tight oil accumulations are generally present in the lower part of each cycle, and dolomites and dolomite-bearing rocks are the main reservoir rocks in these cycles, including sandy dolomite, dolarenite, dolomicrite, and a few dolomitic siltstones. Optical microscope, back scattered electron, and scanning electron microscope imaging indicate that the main oil reservoir spaces are secondary pores that were generated by the dissolution of clastics and dolomite by highly acidic and corrosive hydrocarbon-related fluids.  相似文献   

3.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   

4.
The Upper Triassic Chang 6 sandstone, an important exploration target in the Ordos Basin, is a typical tight oil reservoir. Reservoir quality is a critical factor for tight oil exploration. Based on thin sections, scanning electron microscopy (SEM), X-ray diffraction (XRD), stable isotopes, and fluid inclusions, the diagenetic processes and their impact on the reservoir quality of the Chang 6 sandstones in the Zhenjing area were quantitatively analysed. The initial porosity of the Chang 6 sandstones is 39.2%, as calculated from point counting and grain size analysis. Mechanical and chemical compaction are the dominant processes for the destruction of pore spaces, leading to a porosity reduction of 14.2%–20.2% during progressive burial. The porosity continually decreased from 4.3% to 12.4% due to carbonate cementation, quartz overgrowth and clay mineral precipitation. Diagenetic processes were influenced by grain size, sorting and mineral compositions. Evaluation of petrographic observations indicates that different extents of compaction and calcite cementation are responsible for the formation of high-porosity and low-porosity reservoirs. Secondary porosity formed due to the burial dissolution of feldspar, rock fragments and laumontite in the Chang 6 sandstones. However, in a relatively closed geochemical system, products of dissolution cannot be transported away over a long distance. As a result, they precipitated in nearby pores and pore throats. In addition, quantitative calculations showed that the dissolution and associated precipitation of products of dissolution were nearly balanced. Consequently, the total porosity of the Chang 6 sandstones increased slightly due to burial dissolution, but the permeability decreased significantly because of the occlusion of pore throats by the dissolution-associated precipitation of authigenic minerals. Therefore, the limited increase in net-porosity from dissolution, combined with intense compaction and cementation, account for the low permeability and strong heterogeneity in the Chang 6 sandstones in the Zhenjing area.  相似文献   

5.
Reservoir quality and heterogeneity are critical risk factors in tight oil exploration. The integrated, analysis of the petrographic characteristics and the types and distribution of diagenetic alterations in the Chang 8 sandstones from the Zhenjing area using core, log, thin-section, SEM, petrophysical and stable isotopic data provides insight into the factors responsible for variations in porosity and permeability in tight sandstones. The results indicate that the Chang 8 sandstones mainly from subaqueous distributary channel facies are mostly moderately well to well sorted fine-grained feldspathic litharenites and lithic arkose. The sandstones have ultra-low permeabilities that are commonly less than 1 mD, a wide range of porosities from 0.3 to 18.1%, and two distinct porosity-permeability trends with a boundary of approximately 10% porosity. These petrophysical features are closely related to the types and distribution of the diagenetic alterations. Compaction is a regional porosity-reducing process that was responsible for a loss of more than half of the original porosity in nearly all of the samples. The wide range of porosity is attributed to variations in calcite cementation and chlorite coatings. The relatively high-porosity reservoirs formed due to preservation of the primary intergranular pores by chlorite coatings rather than burial dissolution; however, the chlorites also obstruct pore throats, which lead to the development of reservoirs with high porosity but low permeability. In contrast, calcite cementation is the dominant factor in the formation of low-porosity, ultra-low-permeability reservoirs by filling both the primary pores and the pore throats in the sandstones. The eogenetic calcites are commonly concentrated in tightly cemented concretions or layers adjacent to sandstone-mudstone contacts, while the mesogenetic calcites were deposited in all of the intervals and led to further heterogeneity. This study can be used as an analogue to understand the variations in the pathways of diagenetic evolution and their impacts on the reservoir quality and heterogeneity of sandstones and is useful for predicting the distribution of potential high-quality reservoirs in similar geological settings.  相似文献   

6.
This work presents new insights of the generation, quality and migration pathways of the hydrocarbons in the East Baghdad Oil Field.The Khasib and Tannuma formations in East Baghdad are considered as oil reservoirs according to their high porosity (15-23%) and permeability (20-45 mD) in carbonate rocks. The hydrocarbons are trapped by structural anticline closure trending NW-SE. Gas chromatography analysis on these oil reservoirshave shown biomarkers of abundant ranges of n-alkanes of less than C22 (C17-C21) with C19 and C18 peaks. This suggests mainly liquid oil constituents of paraffinic hydrocarbons from marine algal source of restricted palaeoenvironments in the reservoir. The low non aromatic C15 + peaks are indicative for slight degradation and water washing. Oil biomarkers of Pr./Ph. = 0.85, C31/C30 < 1.0, location in triangle of C27-C29 sterane, C28/C29 of 0.6 sterane, Oleanane of 0.01 and CPI = 1.0, indicate an anoxic marine environment with carbonate deposits of Upper Jurassic to Early Cretaceous age. Four Miospores, seven Dinoflagellates and one Tasmanite species confirm affinity to the upper most Jurassic to Lower Cretaceous Chia Gara and Ratawi Formations.The recorded palynomorphs from the Khasib and Tannuma Formations are of light brown color of TAI = 2.8-3.0 and comparable to the mature palynomorphs that belong to the Chia Gara and the Lower part of Ratawi Formations.The Chia Gara Formation generated oil during Upper Cretaceous to Early Palaeogene and accumulated in structural traps of Cretaceous age, such as the Khasib and Tannuma reservoirs. The Chia Gara Formation generated and expelled high quantities of oil hydrocarbons according to their TOC wt% of 0.5-8.5 with S2 = 2.5-18.5 mg Hc/g Rock, high hydrogen index of the range 150-450 mg Hc/g Rock, good petroleum potential of 4.5-23.5 mg Hc/g Rock, mature (TAI = 2.8-3.0 and Tmax = 428-443C), kerogen type II and palynofacies parameters of up to 100% AOM (Amorphous Organic Matters). This includes algae deposits in a dysoxic-anoxic to suboxic-anoxic environment.Alternative plays are discussed according to the migration pathways.  相似文献   

7.
The quality of source rocks plays an important role in the distribution of tight and conventional oil and gas resources. Despite voluminous studies on source rock hydrocarbon generation, expulsion and overpressure, a quality grading system based on hydrocarbon expulsion capacity is yet to be explored. Such a grading system is expected to be instrumental for tight oil and gas exploration and sweet spot prediction. This study tackles the problem by examining Late Cretaceous, lacustrine source rocks of the Qingshankou 1 Member in the southern Songliao Basin, China. By evaluating generated and residual hydrocarbon amounts of the source rock, the extent of hydrocarbon expulsion is modelled through a mass balance method. The overpressure is estimated using Petromod software. Through correlation between the hydrocarbon expulsion and source rock evaluation parameters [total organic carbon (TOC), kerogen type, vitrinite reflectance (Ro) and overpressure], three classes of high-quality, effective and ineffective source rocks are established. High-quality class contains TOC >2%, type-I kerogen, Ro >1.0%, overpressure >7Mpa, sharp increase of hydrocarbon expulsion along with increasing TOC and overpressure, and high expulsion value at Ro >1%. Source rocks with TOC and Ro <0.8%, type-II2 & III kerogen, overpressure <3Mpa, and low hydrocarbon expulsion volume are considered ineffective. Rocks with parameters between the two are considered effective. The high-quality class shows a strong empirical control on the distribution of tight oil in the Songliao Basin. This is followed by the effective source rock class. The ineffective class has no measurable contribution to the tight oil reserves. Because the hydrocarbon expulsion efficiency of source rocks is controlled by many factors, the lower limits of the evaluation parameters in different basins may vary. However, the classification method of tight source rocks proposed in this paper should be widely applicable.  相似文献   

8.
The hydrocarbon migration in tight reservoirs is a complex process, the fluid flow patterns of which are notably different from those of conventional reservoirs. Therefore, specific mathematical models are needed to simulate the secondary hydrocarbon migrations. This study presents a numerical simulation method based on Artificial Immune Ant Colony Algorithm (AIACA) to simulate the secondary hydrocarbon migrations in tight reservoirs. It consists of three core parts: (1) the release modes of artificial ants based on the intensity of hydrocarbon generation; (2) the wandering patterns of artificial ants under the control of the dynamic field and the distribution of pheromones; (3) the updating modes of pheromones based on the changes in reservoir wettability. The simulation of secondary migration can be realized by the observing the dynamic movements and accumulations of the artificial ants. The method has been tested in the Chang 81 tight sandstone reservoir, which is part of the Triassic Yanchang Formation in the Huaqing Area, Ordos Basin in China, and proved to be successful in matching the current data in exploration and development.  相似文献   

9.
In recent years, new oil reservoirs have been discovered in the Eocene tight sandstone of the Huilu area, northern part of the Pearl River Mouth basin, South China Sea, indicating good prospects for tight oil exploration in the area. Exploration has shown that the Huilu area contains two main sets of source rocks: the Eocene Wenchang (E2w) and Enping (E2e) formations. To satisfy the requirements for further exploration in the Huilu area, particularly for tight oil in Eocene sand reservoirs, it is necessary to re-examine and analyze the hydrocarbon generation and expulsion characteristics. Based on mass balance, this study investigated the hydrocarbon generation and expulsion characteristics as well as the tight oil resource potential using geological and geochemical data and a modified conceptual model for generation and expulsion. The results show that the threshold and peak expulsion of the E2w source rocks are at 0.6% vitrinite reflectance and 0.9% vitrinite reflectance, respectively. There were five hydrocarbon expulsion centers, located in the western, eastern, and northern Huizhou Sag and the southern and northern Lufeng Sag. The hydrocarbon yields attributed to E2w source rocks are 2.4 × 1011 tons and 1.6 × 1011 tons, respectively, with an expulsion efficiency of 65%. The E2e source rock threshold and peak expulsion are at 0.65% vitrinite reflectance and 0.93% vitrinite reflectance, respectively, with hydrocarbon expulsion centers located in the centers of the Huizhou and Lufeng sags. The yields attributed to E2e source rocks are 1.1 × 1011 tons and 0.2 × 1011 tons, respectively, with an expulsion efficiency of 20%. Using an accumulation coefficient of 7%–13%, the Eocene tight reservoirs could contain approximately 1.3 × 1010 tons to 2.3 × 1010 tons, with an average of 1.8 × 1010 tons, of in-place tight oil resources (highest recoverable coefficient can reach 17–18%), indicating that there is significant tight oil potential in the Eocene strata of the Huilu area.  相似文献   

10.
Deep marine tight sandstone oil reservoirs are the subject of considerable research around the world. This type of reservoir is difficult to develop due to its low porosity, low permeability, strong heterogeneity and anisotropy. A marine tight sandstone oil reservoir is present in the Silurian strata in the northern Tazhong area of the Tarim Basin, NW China, at a depth of more than 5000 m. The porosity is between 6% and 8%, and the gas permeability is between 0.1 and 1 × 10−3 μm2. The features of this type of reservoir include the poor effects of conventional fracturing modifications and horizontal wells, which can lead to stable and low levels of production after staged fracturing. Here, we conduct a comprehensive evaluation of the mechanical properties of the rock and the in situ stress of the target tight sandstones by using numerous mechanical and acoustic property tests, conducing crustal stress analysis and using data from thin section observations. The dispersion correction technique is used to transform velocity at the experimental high frequency (1 MHz) to velocity at the logging frequency (20 kHz). The logging interpretation models of the transverse wave offset time, mechanical parameters and in situ stress are calculated, and each model represents a high precision prediction. Simulating the in situ stress field of the Silurian strata using a three-dimensional finite element method demonstrates that the average error between the simulation result and the measured value is less than 6%. The planar distribution of each principal stress is mainly controlled by the burial depth and fault distribution. By conducting in situ stress orientation analysis for the target layer via the analysis of paleomagnetism, borehole enlargement, fast shear wave orientation and stress field simulation, we show that the direction of the maximum horizontal stress is N45E. In this paper, a typical and successful comprehensive evaluation of the stress field of the deep tight sandstone oil reservoir is provided.  相似文献   

11.
The Upper Triassic Xujiahe Formation in the northwestern Sichuan Basin, China, is a typical tight gas sandstone reservoir that contains natural fractures and has an average porosity of 1.10% and air permeability less than 0.1 md because of compaction and cementation. According to outcrops, cores and image logs, three types of natural fractures, namely, tectonic, diagenetic and overpressure-related fractures, have developed in the tight gas sandstones. The tectonic fractures include small faults, intraformational shear fractures and horizontal shear fractures, whereas the diagenetic fractures mainly include bed-parallel fractures. According to thin sections, the microfractures also include tectonic, diagenetic and overpressure-related microfractures. The diagenetic microfractures consist of transgranular, intragranular and grain-boundary fractures. Among these fractures, intraformational shear fractures, horizontal shear fractures and small faults are predominant and significant for fluid movement. Based on the Monte Carlo method, these intraformational shear fractures and horizontal shear fractures improve the reservoir porosity and permeability, thus serving as an important storage space and primary fluid-flow channels in the tight sandstones. The small faults may provide seepage channels in adjacent layers by cutting through layers. In addition, these intragranular and grain-boundary fractures increase the connectivity of the tight gas sandstones by linking tiny pores. The tectonic microfractures improve the seepage capability of the tight gas sandstones to some extent. Low-dip angle fractures are more abundant in the T3X3 member than in the T3X2 and T3X4 members. The fracture intensities of the sandstones in the T3X3 member are greater than those in the T3X2 and T3X4 members. The fracture intensities do not always decrease with increasing bed thickness for the tight sandstones. When the bed thickness of the tight sandstones is less than 1.0 m, the fracture intensities increase with increasing bed thickness in the T3X3 member. Fluid inclusion evidence and burial history analysis indicate that the tectonic fractures developed over three periods. The first period was at the end of the Triassic to the Early Jurassic. The tectonic fractures developed during oil generation but before the matrix's porosity and permeability reduced, which suggests that these tectonic fractures could provide seepage channels for oil migration and accumulation. The second period was at the end of the Cretaceous after the matrix's porosity and permeability reduced but during peak gas generation, which indicates that gas mainly migrated and accumulated in the tectonic fractures. The third period was at the end of the Eogene to the Early Neogene. The tectonic fractures could provide seepage channels for secondary gas migration and accumulation from the Upper Triassic Xujiahe Formation into the overlying Jurassic Formation.  相似文献   

12.
The Ordovician is the most important exploration target in the Tabei Uplift of the Tarim Basin, which contains a range of petroleum types including solid bitumen, heavy oil, light oil, condensate, wet gas and dry gas. The density of the black oils ranges from 0.81 g/cm3 to 1.01 g/cm3 (20 °C) and gas oil ratio (GOR) ranges from 4 m3/m3 to 9300 m3/m3. Oil-source correlations established that most of the oils were derived from the Mid-Upper Ordovician marine shale and carbonate and that the difference in oil properties is mainly attributed to hydrocarbon alteration and multi-stage accumulation. In the Tabei Uplift, there were three main periods of hydrocarbon accumulation in the late Caledonian stage (ca. 450–430 Ma), late Hercynian stage (ca. 293–255 Ma) and the late Himalayan stage (ca. 12–2 Ma). The oil charging events mainly occurred in the late Caledonian and late Hercynian stage, while gas charging occurred in the late Hercynian stage. During the late Caledonian stage, petroleum charged the reservoirs lying east of the uplift. However, due to a crustal uplifting episode in the early Hercynian (ca. 386–372 Ma), most of the hydrocarbons were transformed by processes such as biodegradation, resulting in residual solid bitumen in the fractures of the reservoirs. During the late Hercynian Stage, a major episode of oil charging into Ordovician reservoirs took place. Subsequent crustal uplift and severe alteration by biodegradation in the west-central Basin resulted in heavy oil formation. Since the late Himalayan stage when rapid subsidence of the crust occurred, the oil residing in reservoirs was exposed to high temperature cracking conditions resulting in the production of gas and charged from the southeast further altering the pre-existing oils in the eastern reservoirs. A suite of representative samples of various crude oils including condensates, lights oils and heavy oils have been collected for detailed analysis to investigate the mechanism of formation. Based on the research it was concluded that the diversity of hydrocarbon physical and chemical properties in the Tabei Uplift was mainly attributable to the processes of biodegradation and gas washing. The understanding of the processes is very helpful to predict the spatial distribution of hydrocarbon in the Tabei Uplift and provides a reference case study for other areas.  相似文献   

13.
The key point for rational allocation of emergency resources is to match the oil spill response capacity with the risk of oil spill. This paper proposes an innovative risk-based model for quantitative regional emergency resource allocation, which comprehensively analyzes the factors such as oil spill probability, hazard consequences, oil properties, weathering process and operation efficiency, etc. The model calculates three major resources, i.e., mechanical recovery, dispersion and absorption, according to the results of risk assessment. In a field application in Xiaohu Port, Guangzhou, China, and the model achieved scientific and rational allocation of emergency resources by matching the assessed risk with the regional capacity, and allocating emergency resources according to capability target. The model is considered to be beneficial to enhancing the resource efficiency and may contribute to the planning of capacity-building programs in high-risk areas.  相似文献   

14.
Eight lacustrine Type I kerogen samples from the Songliao Basin were pyrolyzed using the Rock-Eval equipment, and parallel first-order reaction models including the model with a single frequency factor and a discrete distribution of activation energies (SFF model) and the model with multiple frequency factors and a discrete distribution of activation energies (MFF model) were adopted to analyze kinetic characteristics of hydrocarbon generation of the Type I kerogen samples. The results show that the MFF and SFF models can satisfactory simulate hydrocarbon generation under laboratory conditions and the Type I kerogen shows relatively concentrated activation energy distributions (activation energies of MFF model range from 190 kJ/mol to 250 kJ/mol, activation energies of SFF model range from 220 kJ/mol to 240 kJ/mol), which indicates a homogeneous chemical bond structure of the Type I kerogen. The hydrocarbon generated curves from Type I kerogen were calculated by using the two models with a linear heating rate (3.3 K/Ma). It indicates that the hydrocarbon generation potentials (reaction fractions) are underestimated by using the SFF model during the kerogen thermal degradation for the components with chemical bond of lower and higher activation energies, while this problem can be avoided by using the MFF model. The calculated temperatures for 50% transformation ratio (TR) of all samples differ by as much as 20 °C. For the SFF model, the hydrocarbon generation curve obtained by using the weighted averaged kinetic parameters and the SFF model almost includes every curve calculated by using its own kinetic parameters. While the curve obtained by using the weighted averaged kinetic parameters and the MFF model cannot include every curve for all samples, it lies at the position of the averaged curve of all samples. The application of the MFF model in Songliao Basin shows that if TR 10% is taken as the onset of hydrocarbon generation, the threshold depth of hydrocarbon generation is about 1700 m, which is consistent with other geochemical parameters, such as S1/TOC, S1/(S1 + S2) and HC/TOC.  相似文献   

15.
The Ordos Basin is a large cratonic basin with an area of 250,000 km2 in central China. Upper Paleozoic coals and shales serve as gas source rocks with peak generation and migration at the end of the early Cretaceous. Recent exploration has verified the huge gas potential in the “basin-centered gas accumulation system” (BCGAS). However, the mechanism for the gas accumulation is controversial. With an integrated approach of thin-section petrography, ultra-violet fluorescence microscopy, fluid inclusion microthermometry, Raman microspectrometry, scanning electron microscopy, and X-ray diffractometry, we identified diagenetic trapping and evaluated the diagenetic history of sandstone reservoirs in the Yulin Gas Field in the central area, where structural, stratigraphic and/or sedimentary lithologic traps have not been found. It was revealed that three phases of diagenesis and hydrocarbon charging occurred, respectively, in the late Triassic, late Jurassic and at the end of the early Cretaceous. In the first two phases, acidic water entered the reservoir and caused dissolution and cementation, resulting in porosity increase. However, further subsidence and diagenesis, including compaction and cementation, markedly reduced the pore space. At the end of the early Cretaceous, the bulk of the gas migrated into the tight reservoirs, and the BCGAS trap was formed. In the updip portion of this system, cementation continued to occur due to low gas saturation and has provided effective seals to retain gas for a longer period of time than water block in the BCGAS. The mechanism for the gas entrapment was changed from water block by capillary pressure in the BCGAS to diagenetic sealing. The diagenetic seals in the updip portion of the sand body were formed after gas charging, which indicates that there is a large hydrocarbon exploration potential at the basin-centered area.  相似文献   

16.
Tight gas grainstone reservoirs in the third member of the Feixianguan Formation, Jiannan area, evolved from a paleo-oil accumulation as evidenced from abundant solid reservoir bitumen. Porosity evolution of the grainstones was studied by evaluating relative influences of sedimentology, diagenesis, and solid bitumen formed during cracking of accumulated oils. Grainstones exhibited regional-distinct effectiveness for paleo-oil and present-gas accumulations during oil window and subsequent gas window diagenesis. In the southern zone where grainstones were not subjected to subaerial exposure and meteoric diagenesis in the early diagenetic stage, paleoporosity at the time of oil charge was mainly controlled by sedimentologic factors (e.g., grain size, sorting, and grain type), and paleo-oil reservoirs only occurred in the ooid-dominated grainstones with good sorting and coarse grain size. In contrast, in the northern zone meteoric diagenesis was responsible for paleoporosity preservation due to the early mineral stabilization of grains and meteoric calcite cementation, which caused grainstones greater resistance to compaction. Hence, most of the grainstones in the northern zone, regardless of textural variables, formed effective reservoirs for paleo-oil accumulation. As the oil cracked to gas with increasing depth and temperature during the late oil window and initial gas window, solid bitumen occluded reservoir pores to varying degrees and caused paleo-oil reservoirs to be significantly heterogeneous or completely ineffective for gas accumulation. In contrast, most grainstones that were once ineffective oil reservoirs transformed into effective gas reservoirs due to no or minor influence of solid bitumen precipitation. The model of reservoir transformation development of tight grainstones provides a plausible explanation for key observations concerning the diagenetic and distribution differences between paleo-oil and present-gas reservoirs. It is useful in predicting the distribution of potential reservoirs in carbonate strata in future exploration.  相似文献   

17.
The Niudong Buried Hill Field, which lies in the Baxian Depression of the Bohai Bay Basin, is the deepest oil/gas accumulation in eastern China. Its Precambrian dolomite reservoir occurs at burial depths of 5860 m–6027 m. This paper attempts to document the hydrocarbon charging and accumulation history in this field, which could greatly enhance the understanding of the mechanisms for the formation of deep hydrocarbon accumulations. Our previous study of oil trapped in fluid inclusions has demonstrated that the ratio parameters of the fluorescence spectral intensities at 425 nm and 433 nm (Q425/433 ratio), and at 419 nm and 429 nm (Q419/429 ratio) can be more effective for revealing hydrocarbon charging history than the previously-used fluorescence parameters such as Lambda max and red/green quotient as well as fluorescence colors. The hydrocarbon charging and accumulation history in the Niudong Buried Hill Field was studied with an integrated approach involving the application of these two spectral parameters of petroleum inclusion fluorescence as well as utilization of other data including homogenization temperatures of aqueous inclusions coeval with petroleum inclusions, and cross-cutting relationships of cements and “oil veins” in pores and fractures. The results indicate that the dolomite reservoir in the Niudong Buried Hill Field experienced three episodes of hydrocarbon charging. In the first two episodes (between 38.5Ma and 25Ma), the low mature and mature oils, which were derived from source rocks in the Sha-4 Member of the Eocene Shahejie Formation, migrated into the reservoir, but part of them leaked out due to normal faulting at the updip margin of the buried hill. These early-charged oils were preserved mainly in small pores in micritic dolomites by oil-wettability and capillary pressure. In the Neogene, the basin subsided as a whole and local faults at the updip margin became inactive and played a sealing role. By approximately 13Ma, the source rocks became highly mature and the generated hydrocarbons then migrated into the reservoir and accumulated. Therefore, the last charging is the most important for hydrocarbon accumulation in the Niudong Buried Hill Field.  相似文献   

18.
Understanding the pore structure characteristics of tight gas sandstones is the primary purpose of reservoir evaluation and efforts to characterize tight gas transport and storage mechanisms and their controls. Due to the various pore types and multi-scale pore sizes in tight reservoirs, it is essential to combine several techniques to characterize pore structure. Scanning electron microscopy (SEM), nitrogen gas adsorption (N2GA), mercury intrusion porosimetry (MIP) and nuclear magnetic resonance (NMR) were conducted on tight sandstones from the Lower Cretaceous Shahezi Formation in the northern Songliao Basin to investigate pore structure characteristics systematically (e.g., type and size distribution of pores) and to establish how significant porosity and permeability are for different pore types. The studied tight sandstones are composed of intergranular pores, dissolution pores and intercrystalline pores. The integration of N2GA and NMR can be used as an efficient method to uncover full pore size distribution (PSD) of tight sandstones, with pore sizes ranging from 2 nm to dozens of microns. The full PSDs indicate that the pore sizes of tight sandstones are primarily distributed within 1.0 μm. With an increase in porosity and permeability, pores with larger sizes contribute more to porosity. Intercrystalline pores and intergranular/dissolution pores can be clearly distinguished on the basis of mercury intrusion and surface fractal. The relative contribution of intercrystalline pores to porosity ranges from 58.43% to 91.74% with an average of 79.74%. The intercrystalline pores are the primary contributor to pore space, whereas intergranular/dissolution pores make a considerably greater contribution to permeability. A specific quantity of intergranular/dissolution pores is the key to producing high porosity and permeability in tight sandstone reservoirs. The new two permeability estimation models show an applicable estimation of permeability with R2 values of 0.955 and 0.962 for models using Dmax (pore diameter corresponding to displacement pressure) and Df (pore diameter at inflection point), respectively. These results indicate that both Dmax and Df are key factors in determining permeability.  相似文献   

19.
Based on analysis of well and drilling data, cores, sediment grains and 3D seismic data, four types of turbidites–slope fan, channelized, laminated and sublacustrine fan turbidite–are identified in Members 1 and 2 of the Qingshankou Formation in northern Songliao Basin. The slope fan turbidite is located in Members 1 and 2 of the Qingshankou Formation. It is dominated by silt and fine sand and is distributed in an SN-trending ribbon zone along the slope break at delta front in the western part of the basin. The channelized turbidite is located at the bottom of Member 1 of the Qingshankou Formation. It is dominated by silt and fine sand and is distributed in an SN-trending strip-shaped zone along the Qijia-Gulong sag, with funnel-shaped sublacustrine fans at the end. The laminated turbidite body is located in Member 2 of the Qingshankou Formation. It is dominated by siltstone and argillaceous siltstone and is distributed continuously in a tongue-shaped zone along the northern delta front towards the lacustrine region, with belt-like distributaries at the central part and sublacustrine fans at the end. Low-permeability and low-yield lithologic reservoirs are formed near the delta front within the slope fan turbidite and channelized turbidite. There are “sweet spots” in local regions, where reservoir reform techniques are required to attain high industrial yields. Laminated turbidite and sublacustrine fans can form unconventional and continuous reservoirs that generally have no natural productivity; industrial production is impossible until horizontal drilling and multistage volume fracturing are employed. Therefore, the research results are important to the exploration of unconventional oil and gas reservoirs in northern Songliao Basin.  相似文献   

20.
Isothermal pyrolysis experiments were performed for coal alone, oil alone and coal plus oil with oil/coal ratios ranging from 0.0065 to 0.1995 at 305 °C and 50 MPa for 72 h in confined systems (gold capsules). The results of these experiments reveal the interaction between coal and oil, demonstrating that oil retards the generation of gas hydrocarbons from coal cracking while coal accelerates oil cracking into gas hydrocarbons. The yields of gas hydrocarbons vary greater with oil/coal ratio in the experiments of coal B plus oil than coal A plus oil because coal A has a higher HI value than does coal B. Oil cracking rate could increase by up to 10 or even higher times in the experiments of coal plus oil compared with oil alone, deduced from the yields and chemical compositions of gas hydrocarbons. This result suggests that gas hydrocarbons, especially wet gases were largely generated from the cracking of oil or extractable bitumen in the experiments of coal plus oil with oil/coal ratio higher than 0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号