首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Understanding the oil distribution characteristics in unconventional tight reservoirs is crucial for hydrocarbon evaluation and oil/gas extraction from such reservoirs. Previous studies on tight oil distribution characteristics are mostly concerned with the basin scale. Based on Lucaogou core samples, geochemical approaches including Soxhlet extraction, total organic carbon (TOC), and Rock-Eval are combined with reservoir physical approaches including mercury injection capillary pressure (MICP) and porosity-permeability analysis, to quantitatively evaluate oil distribution of tight reservoirs on micro scale. The emphasis is to identify the key geological control factors of micro oil distribution in such tight reservoirs. Dolomicrites and non-detrital mudstones have excellent hydrocarbon generation capacity while detritus-containing dolomites, siltstones, and silty mudstones have higher porosity and oil content, and coarser pore throat radius. Oil content is mainly controlled by porosity, pore throat radius, and hydrocarbon generation capacity. Porosity is positively correlated with oil content in almost all samples including various lithologies, indicating that it is a primary constraint for providing storage space. Pore throat radius is also an important factor, as oil migration is inhibited by the capillary pressure which must be overcome. If the reservoir rock with suitable porosity has no hydrocarbon generation capacity, pore throat radius will be decisive. As tight reservoirs are generally characterized by widely distributed nanoscale pore throats and high capillary pressure, hydrocarbon generation capacity plays an important role in reservoir rocks with suitable porosity and fine pore throats. Because such reservoir rocks cannot be charged completely. The positive correlation between hydrocarbon generation capacity and oil content in three types of high porosity lithologies (detritus-containing dolomites, siltstones, and silty mudstones) supports this assertion.  相似文献   

2.
Shale reservoirs of the Middle and Upper Devonian Horn River Group provide an opportunity to study the influence of rock composition on permeability and pore throat size distribution in high maturity formations. Sedimentological, geochemical and petrophysical analyses reveal relationships between rock composition, pore throat size and matrix permeability.In our sample set, measured matrix permeability ranges between 1.69 and 42.81 nanodarcies and increases with increasing porosity. Total organic carbon (TOC) content positively correlates to permeability and exerts a stronger control on permeability than inorganic composition. A positive correlation between silica content and permeability, and abundant interparticle pores between quartz crystals, suggests that quartz may be another factor enhancing the permeability. Pore throat size distributions are strongly related to TOC content. In organic rich samples, the dominant pore throat size is less than 10 nm, whereas in organic lean samples, pore throat size distribution is dominantly greater than 20 nm. SEM images suggest that in organic rich samples, organic matter pores are the dominant pore type, whereas in quartz rich samples, the dominant type is interparticle pores between quartz grains. In clay rich and carbonate rich samples, the dominant pore type is intraparticle pores, which are fewer and smaller in size.High permeability shales are associated with specific depositional facies. Massive and pyritic mudstones, rich in TOC and quartz, have comparatively high permeability. Laminated mudstone, bioturbated mudstone and carbonate facies, which are relatively enriched in clay or carbonate, have fairly low permeability.  相似文献   

3.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   

4.
Pore-throat size is a very crucial factor controlling the reservoir quality and oiliness of tight sandstones, which primarily affects rock-properties such as permeability and drainage capillary pressure. However, the wide range of size makes it difficult to understand their distribution characteristics as well as the specific controls on reservoir quality and oiliness. In order to better understand about pore-throat size distribution, petrographic, scanning electron microscopy (SEM), pressure-controlled mercury injection (PMI), rate-controlled mercury injection (RMI), quantitative grain fluorescence (QGF) and environmental scanning electron microscopy (ESEM) investigations under laboratory pressure conditions were performed on a suite of tight reservoir from the fourth member of the Lower Cretaceous Quantou Formation (K1q4) in the southern Songliao Basin, China. The sandstones in this study showed different types of pore structures: intergranular pores, dissolution pores, pores within clay aggregates and even some pores related to micro fractures. The pore-throat sizes vary from nano- to micro-scale. The PMI technique views the pore-throat size ranging from 0.001 μm to 63 μm and revealed that the pore-throats with radius larger than 1.0 μm are rare and the pore-throat size distribution curves show evident fluctuations. RMI measurements indicated that the pore size distribution characteristics of the samples with different porosity and permeability values look similar. The throat size and pore throat radius ratio distribution curves had however significant differences. The overall pore-throat size distribution of the K1q4 tight sandstones was obtained with the combination of the PMI and RMI methods. The permeability is mainly contributed by a small part of larger pore-throats (less than 30%) and the ratio of the smaller pore-throats in the samples increases with decreasing permeability. Although smaller pore-throats have negligible contribution on reservoir flow potential, they are very significant for the reservoir storage capacity. The pore-throats with average radius larger than 1.0 μm mainly exist in reservoirs with permeability higher than 0.1mD. When the permeability is lower than 0.1mD, the sandstones are mainly dominated by pore-throats with average radius from 0.1 μm to 1.0 μm. The ratio of different sized pore-throats controls the permeability of the tight sandstone reservoirs in different ways. We suggest that splitting or organizing key parameters defining permeability systematically into different classes or functions can enhance the ability of formulating predictive models about permeability in tight sandstone reservoirs. The PMI combined with QGF analyses indicate that oil emplacement mainly occurred in the pore-throats with radius larger than about 0.25–0.3 μm. This result is supported by the remnant oil micro-occurrence evidence observed by SEM and ESEM.  相似文献   

5.
The Upper Triassic Chang 6 sandstone, an important exploration target in the Ordos Basin, is a typical tight oil reservoir. Reservoir quality is a critical factor for tight oil exploration. Based on thin sections, scanning electron microscopy (SEM), X-ray diffraction (XRD), stable isotopes, and fluid inclusions, the diagenetic processes and their impact on the reservoir quality of the Chang 6 sandstones in the Zhenjing area were quantitatively analysed. The initial porosity of the Chang 6 sandstones is 39.2%, as calculated from point counting and grain size analysis. Mechanical and chemical compaction are the dominant processes for the destruction of pore spaces, leading to a porosity reduction of 14.2%–20.2% during progressive burial. The porosity continually decreased from 4.3% to 12.4% due to carbonate cementation, quartz overgrowth and clay mineral precipitation. Diagenetic processes were influenced by grain size, sorting and mineral compositions. Evaluation of petrographic observations indicates that different extents of compaction and calcite cementation are responsible for the formation of high-porosity and low-porosity reservoirs. Secondary porosity formed due to the burial dissolution of feldspar, rock fragments and laumontite in the Chang 6 sandstones. However, in a relatively closed geochemical system, products of dissolution cannot be transported away over a long distance. As a result, they precipitated in nearby pores and pore throats. In addition, quantitative calculations showed that the dissolution and associated precipitation of products of dissolution were nearly balanced. Consequently, the total porosity of the Chang 6 sandstones increased slightly due to burial dissolution, but the permeability decreased significantly because of the occlusion of pore throats by the dissolution-associated precipitation of authigenic minerals. Therefore, the limited increase in net-porosity from dissolution, combined with intense compaction and cementation, account for the low permeability and strong heterogeneity in the Chang 6 sandstones in the Zhenjing area.  相似文献   

6.
Accurate porosity and permeability evaluation of rock formations is critical to estimate the quality and resource potential of a reservoir. In addition to directly measure the porosity and pore size distribution, low field Nuclear Magnetic Resonance (NMR) is able to measure the effective porosity and estimate the in-situ formation permeability, though its robustness is arguable and requires calibrations on cores with specific lithologies.The Mesozoic formations of the central Perth Basin (Western Australia) host hot sedimentary aquifers and recently became key targets for geothermal heat extraction. A collection of cores was retrieved from three wells intersecting these units. The characterisation of their flow properties complements the current evaluation of the Perth Basin by adding new data on effective porosity, pore size distribution, pore geometry and calibration of predictive models for the permeability according to a comprehensive facies classification scheme.This study highlights the consistency of the NMR approach when compared to conventional helium injection method. Most favourable lithologies for well production correspond to very coarse to fine sandstones of fluvial channel fill with porosities >15% and permeabilities >>1 mD. Similarly, these facies exhibit (i) the highest effective porosities, (ii) the highest pore space to pore throat ratio, and (iii) the lowest contribution of clay bound water. These aspects confirm the importance of clay occurrence in the assessment of the flow efficiency of a formation.The Yarragadee Formation presents the best reservoir quality regarding its porosity and permeability, even though high discrepancies occur locally owing to the great variability of lithofacies encountered. The scattered values observed for the Lesueur Sandstone are likely to be due to the basin architecture and fault system which generate different mechanical compaction and secondary cementation. Given an adequate facies analysis, the NMR method represents a powerful tool to estimate the flow efficiency of a reservoir.  相似文献   

7.
西湖凹陷KX构造始新统平湖组是重要产气层系.利用大量薄片、岩心和分析化验资料,对该平湖组储集层进行了详细的岩石学特征、储层物性分析以及影响储层发育的主控因素的研究.结果表明,该套储层的岩石类型以长石岩屑质石英砂岩主,填隙物丰富、分选中等—好、成分成熟度低、磨圆程度高;孔隙类型以次生孔隙为主;喉道类型以片状、弯曲片状喉道为主;孔喉组合类型为中孔小喉、小孔小喉组合;储层物性较差,为低孔低渗储层;平湖组储层主要受潮汐改造的分流河道微相控制,压实作用、胶结作用、溶蚀作用和破裂作用等成岩作用是研究区储集层物性的主要控制因素.  相似文献   

8.
为摸清研究区储层长期注水开发后物性定量变化规律,以辽东湾坳陷Z油田东二下段三角洲前缘储层密闭取心为研究对象,综合利用岩矿分析、扫描电镜、X衍射、扫描伽马、常规物性、测井水淹解释等资料,从储层物性影响因素入手,系统研究了不同成因类型、不同渗透率储层水驱前后渗透率的变化规律,量化了不同水淹程度储层渗透率的变化幅度。研究结果表明:研究区储层物性的主要影响因素是黏土矿物和孔喉结构,二者与储层原始物性的大小息息相关,且在注水开发后两因素均发生了明显变化并导致渗透率的改变;黏土矿物含量与储层原始渗透率呈负相关的幂函数关系,黏土矿物含量越大,储层原始渗透率越低;孔喉大小与储层原始渗透率呈正相关关系,孔喉半径平均值、孔喉半径中值越大,储层原始渗透率越高;随着注水冲刷程度的加强,黏土矿物含量逐渐降低,而孔喉半径分布趋向于均匀化,且有增大趋势。黏土矿物和孔喉结构两者的变化导致储层渗透率随着水淹程度的加强整体上呈现增大的趋势,渗透率分布主值区向右移动,高值渗透率比例增加,低值渗透率比例减小。此外,笔者归纳总结了砂体成因类型相同、岩心扫描伽马值相近、渗透率级别相同的储层岩样在低、中、强水淹程度相对于未水淹岩心的渗透率变化量,详细分析了渗透率不同变化的原因及其对剩余油分布的影响。该研究为油田中后期剩余油精细描述提供了新思路,对油田高含水期深入挖潜、高效开发具有指导作用。  相似文献   

9.
目前南海西部各典型低渗透油气藏普遍存在微观渗流规律认识不清、油气开发潜力模糊的问题,严重制约了低渗油气田的后续开发部署。通过应用恒速压汞技术对珠江口盆地文昌A凹陷珠海组低渗凝析气藏储层孔隙结构及渗流潜力进行分析,结果表明:①渗透率不同的岩心样品孔隙半径差别很小,喉道是决定研究区储层渗透率的主要因素,主流喉道半径可以作为评价低渗透储层渗流能力和开发难度的关键物性参数;②在渗透率>1×10-3 μm2的气藏范围内,文昌A凹陷珠海组开发难度较小;而渗透率在0.1×10-3 μm2附近的特低—极特低渗透油藏范围内,文昌A凹陷珠海组(文昌WC-Y1井ZH3)开发难度很大。  相似文献   

10.
The Lower Devonian Jauf Formation in Saudi Arabia is an important hydrocarbon reservoir. However, in spite of its importance as a reservoir, published studies on the Jauf Formation more specifically on the reservoir quality (including diagenesis), are very few. This study, which is based on core samples from two wells in the Ghawar Field, northeastern Saudi Arabia, reports the lithologic and diagenetic characteristics of this reservoir. The Jauf reservoir is a fine to medium-grained, moderate to well-sorted quartz arenite. The diagenetic processes recognized include compaction, cementation (calcite, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of the calcite cements and of feldspar grains. The widespread occurrences of early calcite cement suggest that the Jauf reservoir lost a significant amount of primary porosity at a very early stage of its diagenetic history. Early calcite cement, however, prevented the later compaction of the sandstone, thus preserving an unfilled part of the primary porosity. Based on the framework grain–cement relationships, precipitation of the early calcite cement was either accompanied or followed by the development of part of the pore-lining and pore-bridging clay cement. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar. Late calcite cement occurs as isolated patches, and has little impact on reservoir quality of the sandstones.In addition to calcite, several different clay minerals including illite and chlorite occur as pore-filling and pore-lining cements. While the pore-filling illite and chlorite resulted in a considerable loss of porosity, the pore-lining chlorite may have helped in retaining the porosity by preventing the precipitation of syntaxial quartz overgrowths. Illite, which largely occurs as hair-like rims around the grains and bridges on the pore throats, caused a substantial deterioration to permeability of the reservoir. Diagenetic history of the Jauf Formation as established here is expected to help better understanding and exploitation of this reservoir.  相似文献   

11.
The compositions, distribution and its interaction with rocks of the evolving pore fluids controls the distribution of carbonate cements and reservoir storage spaces. The reservoir quality of the red-bed sandstone reservoirs in the Dongying Depression was investigated by an integrated and systematic analysis including carbonate cement petrology, mineralogy, carbon and oxygen isotope ratios and fluid inclusions. The investigation was also facilitated by probing the mineral origins, precipitation mechanisms, pore fluid evolution and distribution, and water-rock interaction of carbonate cements and their influences on reservoir quality. Diagenetic-evolving fluids in the interbedded mudstones are the main source for the precipitation of calcite cements that completely fill the intergranular volume (CFIV calcite) with heavier oxygen and carbon isotopes. The ferro-carbonate cements in the reservoir sandstone are enriched in lighter carbon and oxygen isotopes. In addition to the cations released by the conversion of clay minerals in reservoirs, products of organic acid decarboxylation and the associated feldspar dissolution process provide important sources for such carbonate cementation. The carbon isotopes of CO2 and the oxygen isotopic composition of fluids equilibrated with the CFIV calcite, ferro-calcite, dolomite and ankerite cements indicate that the pore in the red-bed reservoirs experienced high salinity fluids, which evolved from the early-formed interbedded mudstones, through organic acid input and to organic acid decarboxylation. Pore fluids from nearby mudstones migrated from the edge to the centre of sandbodies, causing strong calcite cementation along the sandbody boundaries and forming tight cementation zones. Pore fluids associated with organic CO2 and acids and organic acid decarboxylation are mainly distributed in the internal portion of sandbodies, causing feldspar dissolution and precipitation of ferro-carbonate cements. The distribution of pore fluids caused the zonal distribution of carbonate cements in sandbodies during different periods. This may be advantageous to preserve the porosity of reservoirs as exemplified by the distribution of high-quality reservoirs in the red-bed sandbodies.  相似文献   

12.
Understanding the pore structure characteristics of tight gas sandstones is the primary purpose of reservoir evaluation and efforts to characterize tight gas transport and storage mechanisms and their controls. Due to the various pore types and multi-scale pore sizes in tight reservoirs, it is essential to combine several techniques to characterize pore structure. Scanning electron microscopy (SEM), nitrogen gas adsorption (N2GA), mercury intrusion porosimetry (MIP) and nuclear magnetic resonance (NMR) were conducted on tight sandstones from the Lower Cretaceous Shahezi Formation in the northern Songliao Basin to investigate pore structure characteristics systematically (e.g., type and size distribution of pores) and to establish how significant porosity and permeability are for different pore types. The studied tight sandstones are composed of intergranular pores, dissolution pores and intercrystalline pores. The integration of N2GA and NMR can be used as an efficient method to uncover full pore size distribution (PSD) of tight sandstones, with pore sizes ranging from 2 nm to dozens of microns. The full PSDs indicate that the pore sizes of tight sandstones are primarily distributed within 1.0 μm. With an increase in porosity and permeability, pores with larger sizes contribute more to porosity. Intercrystalline pores and intergranular/dissolution pores can be clearly distinguished on the basis of mercury intrusion and surface fractal. The relative contribution of intercrystalline pores to porosity ranges from 58.43% to 91.74% with an average of 79.74%. The intercrystalline pores are the primary contributor to pore space, whereas intergranular/dissolution pores make a considerably greater contribution to permeability. A specific quantity of intergranular/dissolution pores is the key to producing high porosity and permeability in tight sandstone reservoirs. The new two permeability estimation models show an applicable estimation of permeability with R2 values of 0.955 and 0.962 for models using Dmax (pore diameter corresponding to displacement pressure) and Df (pore diameter at inflection point), respectively. These results indicate that both Dmax and Df are key factors in determining permeability.  相似文献   

13.
鄂尔多斯盆地延长组石油资源丰富,储层致密,为了查明湖盆致密砂岩储层发育机理,综合利用岩心观察、铸体薄片鉴定、X射线衍射分析、扫描电镜观察、高压压汞测试等方法,对鄂尔多斯盆地陕北地区长7段致密油储层特征及其发育主控因素进行了分析。研究结果显示,研究区长7段长石含量高,主要发育长石砂岩和岩屑长石砂岩。致密砂岩储层孔隙类型以长石粒内溶蚀孔隙和粒间溶蚀孔隙为主,同时晶间微孔和微裂缝较为发育。研究区长7段时期主要为三角洲前缘与滨浅湖沉积环境,水动力较弱,发育砂岩中泥质含量较高。中等强度压实作用及早期的方解石胶结作用使原生孔隙消失殆尽,胶结作用进一步使孔隙减小。由于长石及黏土含量较高,其受溶蚀作用形成溶蚀孔隙,改善储层质量,同时也是研究区长7段致密砂岩储层发育的主要控制因素。  相似文献   

14.
综合应用铸体薄片、扫描电镜、阴极发光、恒速压汞、流体包裹体和X衍射等分析技术,对储层岩石学、孔喉结构和成岩作用类型及特征进行深入研究,探讨储层致密化过程和物性演化。结果表明:平湖组储层砂岩类型主要为长石岩屑质石英砂岩,以细—中粒结构为主,分选性中到好;孔隙类型以溶蚀粒间孔为主,孔隙半径主要集中于130~190 μm,喉道半径主要集中于0.2~10 μm;埋藏压实是导致平湖组储层低渗-特低渗的主因,埋深、粒度及泥质决定了压实作用的强弱,而后期次生溶蚀及胶结作用的差异加剧了储层的非均值性。中成岩A期平湖组储层次生溶蚀规模受限于流体环境,细粒沉积不利于后期溶蚀是造成储层致密化的主因;进入中成岩B期,成岩环境呈碱性且逐渐封闭,大量含铁碳酸盐、呈丝状或弯曲片状伊利石等富集堵塞喉道,致使储层大规模致密。  相似文献   

15.
A great difference exists between the hydrocarbon charging characteristics of different Tertiary lacustrine turbidites in the Jiyang Super-depression of the Bohai Bay Basin, east China. Based on wireline log data, core observation and thin-section analyses, this study presents detailed reservoir property data and their controlling effects from several case studies and discusses the geological factors that govern the hydrocarbon accumulation in turbidite reservoirs. The lacustrine fluxoturbidite bodies investigated are typically distributed in an area of 0.5–10 km2, with a thickness of 5–20 m. The sandstones of the Tertiary turbidites in the Jiyang Super-depression have been strongly altered diagenetically by mechanical compaction, cementation and mineral dissolution. The effect of compaction caused the porosity to decrease drastically with the burial depths, especially during the early diagenesis when the porosity was reduced by over 15%. The effect of cementation and mineral dissolution during the late-stage diagenesis is dominated by carbonate cementation in sandstones. High carbonate cement content is usually associated with low porosity and permeability. Carbonate dissolution (secondary porosity zone) and primary calcite dissolution is believed to be related to thermal maturation of organic matter and clay mineral reactions in the surrounding shales and mudstone. Two stages of carbonate cementation were identified: the precipitation from pore-water during sedimentation and secondary precipitation in sandstones from the organic acid-dissolved carbonate minerals from source rocks. Petrophysical properties have controlled hydrocarbon accumulation in turbidite sandstones: high porosity and permeability sandstones have high oil saturation and are excellent producing reservoirs. It is also noticed that interstitial matter content affects the oil-bearing property to some degree. There are three essential elements for high oil-bearing turbidite reservoirs: excellent pore types, low carbonate cement (<5%) and good petrophysical properties with average porosity >15% and average permeability >10 mD.  相似文献   

16.
The paper takes the Upper Carboniferous Taiyuan shale in eastern uplift of Liaohe depression as an example to qualitatively and quantitatively characterize the transitional (coal-associated coastal swamp) shale reservoir. Focused Ion Beam Scanning Electron Microscope (FIB-SEM), nano-CT, helium pycnometry, high-pressure mercury intrusion and low-pressure gas (N2 & CO2) adsorption for eight shale samples were taken to investigate the pore structures. Four types of pores, i.e., organic matter (OM) pores, interparticle (InterP) pores, intraparticle (IntraP) pores and micro-fractures are identified in the shale reservoir. Among them, intraP pores and micro-fractures are the major pore types. Slit-shaped pores are the major shape in the pore system, and the connectivity of the pore-throat system is interpreted to be moderate, which is subordinate to marine shale. The porosity from three dimension (3D) reconstruction of SEM images is lower than the porosity of helium pycnometry, while the porosity trend of the above two methods is the same. Combination of mercury intrusion and gas absorption reveals that nanometer-scale pores provide the main storage space, accounting for 87.16% of the pore volume and 99.85% of the surface area. Micropores contribute 34.74% of the total pore volume and 74.92% of the total pore surface area; and mesopores account for 48.27% of the total pore volume and 24.93% of the total pore surface area; and macropores contribute 16.99% of the total pore volume and 0.15% of the total pore surface area. Pores with a diameter of less than 10 nm contribute the most to the pore volume and the surface area, accounting for 70.29% and 97.70%, respectively. Based on single factor analysis, clay minerals are positively related to the volume and surface area of micropores, mesopores and macropores, which finally control the free gas in pores and adsorbed gas content on surface area. Unlike marine shale, TOC contributes little to the development of micropores. Brittle minerals inhibit pore development of Taiyuan shale, which proves the influence of clay minerals in the pore system.  相似文献   

17.
Reservoir quality and heterogeneity are critical risk factors in tight oil exploration. The integrated, analysis of the petrographic characteristics and the types and distribution of diagenetic alterations in the Chang 8 sandstones from the Zhenjing area using core, log, thin-section, SEM, petrophysical and stable isotopic data provides insight into the factors responsible for variations in porosity and permeability in tight sandstones. The results indicate that the Chang 8 sandstones mainly from subaqueous distributary channel facies are mostly moderately well to well sorted fine-grained feldspathic litharenites and lithic arkose. The sandstones have ultra-low permeabilities that are commonly less than 1 mD, a wide range of porosities from 0.3 to 18.1%, and two distinct porosity-permeability trends with a boundary of approximately 10% porosity. These petrophysical features are closely related to the types and distribution of the diagenetic alterations. Compaction is a regional porosity-reducing process that was responsible for a loss of more than half of the original porosity in nearly all of the samples. The wide range of porosity is attributed to variations in calcite cementation and chlorite coatings. The relatively high-porosity reservoirs formed due to preservation of the primary intergranular pores by chlorite coatings rather than burial dissolution; however, the chlorites also obstruct pore throats, which lead to the development of reservoirs with high porosity but low permeability. In contrast, calcite cementation is the dominant factor in the formation of low-porosity, ultra-low-permeability reservoirs by filling both the primary pores and the pore throats in the sandstones. The eogenetic calcites are commonly concentrated in tightly cemented concretions or layers adjacent to sandstone-mudstone contacts, while the mesogenetic calcites were deposited in all of the intervals and led to further heterogeneity. This study can be used as an analogue to understand the variations in the pathways of diagenetic evolution and their impacts on the reservoir quality and heterogeneity of sandstones and is useful for predicting the distribution of potential high-quality reservoirs in similar geological settings.  相似文献   

18.
Mercury injection capillary pressure (MICP) is a commonly-used technique for measurements of porosity, pore throat size distribution, and injection pressure vs. mercury saturation for many types of rocks. The latter two are correlated to and can be used to estimate permeability. Problems for MICP application in mudrocks are associated with two types of system errors: conformance and compression effects. These two sources of error are well-recognized, but no standard procedures to correct them exist. In this study, a new method for conformance and compression corrections was developed, and the method applied to five Eagle Ford Shale samples. Conformance correction is based on comparison of mercury injection volume vs. pressure curves between epoxy-coated and uncoated samples. Compression correction is based on calculation of compressions before and after mercury intrusion in MICP experiment. Different types of compressions are quantified and compression corrections on porosity, pore throat size distribution, and injection pressure vs. mercury saturation are performed. Porosity and permeability were calculated based on corrected MICP data. Results show that both conformance and compression corrections are important for accurate MICP porosity calculation, whereas conformance correction is more important than compression correction in permeability calculation.  相似文献   

19.
涠洲A油田经过多年注水开发,目前油田综合含水率已达70%,开展水淹过程储层动态变化研究,对于油田后期开发具有重要意义。通过开展一系列储层微观实验,对比同种岩石相水淹前后储层参数特征,结合地质背景开展机理分析,得到以下两点认识:①水淹导致储层物性明显变差,孔喉结构非均质性变强,粒内溶孔和铸模孔含量增多,泥质含量降低,黏土矿物含量及类型发生改变;②水淹过程中储层物性变化的主控因素为硫酸钡晶体的生成和析出,其次为黏土矿物的水化、膨胀、分散、迁移。注入水与地层水不匹配,导致硫酸钡晶体结晶析出形成沉淀,并堵塞喉道。  相似文献   

20.
Organic shales deposited in a continental environment are well developed in the Ordos Basin, NW China, which is rich in hydrocarbons. However, previous research concerning shales has predominantly focused on marine shales and barely on continental shales. In this study, geochemical and mineralogical analyses, high-pressure mercury intrusion and low-pressure adsorption were performed on 18 continental shale samples obtained from a currently active shale gas play, the Chang 7 member of Yanchang Formation in the Ordos Basin. A comparison of all these techniques is provided for characterizing the complex pore structure of continental shales.Geochemical analysis reveals total organic carbon (TOC) values ranging from 0.47% to 11.44%, indicating that there is abundant organic matter (OM) in the study area. Kerogen analysis shows vitrinite reflectance (Ro) of 0.68%–1.02%, indicating that kerogen is at a mature oil generation stage. X-ray diffraction mineralogy (XRD) analysis indicates that the dominant mineral constituents of shale samples are clay minerals (which mainly consist of illite, chlorite, kaolinite, and negligible amounts of montmorillonite), quartz and feldspar, followed by low carbonate content. All-scale pore size analysis indicates that the pore size distribution (PSD) of shale pores is mainly from 0.3 to 60 nm. Note that accuracy of all-scale PSD analysis decreases for pores less than 0.3 nm and more than 10 μm. Experimental analysis indicates that mesopores (2–50 nm) are dominant in continental shales, followed by micropores (<2 nm) and macropores (50 nm–10 μm). Mesopores have the largest contribution to pore volume (PV) and specific surface area (SSA). In addition, plate- and sheet-shaped pores are dominant with poor connectivity, followed by hybrid pores. Results of research on factors controlling pore structure development show that it is principally controlled by clay mineral contents and Ro, and this is different from marine systems. This study has important significance in gaining a comprehensive understanding of continental shale pore structure and the shale gas storage–seepage mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号