首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A detailed laboratory study of 53 sandstone samples from 23 outcrops and 156 conventional core samples from the Maastrichtian-Paleocene Scollard-age fluvial strata in the Western Canada foredeep was undertaken to investigate the reservoir characteristics and to determine the effect of diagenesis on reservoir quality. The sandstones are predominantly litharenites and sublitharenites, which accumulated in a variety of fluvial environments. The porosity of the sandstones is both syn-depositional and diagenetic in origin. Laboratory analyses indicate that porosity in sandstones from outcrop samples with less than 5% calcite cement averages 14%, with a mean permeability of 16 mD. In contrast, sandstones with greater than 5% calcite cement average 7.9% porosity, with a mean permeability of 6.17 mD. The core porosity averages 17% with 41 mD permeability. Cementation coupled with compaction had an important effect in the destruction of porosity after sedimentation and burial. The reservoir quality of sandstones is also severely reduced where the pore-lining clays are abundant (>15%). The potential of a sandstone to serve as a reservoir for producible hydrocarbons is strongly related to the sandstone’s diagenetic history. Three diagenetic stages are identified: eodiagenesis before effective burial, mesodiagenesis during burial, and telodiagenesis during exposure after burial. Eodiagenesis resulted in mechanical compaction, calcite cementation, kaolinite and smectite formation, and dissolution of chemically unstable grains. Mesodiagenesis resulted in chemical compaction, precipitation of calcite cement, quartz overgrowths, and the formation of authigenic clays such as chlorite, dickite, and illite. Finally, telodiagenesis seems to have had less effect on reservoir properties, even though it resulted in the precipitation of some kaolinite and the partial dissolution of feldspar.  相似文献   

2.
The Upper Cretaceous Mesaverde Group in the Piceance Basin, western Colorado, contains thick sections of low porosity, low permeability sandstones that are reservoirs for large accumulations of hydrocarbon gas. The Mesaverde sandstones are lithic arkoses and feldspathic litharenites, containing quartz, plagioclase, variable K-feldspar, chert, and volcanic rock fragments. Important diagenetic processes that have affected the sandstones include compaction, dissolution of feldspar and/or alteration to clay, precipitation of carbonate and quartz cements, precipitation of illite, and alteration of detrital clays (mixed-layer illite–smectite). Porosity is relatively constant; a decrease in primary porosity downward is approximately balanced by an increase in secondary porosity, with significant microporosity in authigenic and diagenetic clays. K-feldspar is almost completely absent below 5500 feet (1675 m). Fibrous illite is relatively abundant above this depth and variable in abundance below. The K–Ar ages of the clays increase with depth, from 40 m.y. at the top of the sampled section to 55 m.y. at the base, indicating illitization of a precursor smectite at approximately the 100 °C isotherm. Samples with abundant fibrous illite have relatively smaller age values. Mass balance calculations indicate that dissolution of K-feldspar, illitization of smectite and precipitation of fibrous illite were coupled. These reactions suggest the transport of dissolved potassium upward hundreds of feet (100–300 m) in the section, possibly associated with water driven vertically by the migration of gas.  相似文献   

3.
The Lower Devonian Jauf Formation in Saudi Arabia is an important hydrocarbon reservoir. However, in spite of its importance as a reservoir, published studies on the Jauf Formation more specifically on the reservoir quality (including diagenesis), are very few. This study, which is based on core samples from two wells in the Ghawar Field, northeastern Saudi Arabia, reports the lithologic and diagenetic characteristics of this reservoir. The Jauf reservoir is a fine to medium-grained, moderate to well-sorted quartz arenite. The diagenetic processes recognized include compaction, cementation (calcite, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of the calcite cements and of feldspar grains. The widespread occurrences of early calcite cement suggest that the Jauf reservoir lost a significant amount of primary porosity at a very early stage of its diagenetic history. Early calcite cement, however, prevented the later compaction of the sandstone, thus preserving an unfilled part of the primary porosity. Based on the framework grain–cement relationships, precipitation of the early calcite cement was either accompanied or followed by the development of part of the pore-lining and pore-bridging clay cement. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar. Late calcite cement occurs as isolated patches, and has little impact on reservoir quality of the sandstones.In addition to calcite, several different clay minerals including illite and chlorite occur as pore-filling and pore-lining cements. While the pore-filling illite and chlorite resulted in a considerable loss of porosity, the pore-lining chlorite may have helped in retaining the porosity by preventing the precipitation of syntaxial quartz overgrowths. Illite, which largely occurs as hair-like rims around the grains and bridges on the pore throats, caused a substantial deterioration to permeability of the reservoir. Diagenetic history of the Jauf Formation as established here is expected to help better understanding and exploitation of this reservoir.  相似文献   

4.
The tight sandstones of the Cretaceous Quantou formation are the main exploration target for hydrocarbons in the southern Songliao basin. Authigenic quartz is a significant cementing material in these sandstones, significantly reducing porosity and permeability. For efficient predicting and extrapolating the petrophysical properties within these tight sandstones, the quartz cement and its origin need to be better understood. The tight sandstones have been examined by a variety of methods. The sandstones are mostly lithic arkoses and feldspathic litharenites, compositionally immature with an average framework composition of Q43F26L31, which are characterized by abundant volcanic rock fragments. Mixed-layer illite/smectite (I/S) ordered interstratified with R = 1 and R = 3 is the dominating clay mineral in the studied sandstone reservoirs. Two different types of quartz cementation modes, namely quartz grain overgrowth and pore-filling authigenic quartz, have been identified through petrographic observations, CL and SEM analysis. Homogenization temperatures of the aqueous fluid inclusions indicate that both quartz overgrowths and pore-filling authigenic quartz formed with a continuous process from about 70 °C to 130 °C. Sources for quartz cement produced are the conversion of volcanic fragments, smectite to illite reaction and pressure solution at micro stylolites. Potassium for the illitization of smectite has been sourced from K-feldspar dissolution and albitization. Silica sourced from K-feldspars dissolution and kaolinite to illite conversion is probably only minor amount and volumetrically insignificant. The internal supplied silica precipitate within a closed system where the transport mechanism is diffusion. The quartz cementation can destroy both porosity and permeability, but strengthen the rock framework and increase the rock brittleness effectively at the same time.  相似文献   

5.
In the Kopet-Dagh Basin of Iran, deep-sea sandstones and shales of the Middle Jurassic Kashafrud Formation are disconformably overlain by hydrocarbon-bearing carbonates of Upper Jurassic and Cretaceous age. To explore the reservoir potential of the sandstones, we studied their burial history using more than 500 thin sections, supplemented by heavy mineral analysis, microprobe analysis, porosity and permeability determination, and vitrinite reflectance.The sandstones are arkosic and lithic arenites, rich in sedimentary and volcanic rock fragments. Quartz overgrowths and pore-filling carbonate cements (calcite, dolomite, siderite and ankerite) occluded most of the porosity during early to deep burial, assisted by early compaction that improved packing and fractured quartz grains. Iron oxides are prominent as alteration products of framework grains, probably reflecting source-area weathering prior to deposition, and locally as pore fills. Minor cements include pore-filling clays, pyrite, authigenic albite and K-feldspar, and barite. Existing porosity is secondary, resulting largely from dissolution of feldspars, micas, and rock fragments, with some fracture porosity. Porosity and permeability of six samples averages 3.2% and 0.0023 mD, respectively, and 150 thin-section point counts averaged 2.7% porosity. Reflectance of vitrinite in eight sandstone samples yielded values of 0.64-0.83%, in the early mature to mature stage of hydrocarbon generation, within the oil window.Kashafrud Formation petrographic trends were compared with trends from first-cycle basins elsewhere in the world. Inferred burial conditions accord with the maturation data, suggesting only a moderate thermal regime during burial. Some fractures, iron oxide cements, and dissolution may reflect Cenozoic tectonism and uplift that created the Kopet-Dagh Mountains. The low porosity and permeability levels of Kashafrud Formation sandstones suggest only a modest reservoir potential. For such tight sandstones, fractures may enhance the reservoir potential.  相似文献   

6.
鄂尔多斯盆地王窑地区上三叠统长6油层成岩作用研究   总被引:15,自引:0,他引:15  
通过多项测试方法,对安塞油田王窑地区长6油层含油砂体的岩石学、成岩作用、储集物性和孔隙发育特征进行分析和研究。结果表明,该区储集砂体为成分成熟度较低的长石砂岩;主要自生矿物为绿泥石、浊沸石、方解石、石英、钾长石、伊利石和钠长石等;储层次生孔隙发育,主要孔隙类型为粒间孔隙、骨架颗粒溶孔和浊沸石溶孔。孔隙结构具有小孔、细喉的特点;储层成岩演化阶段处于晚成岩A亚期;储层性质明显地受到沉积微相和成岩作用的影响。沉积物粒度较粗、厚度较大的河道砂和河口砂坝砂的储集物性明显优于各种粒度较细、厚度较薄的席状砂体。  相似文献   

7.
8.
This paper investigates the reservoir potential of deeply-buried Eocene sublacustrine fan sandstones in the Bohai Bay Basin, China by evaluating the link between depositional lithofacies that controlled primary sediment compositions, and diagenetic processes that involved dissolution, precipitation and transformation of minerals. This petrographic, mineralogical, and geochemical study recognizes a complex diagenetic history which reflects both the depositional and burial history of the sandstones. Eogenetic alterations of the sandstones include: 1) mechanical compaction; and 2) partial to extensive non-ferroan carbonate and gypsum cementation. Typical mesogenetic alterations include: (1) dissolution of feldspar, non-ferroan carbonate cements, gypsum and anhydrite; (2) precipitation of quartz, kaolinite and ferroan carbonate cements; (3) transformation of smectite and kaolinite to illite and conversion of gypsum to anhydrite. This study demonstrates that: 1) depositional lithofacies critically influenced diagenesis, which resulted in good reservoir quality of the better-sorted, middle-fan, but poor reservoir quality in the inner- and outer-fan lithofacies; 2) formation of secondary porosity was spatially associated with other mineral reactions that caused precipitation of cements within sandstone reservoirs and did not greatly enhance reservoir quality; and 3) oil emplacement during early mesodiagenesis (temperatures > 70 °C) protected reservoirs from cementation and compaction.  相似文献   

9.
渐新世花港组是东海陆架盆地西湖凹陷发育的最主要储层,基于普通薄片、铸体薄片、扫描电镜和荧光显微观察,结合同位素地球化学对东海陆架盆地西湖凹陷花港组砂岩储层的成岩作用、成岩序列及成岩流体演化进行了研究。结果表明,花港组砂岩储层目前处于中成岩阶段B期,主要经历了机械压实、绿泥石粘土摸、酸性及碱性溶蚀作用,石英次生加大,碳酸盐胶结和自生高岭石胶结等成岩作用。研究区发育有三期碳酸盐胶结物,早期菱铁矿胶结物,中期铁方解石和晚期铁白云石。根据碳酸盐胶结物的碳氧同位素特征分析认为早期碳酸盐胶结物是由过饱和的碱性湖水沉淀造成的,而晚期碳酸盐胶结物的形成与有机酸密切相关。研究区存在两类溶蚀作用,酸性溶蚀作用和碱性溶蚀作用,早期的酸性溶蚀作用主要是有机酸对长石、岩屑及早期碳酸盐胶结物的溶蚀,晚期的碱性溶蚀作用主要是发生于碱性环境下流体对石英及硅质胶结物的溶蚀。研究区发育有两期油气充注,早期发生于晚中新世,早期发生于晚中新世,早于中期碳酸盐胶结,晚于长石溶蚀和石英胶结充注,充注量较大,第四纪以来研究区发生了第二次充注,第二次充注发生于铁白云石胶结之后,此时储层已非常致密。  相似文献   

10.
盐城凹陷天然气储层为成分成熟度很低的砂砾岩、砾状砂岩、砂岩和少量粉砂岩,砂岩类型主要为长石岩屑砂岩和少量岩屑长石砂岩。成岩矿物主要类型有粘土矿物、石英、钠长石、碳酸盐、硬石膏和石膏等。储层以次生孔隙发育为特点,以粒间孔隙和骨架颗粒溶孔最为发育,溶解作用发育程度与泥质岩在成岩过程中粘土矿物和有机质的演化关系极其密切。盐城天然气进入储层发生在始新世———新近纪,主要成藏期发生在4.5~10Ma。天然气储层成岩演化阶段处于晚成岩A亚期。储层性质明显地受到沉积相和成岩作用的影响。沉积物粒度较粗、厚度较大的河道砂的储集物性明显优于各种粒度较细、厚度较薄的席状砂体。  相似文献   

11.
Diagenesis is an essential tool to reconstruct the development of reservoir rocks. Diagenetic processes - precipitation and dissolution - have an influence on pore space. The present paper aims to study the diagenetic history of deep-marine sandstones of the Austrian Alpine Foreland Basin. To reach that goal, sediment petrology and diagenetic features of more than 110 sandstone samples from water- and gas-bearing sections from gas fields within the Oligocene-Miocene Puchkirchen Group and Hall Formation has been investigated. Special emphasis was put on samples in the vicinity of the gas-water contact (GWC). The sediment petrography of sandstones of Puchkirchen Group and Hall Formation is similar; hence their diagenesis proceeded the same way. In fact, primary mineralogy was controlled by paleo-geography with increasing transport distance and diverse detrital input.Sediment petrographically, investigated sandstones from the water-bearing horizon seemed quite comparable to the gas-bearing sediments. In general, they can be classified as feldspatic litharenites to litharenites and display porosities of up to 30% and permeabilities of up to 1300 mD. The carbon and oxygen isotopic composition of bulk carbonate cements from these sandstones range from−3.8 to +2.2 and from −7.5 to +0.2‰ [VPDB]. However, near the Gas-Water Contact (GWC) a horizon with low porosities (<3%) and permeabilities (<0.1 mD) is present. This zone is completely cemented with calcite, which has a blocky/homogenous morphology. A slight, but significant negative shift in δ18O isotopy (−2.5‰) is evident.During early diagenesis the first carbonate generations formed. First a fibrous calcite and afterwards a micritic calcite precipitated. Further siliciclastic minerals, such as quartz and feldspar (K-feldspar and minor plagioclase), exhibit corroded grains. Occasionally, clay minerals (illite; smectite, chlorite) formed as rims around detrital grains. Late diagenesis is indicated by the formation of a low permeable zone at the GWC.  相似文献   

12.
An example of diagenesis and reservoir quality of buried sandstones with ancient incursion of meteoric freshwater is presented in this study. The interpretation is based on information including porosity and permeability, petrography, stable isotopic composition of authigenic minerals, homogenization temperatures (Th) of aqueous fluid inclusions (AFIs), and pore water chemistry. These sandstones, closely beneath or far from the regional unconformity formed during the late Paleogene period, are located in the thick Shahejie Formation in the Gaoliu area of Nanpu Sag, Bohai Bay Basin, East China. Early-diagenetic calcite cements were leached to form intergranular secondary pores without precipitation of late-diagenetic calcite cements in most sandstones. Feldspars were leached to form abundant intragranular secondary pores, but with small amounts of concomitant secondary minerals including authigenic quartz and kaolinite. The mass imbalance between the amount of leached minerals and associated secondary minerals suggests that mineral leaching reactions occurred most likely in an open geochemical system, and diagenetic petrography textures suggest that advective flow dominated the transfer of solutes from leached feldspars and calcites. Low salinity and ion concentrations of present pore waters, and extensive water rock interactions suggest significant incursion of meteoric freshwater flux in the sandstones. Distances of the sandstones to the regional unconformity can reach up to 1800 m, while with significant uplift in the Gaoliu area, the burial depth of such sandstones (below sea level) can be less than 800–1000 m during the uplift and initial reburial stage. Significant uplift during the Oligocene period provided substantial hydraulic drive and widely developed faults served as favorable conduits for downward penetration of meteoric freshwater from the earth's surface (unconformity) to these sandstone beds. Extensive feldspar leaching has been occurring since the uplift period. Coupled high Th (95∼115 °C) of AFI and low δ18O(SMOW) values (+17∼+20‰) within the quartz overgrowths show that quartz cementation occurred in the presence of diagenetic modified meteoric freshwater with δ18O(SMOW) values of −7∼−2‰, indicating that authigenic quartz only have been formed during the late reburial stage when meteoric fresh water penetration slowed down. Secondary pores in thin sections and tested porosity suggest that meteoric freshwater leaching of feldspars and calcite minerals generated approximately 7–10% enhanced secondary porosity in these sandstones. Meteoric freshwater leaching reactions cannot be ignored in similar sandstones that located deep beneath the unconformity, with great uplift moving these sandstones above or close to sea level and with faults connecting the earth's surface with the sandstone beds.  相似文献   

13.
By integrating diagenesis and sequence stratigraphy, the distribution of diagenetic alterations and their impact on reservoir quality was investigated within a sequence stratigraphic framework using the fluvial and shallow marine sandstones in the Cambrian-Ordovician succession of southwest Sinai. The perographic and geochemical analysis of the studied sandstone revealed that the eogenetic alterations display fairly systematic spatial and temporal distribution patterns within the lowstand system tract and transgressive system tract, as well as along the sequence stratigraphic surfaces (i.e., sequence boundaries, transgressive surfaces and parasequence boundaries). During relative sea-level fall, percolation of meteoric waters through sandstones of the LST and below sequence and parasequence boundaries resulted in extensive dissolution of detrital grains and formation of kaolinite, authigenic K-feldspar and feldspar overgrowths as well as formation of mechanical infiltrated clays around the detrital grains. During relative sea-level rise, invasion of marine water into the sandstones as a consequence of landward migration of the shoreline, as well as low sedimentation rates encountered in the TST, resulted in the formation of glauconite, apatite and pyrite. Development of pseudomatrix, which was formed by mechanical compaction of mud intraclasts, is mostly abundant along transgressive surfaces and parasequence boundaries of the TST, and is related to the abundance of mud intraclasts in the transgressive lag deposits.The types and extent of eogenetic alterations have an important impact on the distribution of the mesogenetic alterations, including the formation of quartz overgrowths and dickite.Distribution of mesogenetic quartz overgrowths in the sandstones was controlled by the distribution of mechanically infiltrated clays and the presence of eogenetic cement. Sandstones that remained poorly cemented during eodiagenesis and that have thin or discontinuous infiltrated clay rims around the detrital grains were cemented during mesodiagenesis by quartz. The absence of extensive eogenetic cements in the sandstones suggested that the partial deterioration of porosity was mainly due to mechanical compaction. Partial transformation of kaolinite to dickite, which indicates neomorphic change to a better-ordered and more stable crystal structure at the elevated temperatures during mesodiagenesis, is partially a function of distribution of kaolinite during eodiagenesis.The conceptual model developed in this study shows the diagenetic evolutionary pathways in the reservoir sandstones within a sequence stratigraphic context, which in turn provides some insights into the controls on reservoir heterogeneity.  相似文献   

14.
Understanding diagenetic heterogeneity in tight sandstone reservoirs is vital for hydrocarbon exploration. As a typical tight sandstone reservoir, the seventh unit of the Upper Triassic Yanchang Formation in the Ordos Basin (Chang 7 unit), central China, is an important oil-producing interval. Results of helium porosity and permeability and petrographic assessment from thin sections, X-ray diffraction, scanning electron microscopy and cathodoluminescence analysis demonstrate that the sandstones have encountered various diagenetic processes encompassing mechanical and chemical compaction, cementation by carbonate, quartz, clay minerals, and dissolution of feldspar and lithic fragments. The sandstones comprise silt-to medium-grained lithic arkoses to feldspathic litharenites and litharenites, which have low porosity (0.5%–13.6%, with an average of 6.8%) and low permeability (0.009 × 10−3 μm2 to 1.818 × 10−3 μm2, with an average of 0.106 × 10−3 μm2).This study suggests that diagenetic facies identified from petrographic observations can be up-scaled by correlation with wire-line log responses, which can facilitate prediction of reservoir quality at a field-scale. Four diagenetic facies are determined based on petrographic features including intensity of compaction, cement types and amounts, and degree of dissolution. Unstable and labile components of sandstones can be identified by low bulk density and low gamma ray log values, and those sandstones show the highest reservoir quality. Tightly compacted sandstones/siltstones, which tend to have high gamma ray readings and relatively high bulk density values, show the poorest reservoir quality. A model based on principal component analysis (PCA) is built and show better prediction of diagenetic facies than biplots of well logs. The model is validated by blind testing log-predicted diagenetic facies against petrographic features from core samples of the Upper Triassic Yanchang Formation in the Ordos Basin, which indicates it is a helpful predictive model.  相似文献   

15.
Tight-gas reservoirs, characterized by low porosity and low permeability, are widely considered to be the product of post-depositional, diagenetic processes associated with progressive burial. This study utilizes a combination of thin section petrography, scanning electron microscopy, microprobe and back scatter electron analysis, stable isotope geochemistry and fluid inclusion analysis to compare the diagenetic history, including porosity formation, within sandstones of the second member of Carboniferous Taiyuan Formation (C3t2) and the first member of Permian Xiashihezi Formation (P1x1) in the Ordos Basin in central China.In the P1x1 member, relatively high abundances of metamorphic rock fragments coupled with a braided river and lacustrine delta environment of deposition, produced more smectite for transformation to illite (50–120 °C). This reaction was driven by dissolution of unstable minerals (K-feldspar and rock fragments) during the early to middle stages of mesodiagenesis and consumed all K-feldspar. Abundant intragranular porosity (average values of 2.8%) and microporosity in kaolinite (average values of 1.5%) formed at these burial depths with chlorite and calcite developed as by-products.In the C3t2 member, relatively low abundances of metamorphic rock fragments coupled with an incised valley-coastal plain environment of deposition resulted in less smectite for transformation to illite. High K+/H+ ratios in the early pore waters related to a marine sedimentary environment of deposition promoted this reaction. Under these conditions, K-feldspar was partially preserved. During the middle to late stages of mesodiagenesis, K-feldspar breakdown produced secondary intragranular (average values of 1.4%) and intergranular pores (average values of 1.2%). Release of K+ ions promoted illitization of kaolinite with quartz overgrowths and ferrous carbonates developed as by-products.This study has demonstrated that whereas both members are typical tight-gas sandstones, they are characterized by quite different diagenetic histories controlled by the primary detrital composition, especially during mesodiagenesis. Types of secondary porosity vary between the two members and developed at different stages of progressive burial. The content of unstable detrital components, notably feldspar, was the key factor that determined the abundance of secondary porosity.  相似文献   

16.
17.
The Jiaolai Basin (Fig. 1) is an under-explored rift basin that has produced minor oil from Lower Cretaceous lacustrine deltaic sandstones. The reservoir quality is highly heterogeneous and is an important exploratory unknown in the basin. This study investigates how reservoir porosity and permeability vary with diagenetic minerals and burial history, particularly the effects of fracturing on the diagenesis and reservoir deliverability. The Laiyang sandstones are tight reservoirs with low porosity and permeability (Φ < 10% and K < 1 mD). Spatial variations in detrital supply and burial history significantly affected the diagenetic alterations during burial. In the western Laiyang Sag, the rocks are primarily feldspathic litharenites that underwent progressive burial, and thus, the primary porosity was partially to completely eliminated as a result of significant mechanical compaction of ductile grains. In contrast, in the eastern Laiyang Sag, the rocks are lithic arkoses that were uplifted to the surface and extensively eroded, which resulted in less porosity reduction by compaction. The tectonic uplift could promote leaching by meteoric water and the dissolution of remaining feldspars and calcite cement. Relatively high-quality reservoirs are preferentially developed in distributary channel and mouth-bar sandstones with chlorite rims on detrital quartz grains, which are also the locations of aqueous fluid flow that produced secondary porosity. The fold-related fractures are primarily developed in the silt–sandstones of Longwangzhuang and Shuinan members in the eastern Laiyang Sag. Quartz is the most prevalent fracture filling mineral in the Laiyang sandstones, and most of the small-aperture fractures are completely sealed, whereas the large-aperture fractures in a given set may be only partially sealed. The greatest fracture density is in the silt–sandstones containing more brittle minerals such as calcite and quartz cement. The wide apertures are crucial to preservation of the fracture porosity, and the great variation in the distribution of fracture-filling cements presents an opportunity for targeting fractures that contribute to fluid flow.  相似文献   

18.
Fine-grained siliciclastic lithologies commonly act as sealing caprocks to both petroleum fields and host reservoirs for carbon capture (CO2 sequestration) projects. Fine-grained lithologies are thus of great importance in controlling fluid flow and storage in the subsurface. However, fine-grained rocks are rarely characterised in terms of primary sedimentary characteristics, diagenesis and how these relate to their flow properties (i.e. sealing or caprock quality). Seventeen samples from Lower Carboniferous estuarine caprock to a gas field (also to be used as a carbon capture site), have been analysed using a range of petrological and petrophysical techniques. The rock unit that represents the caprock to this gas field was found to be predominantly silt grade with porosity values as low as 1.8%. In these rocks, caprock quality (porosity) is controlled by intrinsic and extrinsic factors linked to primary mineralogy and diagenetic processes. Depositional mineralogy was dominated by quartz, detrital mica, detrital clay (likely Fe-rich 7Å clay and illite–smectite) with minor feldspar and oxide phases. Diagenetic processes included compaction, minor feldspar dissolution and kaolinite growth and the more important processes of chlorite, siderite and quartz cementation, as well as the likely transformation of smectite into illite. Caprock quality is controlled by the primary quantity of illite-muscovite in the sediment and also by the localised extent of chlorite and quartz cementation. Deposition in an estuarine environment led to highly heterogeneous distribution of primary and diagenetic minerals, and thus caprock quality, between and within the samples.  相似文献   

19.
The Upper Triassic – Lower Jurassic Åre Formation comprising the deeper reservoir in the Heidrun Field offshore mid-Norway consists of fluvial channel sandstones (FCH), floodplain fines (FF), and sandy and muddy bay-fill sediments (SBF, MBF) deposited in an overall transgressive fluvial to lower delta plain regime. The formation has been investigated to examine possible sedimentary facies controls on the distribution of cementation and compaction based on petrography and SEM/micro probe analyses of core samples related to facies associations and key stratigraphic surfaces. The most significant authigenic minerals are kaolinite, calcite and siderite. Kaolinite and secondary porosity from dissolution of feldspar and biotite are in particular abundant in the fluvial sandstones. The carbonate minerals show complex compositional and micro-structural variation of pure siderite (Sid I), Mg-siderite (Sid II), Fe-dolomite, ankerite and calcite, displaying decreasing Fe from early to late diagenetic carbonate cements. An early diagenetic origin for siderite and kaolinite is inferred from micro-structural relations, whereas pore filling calcite and ankerite formed during later diagenesis. The Fe-dolomite probably related to mixing-zone dolomitization from increasing marine influences, and a regional correlatable calcite cemented layer has been related to a flooding event. Porosity values in non-cemented sandstone samples are generally high in both FCH and SBF facies associations averaging 27%. Differential compaction between sandstone and mudstone has a ratio of up to 1:2 and with lower values for MBF. We emphasize the role of eogenetic siderite cementation in reducing compactability in the fine-grained, coal-bearing sediments most prominent in MBF facies. This has implications for modeling of differential compaction between sandstone and mudstones deposited in fluvial-deltaic environments.  相似文献   

20.
Reservoir quality and heterogeneity are critical risk factors in tight oil exploration. The integrated, analysis of the petrographic characteristics and the types and distribution of diagenetic alterations in the Chang 8 sandstones from the Zhenjing area using core, log, thin-section, SEM, petrophysical and stable isotopic data provides insight into the factors responsible for variations in porosity and permeability in tight sandstones. The results indicate that the Chang 8 sandstones mainly from subaqueous distributary channel facies are mostly moderately well to well sorted fine-grained feldspathic litharenites and lithic arkose. The sandstones have ultra-low permeabilities that are commonly less than 1 mD, a wide range of porosities from 0.3 to 18.1%, and two distinct porosity-permeability trends with a boundary of approximately 10% porosity. These petrophysical features are closely related to the types and distribution of the diagenetic alterations. Compaction is a regional porosity-reducing process that was responsible for a loss of more than half of the original porosity in nearly all of the samples. The wide range of porosity is attributed to variations in calcite cementation and chlorite coatings. The relatively high-porosity reservoirs formed due to preservation of the primary intergranular pores by chlorite coatings rather than burial dissolution; however, the chlorites also obstruct pore throats, which lead to the development of reservoirs with high porosity but low permeability. In contrast, calcite cementation is the dominant factor in the formation of low-porosity, ultra-low-permeability reservoirs by filling both the primary pores and the pore throats in the sandstones. The eogenetic calcites are commonly concentrated in tightly cemented concretions or layers adjacent to sandstone-mudstone contacts, while the mesogenetic calcites were deposited in all of the intervals and led to further heterogeneity. This study can be used as an analogue to understand the variations in the pathways of diagenetic evolution and their impacts on the reservoir quality and heterogeneity of sandstones and is useful for predicting the distribution of potential high-quality reservoirs in similar geological settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号