首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New plasticity solutions for the undrained stability of unsupported conical excavations in homogeneous and non-homogeneous clays were solved by axisymmetric finite element limit analysis. Three parametric studies were performed on excavated height ratios, slope inclinations and dimensionless strength gradients. In all cases, the exact stability factors were accurately bracketed by computed bound solutions within 0.6%. An accurate closed-form equation of the stability factor was proposed from nonlinear regression analysis of lower bound solutions. New conical stability factors for soil cohesion, strength gradient, and coupling effect of these components were deduced to conveniently and accurately predict a safe solution in practice.  相似文献   

2.
In this study, upper bound finite element (FE) limit analysis is applied to stability problems of slopes using a nonlinear criterion. After formulating the upper bound analysis as the dual form of a second-order cone programming (SOCP) problem, the stress field and corresponding shear strength parameters can be determined iteratively. Thus, the nonlinear failure criterion is represented by the shear strength parameters associated with stress so that the analysis of slope stability using a nonlinear failure criterion can be transformed into the traditional upper bound method with a linear Mohr–Coulomb failure criterion. Comparison with published solutions illustrates the accuracy and feasibility of the proposed method for a simple homogeneous slope stability problem. The proposed approach is also applied to a seismic stability problem for a rockfill dam to study the influence of different failure criterions on the upper bound solutions. The results show that the seismic stability coefficients obtained using two different nonlinear failure criteria are similar but that the convergence differs significantly.  相似文献   

3.
The original Hoek–Brown (HB) failure criterion was used to analyse the stability of rock slopes. For highly fractured rock, the original HB failure criterion has been modified, but its effect on the stability of rock slopes has not been studied. Within the framework of the kinematical approach of limit analysis, this paper computes the rigorous upper bounds of stability factors of homogeneous rock slopes with the modified HB failure criterion under the plane strain condition, by employing a ‘generalized tangential’ technique. In such technique, instead of using the modified HB failure criterion, a series of linear failure surfaces tangent to the actual non-linear failure surface are utilized to derive the upper bound solutions, incorporating a new parameter n ranging from 0.5 to 0.65. The numerical results are compared with other published solutions for the case of n=0.5. The effects of the n on the stability factors of rock slopes are discussed. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
唐高朋  李亮  赵炼恒  陈静瑜 《岩土力学》2015,36(7):2063-2072
考虑坡顶均布荷载和地震效应典型情况下,将边坡滑体进行任意斜条块划分,建立了具有倾斜界面的多块体破坏模型。基于极限分析上限法和非线性摩尔-库仑破坏准则,考虑岩体内正应力的不均匀性,引入多点切线法和强度折减法推导得出边坡临界破坏状态下的安全系数Fs通用计算公式。采用序列二次规划法对安全系数Fs的目标函数进行最优化计算,并与既有研究成果进行对比分析,其结果具有较好的一致性,相对误差不超过3.565%,表明了该方法的正确性。同时对比传统单点切线法计算结果,多点切线法较单点切线法获得的边坡安全系数值偏小,表明了多点切线斜条分法偏于保守,是安全的。参数分析表明坡顶均布荷载、地震效应和非线性参数均对边坡安全系数及潜在临界滑裂面有重要影响。多点切线法引入非线性摩尔-库仑破坏准则对边坡进行稳定性极限分析,为相关研究人员提供了一种新的思路与方法。  相似文献   

5.
极限分析上限方法在边坡稳定性评价中受到了广泛关注,但当前所取得的解析成果尚不能直接应用于解决任意多土层分布、多台阶的广义复杂层状边坡。基于组合对数螺线的旋转破坏机制,推导了具有任意坡面几何特征、任意多土层(含非水平土/岩层)边坡的外功率统一积分表达式及相应的虚功率方程,提出了多阶多层复杂边坡稳定性的通用极限分析上限方法;为克服积分式的复杂解析计算,引入了数值积分技术。在此基础上,结合最优化方法和强度折减技术,优化求解了复杂边坡的全局稳定性安全系数及相应的临界滑动面。通过多个典型算例的验证与对比分析,表明该方法具有较高的精度和广泛适用性。最后,针对典型多阶多层边坡实例,开展了上限法的深度拓展与应用研究,其结果为广义复杂层状边坡的稳定性评价提供了新思路。  相似文献   

6.
Granular soils have the inherent ability to develop load transfers in their mass. Mechanisms of load transfers are used as a basic principle of many civil and geotechnical engineering applications. However, their complexity makes it difficult to formulate relevant design methods for such works. The trapdoor problem is one of the ways to reproduce load transfers by the arching effect in a granular layer in non-complex conditions. In addition, many analytical solutions for the prediction of load transfer mechanisms are based on the trapdoor problem. However, some of the parameters required are still being widely discussed, in particular the ratio of horizontal stress to vertical stress. For this paper, an experimental device for trapdoor tests in plane strain conditions was created and several geomaterials were tested. Three phases in the response of the materials were consistently observed. Each of these phases corresponded to a specific displacement of the trapdoor. A first phase of high load transfer was observed followed by a transition phase which was followed by a critical phase for which the load transfer amplitude increased and stabilized. Analytical solutions and experimental values of load transfers were compared. Considerable differences between the stress ratio needed to fit the experimental data and the stress ratio proposed in the analytical models were noted. Based on the conclusions of the experimental study, the discrete element method was used to model the same trapdoor problem. A wide range of granular materials was modeled and tested in the trapdoor problem. The three phases in the response of the layer were also observed in the numerical modeling. In addition, it was shown that the shear strength of the material is the key parameter of load transfers: peak shear resistance for the small displacements of the trapdoor and critical shear strength for the larger displacements. A micro-mechanical analysis showed that the effective stress ratio in the sheared zone does not vary as much with shear strength. Stress ratios here were again greater than those proposed in the analytical solutions. Nevertheless, the relevance of the solution of Terzaghi was confirmed as soon as the stress ratio was correctly chosen.  相似文献   

7.
Exact analytical solutions have been obtained for a hydrothermal system consisting of a horizontal porous layer with upward throughflow. The boundary conditions considered are constant temperature, constant pressure at the top, and constant vertical temperature gradient, constant Darcy velocity at the bottom of the layer. After deriving the exact analytical solutions, we examine the stability of the solutions using linear stability theory and the Galerkin method. It has been found that the exact solutions for such a hydrothermal system become unstable when the Rayleigh number of the system is equal to or greater than the corresponding critical Rayleigh number. For small and moderate Peclet numbers (Pe ⩽ 6), an increase in upward throughflow destabilizes the convective flow in the horizontal layer. To confirm these findings, the finite element method with the progressive asymptotic approach procedure is used to compute the convective cells in such a hydrothermal system. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
The undrained tunnel face stability in clay with a linearly increasing shear strength with depth was investigated by three-dimensional finite element analysis. Three parametric studies were performed to study the effects of the cover depth ratio, overburden stress factor and linear strength gradient ratio on the load factor of the undrained tunnel face stability. The influence of the linear strength gradient ratio on the predicted failure mechanism of the undrained face stability was discussed and examined. An approximate closed-form solution was proposed for three-dimensional undrained tunnel face stability in clays with constant or linearly increasing shear strength profiles with depth.  相似文献   

9.
In this paper, the formulation of the lower bound limit analysis of an anisotropic undrained strength criterion using second‐order cone programming is described. The finite element concept was used to discretize the soil mass into 3‐noded triangular elements. The stress field was modeled using a linear interpolation within the elements while stress discontinuities were permitted to occur at the shared edges of adjacent elements. An elliptical yield criterion was adopted to model the anisotropic undrained strength of the clay. A statically admissible stress field was defined by enforcing the equilibrium equations within all triangular elements and along all shared edges of adjacent elements, stress boundary conditions, and no stress violation of the anisotropic strength envelope cast in the form of a conic quadratic constraint. The lower bound solution of the proposed formulation was solved by second‐order cone programming. The proposed formulation of the anisotropic undrained strength criterion was validated through comparison of the model's predictions with the known exact solutions of strip footings, and was applied to solve undrained stability of a shallow unlined square tunnel. Computational performance between the proposed approach of second‐order cone programming and linear programming was examined and discussed.  相似文献   

10.
李得建  赵炼恒  李亮  程肖 《岩土力学》2015,36(5):1313-1321
基于非线性Mohr-Coulomb破坏准则,结合极限分析上限法和拟静力分析法,建立功能方程,推导了地震效应下裂缝边坡的安全系数计算方程。采用数学规划方法,计算了不同参数组合条件下的边坡安全系数值,详细分析了非线性条件下一系列参数对边坡稳定性的影响。研究表明,边坡安全系数随非线性参数和地震效应的增大而减小。对比分析可知,在非线性破坏准则下,裂缝深度较大时,裂缝对边坡稳定性影响显著,且边坡越陡影响越大;当裂缝深度超过某个值后,临界破坏面起始端可能不穿过裂缝最底端,而是从裂缝中间某部位穿过。在地震效应作用下,非线性抗剪强度参数对安全系数影响显著。研究成果进一步完善了裂缝边坡稳定性分析内容,所列图表为边坡的设计与施工提供有益参考。  相似文献   

11.
地震效应和坡顶超载对均质土坡稳定性影响的拟静力分析   总被引:3,自引:0,他引:3  
罗强  赵炼恒  李亮  谭捍华 《岩土力学》2010,31(12):3835-3841
基于强度折减技术和极限分析上限定理,假定机动容许的速度场破坏面,考虑坡顶超载、水平和竖向地震效应影响推导了边坡稳定性安全系数的计算表达式。采用序列二次规划迭代方法(和内点迭代方法)对边坡安全系数目标函数进行能量耗散最小化意义上的优化计算,与多个算例的对比验证了其方法和程序计算的正确性;对影响土质边坡动态稳定性的一些因素进行了参数分析,分析表明:随着边坡倾角?、坡顶超载q、水平和竖向地震效应影响系数的增大,边坡稳定性安全系数显著下降;随着坡顶超载q、水平地震效应影响系数kh的增大、竖向地震效应影响系数kv的减小,边坡的潜在滑动面越来越深,潜在破坏范围越来越大。竖向地震效应对边坡稳定性也有一定影响,强震条件下的设计计算必须考虑竖向地震效应的影响。  相似文献   

12.
13.
This paper revisits the variational limit equilibrium (LE) analysis of three‐dimensional (3D) slope stability in the context of limit analysis (LA). It proves the kinematic admissibility of the 3D mechanism in LA, although it was derived from LE variational extremization. It also includes algorithms in the realm of LA that are associated with the variational mechanism. A comparison between the variational results and reported LA upper‐bound or LE closed‐form results is conducted. It demonstrates that the variationally derived mechanism consistently yields upper‐bound solutions for 3D symmetrical slopes that are as accurate as those produced by postulated mechanisms in LA. However, the results are more critical than those derived from spherical failure mechanism in LE. The generalized log spiral 3D mechanism rigorously legitimizes the variational slope stability analysis in both frameworks of mechanics LE and LA. Stability charts were produced where the 3D factor of safety can be assessed for a constrained length of failure, while including factors like pore water pressure and seismic loading. The results presented within this study demonstrate the capabilities of the variational 3D solution and can be used to evaluate approximate methods, numerical or closed‐form, developed in 3D slope stability analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The presence of a weak interlayer has usually an adverse effect on the slope stability. However, the rotational failure mechanism in the conventional upper bound limit analysis cannot rationally describe the sliding of the failure mass along the weak interlayer. Therefore, a new failure mechanism was proposed in this study to evaluate the stability of slopes with weak interlayers using the upper bound limit analysis and the associated factor of safety was determined by the shear strength reduction technique. The new failure mechanism is comprised of rigid blocks undergoing rotational or translational movements, instead of the rotational movement in the conventional failure mechanism. It has also been extended to the stability analysis of slopes in presence of stabilizing piles and pore water pressures. Case studies were carried out on actual slopes with weak interlayers. The proposed rotational–translational failure mechanism was verified by the shear strength reduction finite element method (SSRFEM). Comparisons demonstrate the reliability of limit analysis method with the proposed rotational–translational failure mechanism for slopes with weak interlayers and therefore it can be used as a simple evaluation method for the engineering design.  相似文献   

15.
尹宏磊  徐千军  李仲奎 《岩土力学》2009,30(8):2506-2510
当采用合理的强度参数时,根据常规极限平衡或极限分析方法的计算结果,很难解释一些膨胀土边坡会在极缓的坡度下发生失稳破坏的原因。事实上,由于膨胀土遇水后会发生显著的变形,在饱和区与非饱和区交界面附近会出现很大的剪应力。因此,在膨胀土边坡的稳定分析中,需要考虑这种因素的影响。根据塑性力学的上限定理,严格地导出了考虑膨胀应力作功的功能平衡方程。根据强度储备定义的安全系数即隐含在这一方程中,它可以通过迭代方法求解。边坡稳定的上限分析在数值上是利用了单元集成法来完成的。这不仅能方便地利用应力分析的成果,而且能进行滑裂面的优化,从而找到最小的安全系数。对一个坡度为1:4的膨胀土边坡的稳定计算结果表明,膨胀变形会使边坡的安全系数显著减小。当考虑膨胀时,优化得到的破坏模式是在浅层出现一个局部的滑动,它会牵动其上部的土体也相继出现局部滑动,这正好符合膨胀土滑坡时所常见的牵引性的特征。  相似文献   

16.
The effect of inclined loading on the bearing capacity of foundations on horizontal ground surface is well established and both the exact solution and simpler empirical equations are available for the calculation of the failure loads. However, for footings on or near slopes complete solutions are available only for vertical loading. This paper investigates the influence of inclined loading on the horizontal and vertical failure loads. The finite element, upper bound plasticity and stress field methods are used to examine a wide range of geometries and soil properties. The methods are first validated against known solutions for two special cases and are subsequently employed to investigate the effect of the geometrical and material properties on the failure loads and the bearing capacity load interaction diagram. Based on this investigation an empirical equation is proposed for the load interaction diagram for undrained inclined loading of footings on or near slopes.  相似文献   

17.
This study employs the finite element upper bound and lower bound limit analysis methods to investigate the stability of inhomogeneous rock slopes. The differences in the stability numbers of the upper and lower bound solutions are bracketed within ±10.5% or better, and the stability numbers obtained are presented in rock slope stability charts. These stability charts can provide a convenient tool for preliminary stability designs of inhomogeneous rock slopes. Various recommended blasting damage zones are considered, and disturbance factors are used to represent damage levels. Results showed that rock mass disturbance could significantly influence the evaluation of rock slope stability.  相似文献   

18.
为解决上覆流沙层隧道开挖面极易发生坍塌破坏的技术难题,以典型该地质条件下的青岛地铁M2号线啤苗区间(啤酒城站至苗岭路站)为研究对象,基于开挖面的实际破坏特征建立了开挖面失稳破坏力学模型,从功能转化平衡角度,进行了隧道开挖面稳定性上限分析,并利用强度折减与重力加载两种方式,提出了隧道开挖面安全系数,得到了不同开挖面土体黏聚力、摩擦角、重度、隔水层厚度及隧道开挖高度下的临界土体破裂范围及破裂模式。理论研究表明:随着开挖面土体黏聚力、摩擦角、隔水层厚度等参数的增加,开挖面安全系数不断增大,稳定性不断提高;随着土体重度、隧道开挖高度增加,开挖面安全系数不断减小,稳定性不断降低。通过建立不同工况的数值模型验证了理论研究的正确性,得到了上覆流沙层地质条件下开挖面的典型破坏模式和临界参数,并提出了相应工程建议。研究成果为青岛地铁M2号线的顺利贯通及该类地质条件下的隧道施工提供了理论指导和科学对策。  相似文献   

19.
尹剑辉 《地质与勘探》2015,51(6):1187-1192
通过对永吉高速公路黑潭坪边坡的野外调查,详细地了解了研究区工程地质条件,探讨了边坡变形破坏机理,结合室内试验和计算反演获取岩土体强度参数,在此基础上建立三维地质模型,运用FLAC3D数值分析软件采用强度折减法对不同工况下的坡体稳定性进行详细分析并提出治理建议。研究表明:(1)边坡变形破坏是内外因素综合作用的结果,岩土体性质不良是边坡变形破坏的内在因素,坡脚便道开挖和地表水下渗是边坡变形破坏的诱导因素;(2)强度折减法应用于边坡三位稳定性分析具有较好的适用性;(3)数值模拟显示采用削坡结合锚固的综合治理措施具有明显的效果。  相似文献   

20.
Upper bound techniques are used to analyse the stability of slopes of material failing according to a non-linear failure criterion, such as closely jointed rocks. The global, extremal nature of upper bound calculations is discussed, as is the inverse use of such procedures for obtaining safe lower bound estimates for material strength properties in back analyses. Specific results are presented for the material model proposed by Hoek and Brown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号