首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Compared to conventional reservoirs, pore structure and diagenetic alterations of unconventional tight sand oil reservoirs are highly heterogeneous. The Upper Triassic Yanchang Formation is a major tight-oil-bearing formation in the Ordos Basin, providing an opportunity to study the factors that control reservoir heterogeneity and the heterogeneity of oil accumulation in tight oil sandstones.The Chang 8 tight oil sandstone in the study area is comprised of fine-to medium-grained, moderately to well-sorted lithic arkose and feldspathic litharenite. The reservoir quality is extremely heterogeneous due to large heterogeneities in the depositional facies, pore structures and diagenetic alterations. Small throat size is believed to be responsible for the ultra-low permeability in tight oil reservoirs. Most reservoirs with good reservoir quality, larger pore-throat size, lower pore-throat radius ratio and well pore connectivity were deposited in high-energy environments, such as distributary channels and mouth bars. For a given depositional facies, reservoir quality varies with the bedding structures. Massive- or parallel-bedded sandstones are more favorable for the development of porosity and permeability sweet zones for oil charging and accumulation than cross-bedded sandstones.Authigenic chlorite rim cementation and dissolution of unstable detrital grains are two major diagenetic processes that preserve porosity and permeability sweet zones in oil-bearing intervals. Nevertheless, chlorite rims cannot effectively preserve porosity-permeability when the chlorite content is greater than a threshold value of 7%, and compaction played a minor role in porosity destruction in the situation. Intensive cementation of pore-lining chlorites significantly reduces reservoir permeability by obstructing the pore-throats and reducing their connectivity. Stratigraphically, sandstones within 1 m from adjacent sandstone-mudstone contacts are usually tightly cemented (carbonate cement > 10%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The carbonate cement most likely originates from external sources, probably derived from the surrounding mudstone. Most late carbonate cements filled the previously dissolved intra-feldspar pores and the residual intergranular pores, and finally formed the tight reservoirs.The petrophysical properties significantly control the fluid flow capability and the oil charging/accumulation capability of the Chang 8 tight sandstones. Oil layers usually have oil saturation greater than 40%. A pore-throat radius of less than 0.4 μm is not effective for producible oil to flow, and the cut off of porosity and permeability for the net pay are 7% and 0.1 mD, respectively.  相似文献   

2.
In the Kopet-Dagh Basin of Iran, deep-sea sandstones and shales of the Middle Jurassic Kashafrud Formation are disconformably overlain by hydrocarbon-bearing carbonates of Upper Jurassic and Cretaceous age. To explore the reservoir potential of the sandstones, we studied their burial history using more than 500 thin sections, supplemented by heavy mineral analysis, microprobe analysis, porosity and permeability determination, and vitrinite reflectance.The sandstones are arkosic and lithic arenites, rich in sedimentary and volcanic rock fragments. Quartz overgrowths and pore-filling carbonate cements (calcite, dolomite, siderite and ankerite) occluded most of the porosity during early to deep burial, assisted by early compaction that improved packing and fractured quartz grains. Iron oxides are prominent as alteration products of framework grains, probably reflecting source-area weathering prior to deposition, and locally as pore fills. Minor cements include pore-filling clays, pyrite, authigenic albite and K-feldspar, and barite. Existing porosity is secondary, resulting largely from dissolution of feldspars, micas, and rock fragments, with some fracture porosity. Porosity and permeability of six samples averages 3.2% and 0.0023 mD, respectively, and 150 thin-section point counts averaged 2.7% porosity. Reflectance of vitrinite in eight sandstone samples yielded values of 0.64-0.83%, in the early mature to mature stage of hydrocarbon generation, within the oil window.Kashafrud Formation petrographic trends were compared with trends from first-cycle basins elsewhere in the world. Inferred burial conditions accord with the maturation data, suggesting only a moderate thermal regime during burial. Some fractures, iron oxide cements, and dissolution may reflect Cenozoic tectonism and uplift that created the Kopet-Dagh Mountains. The low porosity and permeability levels of Kashafrud Formation sandstones suggest only a modest reservoir potential. For such tight sandstones, fractures may enhance the reservoir potential.  相似文献   

3.
This paper investigates the reservoir potential of deeply-buried Eocene sublacustrine fan sandstones in the Bohai Bay Basin, China by evaluating the link between depositional lithofacies that controlled primary sediment compositions, and diagenetic processes that involved dissolution, precipitation and transformation of minerals. This petrographic, mineralogical, and geochemical study recognizes a complex diagenetic history which reflects both the depositional and burial history of the sandstones. Eogenetic alterations of the sandstones include: 1) mechanical compaction; and 2) partial to extensive non-ferroan carbonate and gypsum cementation. Typical mesogenetic alterations include: (1) dissolution of feldspar, non-ferroan carbonate cements, gypsum and anhydrite; (2) precipitation of quartz, kaolinite and ferroan carbonate cements; (3) transformation of smectite and kaolinite to illite and conversion of gypsum to anhydrite. This study demonstrates that: 1) depositional lithofacies critically influenced diagenesis, which resulted in good reservoir quality of the better-sorted, middle-fan, but poor reservoir quality in the inner- and outer-fan lithofacies; 2) formation of secondary porosity was spatially associated with other mineral reactions that caused precipitation of cements within sandstone reservoirs and did not greatly enhance reservoir quality; and 3) oil emplacement during early mesodiagenesis (temperatures > 70 °C) protected reservoirs from cementation and compaction.  相似文献   

4.
The Lower Devonian Jauf Formation in Saudi Arabia is an important hydrocarbon reservoir. However, in spite of its importance as a reservoir, published studies on the Jauf Formation more specifically on the reservoir quality (including diagenesis), are very few. This study, which is based on core samples from two wells in the Ghawar Field, northeastern Saudi Arabia, reports the lithologic and diagenetic characteristics of this reservoir. The Jauf reservoir is a fine to medium-grained, moderate to well-sorted quartz arenite. The diagenetic processes recognized include compaction, cementation (calcite, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of the calcite cements and of feldspar grains. The widespread occurrences of early calcite cement suggest that the Jauf reservoir lost a significant amount of primary porosity at a very early stage of its diagenetic history. Early calcite cement, however, prevented the later compaction of the sandstone, thus preserving an unfilled part of the primary porosity. Based on the framework grain–cement relationships, precipitation of the early calcite cement was either accompanied or followed by the development of part of the pore-lining and pore-bridging clay cement. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar. Late calcite cement occurs as isolated patches, and has little impact on reservoir quality of the sandstones.In addition to calcite, several different clay minerals including illite and chlorite occur as pore-filling and pore-lining cements. While the pore-filling illite and chlorite resulted in a considerable loss of porosity, the pore-lining chlorite may have helped in retaining the porosity by preventing the precipitation of syntaxial quartz overgrowths. Illite, which largely occurs as hair-like rims around the grains and bridges on the pore throats, caused a substantial deterioration to permeability of the reservoir. Diagenetic history of the Jauf Formation as established here is expected to help better understanding and exploitation of this reservoir.  相似文献   

5.
The Zagros-Taurus fold and thrust belt hosts a prolific hydrocarbon system. Most hydrocarbon reserves are stored in naturally fractured reservoirs and such fracture systems can therefore have a significant impact on reservoir performance. Fractures are one of the most important paths for fluid flow in carbonate reservoirs, and industrial geoscientists and engineers therefore need to understand and study fracture patterns in order to optimise hydrocarbon production. The observed fracture patterns in outcrops may have implications on fluid flow and reservoir modelling in subsurface reservoirs, and we have therefore undertaken a case study of fracturing associated with regional folding in Iraqi Kurdistan. In this area, some exploration wells currently target Upper Triassic dolostones (Kurra Chine Formation) and/or Lower Jurassic limestones and dolomitised limestones (Sehkaniyan Formation). In both units hydrocarbon production comes mainly from secondary porosity created by dolomitisation, dissolution and fracturing. Both formations have undergone multiple phases of deformation associated with burial, uplift, folding and thrusting. We investigate some fracture pattern characteristics and some petrophysical properties of these units using selected outcrops around the Gara, Ora and Ranya anticlines that form folds directly traceable for 25–70 km. Our outcrop data is compared with subsurface fracture and petrophysical datasets reported from wells in the nearby Shaikhan and Swara Tika Fields. The 1-2-3D fracture attributes collected from outcrops are fracture orientation, type, spacing, intensity, length and cross-cutting and abutting relationships. Fracture orientations show a clear relationship to the local fold axis in both the outcrop and subsurface, although in some cases they appear to relate more to the present day in-situ maximum horizontal stress direction or local strike-slip faulting. Three stages of fracturing are proposed: pre-folding, early-folding and post-folding fractures. In addition, we report petrophysical properties - porosity, permeability and acoustic velocity of both the Kurra Chine and Sehkaniyan formations in relation to their structural position within folds and faults and stratigraphic level. The highest porosities and permeabilities are recorded in the hinges and backlimbs of the Gara Anticline. The best reservoir quality (highest porosity and permeability) is often found in areas associated with replacement dolomite i.e. solution vugs and intercrystalline porosity. The Kurra Chine Formation displays similar trends in velocity-porosity data at both outcrop and the subsurface. However, the Sehkaniyan Formation displays lower acoustic velocity for a given porosity at outcrop compared to the subsurface.  相似文献   

6.
渐新世花港组是东海陆架盆地西湖凹陷发育的最主要储层,基于普通薄片、铸体薄片、扫描电镜和荧光显微观察,结合同位素地球化学对东海陆架盆地西湖凹陷花港组砂岩储层的成岩作用、成岩序列及成岩流体演化进行了研究。结果表明,花港组砂岩储层目前处于中成岩阶段B期,主要经历了机械压实、绿泥石粘土摸、酸性及碱性溶蚀作用,石英次生加大,碳酸盐胶结和自生高岭石胶结等成岩作用。研究区发育有三期碳酸盐胶结物,早期菱铁矿胶结物,中期铁方解石和晚期铁白云石。根据碳酸盐胶结物的碳氧同位素特征分析认为早期碳酸盐胶结物是由过饱和的碱性湖水沉淀造成的,而晚期碳酸盐胶结物的形成与有机酸密切相关。研究区存在两类溶蚀作用,酸性溶蚀作用和碱性溶蚀作用,早期的酸性溶蚀作用主要是有机酸对长石、岩屑及早期碳酸盐胶结物的溶蚀,晚期的碱性溶蚀作用主要是发生于碱性环境下流体对石英及硅质胶结物的溶蚀。研究区发育有两期油气充注,早期发生于晚中新世,早期发生于晚中新世,早于中期碳酸盐胶结,晚于长石溶蚀和石英胶结充注,充注量较大,第四纪以来研究区发生了第二次充注,第二次充注发生于铁白云石胶结之后,此时储层已非常致密。  相似文献   

7.
Lacustrine deep-water turbidite plays are a novel area for exploration in the Huimin Depression, Bohai Bay Basin. Turbidites in the Shang 847 block, a typical turbidite play in the Huimin Depression, provide an opportunity to study the factors controlling the reservoir properties and hydrocarbon accumulation in lacustrine turbidite sandstones. The reservoir quality of turbidite sandstones (very fine-grained, moderately to well sorted, mainly lithic arkose) in this study area are mainly controlled by the distribution patterns of carbonate cements and pseudomatrix. Significant inverse relationships exist between the volume of carbonate cement and both porosity and permeability of the turbidite sandstones. Carbonate cement is located preferentially near the margins of the sandstone bodies. Sandstones with distance from the sandstone–mudstone contact surface less than 0.7 m or with thickness less than 1.2 m are commonly tightly cemented (carbonate cement >15%) with low porosity and permeability (lower than 10% and 0.1 mD, respectively). The source of carbonate cement was most likely external, probably derived from the surrounding mudstone. Most pore-filling carbonate cements occurred during late diagenesis at burial depths greater than 2200 m. The petrophysical properties of turbidites have a positive relationship with the content of kaolinite and chlorite, but have a negative relationship with the content of illite. 2-D and 3-D reconstructions of non-oil bearing and oil-bearing layers indicate that dissolution of carbonate cement, feldspars and unstable rock fragments was more developed in oil-bearing layers than in non-oil bearing layers and hance oil-bearing layers have higher porosity and larger pore sizes. Petrophysical property appears to have a significant effect on the hydrocarbon accumulation in the turbidite sandstones. Sandstones with porosities lower than 9% and/or permeabilities lower than 0.78 mD are not prone to contain oil.  相似文献   

8.
Evaluation of the reservoir quality of the Triassic Halfway–Montney–Doig hybrid gas shale/tight gas reservoir in the Groundbirch field in northeastern British Colombia requires an integration of unconventional and conventional methodologies. Reservoir evaluation includes reservoir thickness and structure, total porosity, TOC content, organic maturity, pore size distribution (micro- to macro-pore size fractions), surface area, mineralogy and pulse-decay permeability. Quartz (10–74%), carbonate (13–73%) and feldspar (0–42%) dominate the mineralogy of all formations with illite (0–32%) being locally important. The Tmax values range between 443 and 478 °C placing the reservoirs beyond the oil window. Pore size distribution by low-pressure gas adsorption analysis identifies a large variation between the contributions from the micro-, meso- and macro-pore size fractions. Matrix permeabilities range between 1.0E-3 and 6.5E-7 mD at an effective stress between 2400 and 3300 PSI (16.5–22.8 MPa).Changes in depositional environments and diagenetic processes manifest as differences in lithology and mineralogy within the Montney and Doig reservoirs which subsequently affect the fabric, texture and pore size distribution. Fabric, texture and pore size distribution contribute to the variation in the permeability and the proportions of free to sorbed gas within the reservoir. Quartz-rich, coarser-grained intervals (upper portions of Doig C, B and Halfway Formation) have lower surface area, greater porosities and a higher volume of macropores compared to the carbonate- and clay-rich finer-grained intervals (Doig A). Permeabilities do not vary according to lithology with higher permeabilities found within both fine-grained (Doig A) and coarser-grained (Halfway Formation) units. Permeability is controlled by pore size distribution. Higher permeability samples contain a balanced ratio between micro-, meso- and macro-porosity. The finer-grained intervals have higher sorbed gas capacity due to higher surface areas because of the higher volumes of finer mesopores and micropores than the coarser-grained units. However, porosity and permeability are low in some parts of the Doig A and fracture stimulation is necessary to achieve economic flow rates.  相似文献   

9.
The compositions, distribution and its interaction with rocks of the evolving pore fluids controls the distribution of carbonate cements and reservoir storage spaces. The reservoir quality of the red-bed sandstone reservoirs in the Dongying Depression was investigated by an integrated and systematic analysis including carbonate cement petrology, mineralogy, carbon and oxygen isotope ratios and fluid inclusions. The investigation was also facilitated by probing the mineral origins, precipitation mechanisms, pore fluid evolution and distribution, and water-rock interaction of carbonate cements and their influences on reservoir quality. Diagenetic-evolving fluids in the interbedded mudstones are the main source for the precipitation of calcite cements that completely fill the intergranular volume (CFIV calcite) with heavier oxygen and carbon isotopes. The ferro-carbonate cements in the reservoir sandstone are enriched in lighter carbon and oxygen isotopes. In addition to the cations released by the conversion of clay minerals in reservoirs, products of organic acid decarboxylation and the associated feldspar dissolution process provide important sources for such carbonate cementation. The carbon isotopes of CO2 and the oxygen isotopic composition of fluids equilibrated with the CFIV calcite, ferro-calcite, dolomite and ankerite cements indicate that the pore in the red-bed reservoirs experienced high salinity fluids, which evolved from the early-formed interbedded mudstones, through organic acid input and to organic acid decarboxylation. Pore fluids from nearby mudstones migrated from the edge to the centre of sandbodies, causing strong calcite cementation along the sandbody boundaries and forming tight cementation zones. Pore fluids associated with organic CO2 and acids and organic acid decarboxylation are mainly distributed in the internal portion of sandbodies, causing feldspar dissolution and precipitation of ferro-carbonate cements. The distribution of pore fluids caused the zonal distribution of carbonate cements in sandbodies during different periods. This may be advantageous to preserve the porosity of reservoirs as exemplified by the distribution of high-quality reservoirs in the red-bed sandbodies.  相似文献   

10.
This paper focuses on seismic and well log interpretations for evaluating the sandstones of the Cenomanian Bahariya Formation in the southwest Qarun Field, Gindi Basin, northern Western Desert of Egypt. The seismic profiles display a clear anticlinal structure intersected by reverse faults in the study area. This faulted anticline has been interpreted to be one of the Syrian arc system folds formed by Upper Cretaceous tectonic inversion, which resulted from the NW movement of the African Plate relative to Laurasia. This anticline has been recommended as a target for exploration by the present work as it may represent a structural trap for hydrocarbon accumulation. The sandstones of the Lower Bahariya Formation in the southwest Qarun Field display good reservoir characteristics. The interpretation of the available well log data for the SWQ-21 and SWQ-25 wells for the Lower Bahariya Formation reflects a good reservoir quality for oil production in its topmost part. This reservoir possesses low SW (<50%), high porosity (16%), low SW/SXO and low BVW (<0.09) which all reflect a high potential for oil production.  相似文献   

11.
Oil-water transition zones in carbonate reservoirs represent important but rarely studied diagenetic environments that are now increasingly re-evaluated because of their potentially large effects on reservoir economics. Here, data from cathodoluminescence and fluorescence microscopy, isotope geochemistry, microthermometry, and X-ray tomography are combined to decipher the diagenetic history of a 5-m-long core interval comprising the oil-water transition zone in a Lower Pennsylvanian carbonate reservoir. The aim is to document the cementation dynamics prior, during, and after oil emplacement in its context of changing fluid parameters. Intergrain porosity mean values of 7% are present in the upper two sub-zones of the oil-water transitions zone but values sharply increase to a mean of 14% in the lower sub-zone grading into the water-saturated portions of the reservoir and a very similar pattern is observed for permeability values. In the top of the water-filled zone, cavernous porosity with mean values of about 24% is found. Carbonate cements formed from the earliest marine to the late burial stage. Five calcite (Ca-1 through 5) and one dolomite (Dol) phase are recognized with phase Ca-4b recording the onset of hydrocarbon migration. Carbon and oxygen cross-plots clearly delineate different paragenetic phases with Ca-4 representing the most depleted δ13C ratios with mean values of about −21‰. During the main phase of oil emplacement, arguably triggered by far-field Alpine tectonics, carbonate cementation was slowed down and eventually ceased in the presence of hydrocarbons and corrosive fluids with temperatures of 110–140 °C and a micro-hiatal surface formed in the paragenetic sequence. These observations support the “oil-inhibits-diagenesis” model. The presence an earlier corrosion surface between phase Ca-3 and 4 is best assigned to initial pulses of ascending corrosive fluids in advance of hydrocarbons. The short-lived nature of the oil migration event found here is rather uncommon when compared to other carbonate reservoirs. The study is relevant as it clearly documents the strengths of a combined petrographic and geochemical study in order to document the timing of oil migration in carbonate reservoirs and its related cementation dynamics.  相似文献   

12.
The Upper Triassic – Lower Jurassic Åre Formation comprising the deeper reservoir in the Heidrun Field offshore mid-Norway consists of fluvial channel sandstones (FCH), floodplain fines (FF), and sandy and muddy bay-fill sediments (SBF, MBF) deposited in an overall transgressive fluvial to lower delta plain regime. The formation has been investigated to examine possible sedimentary facies controls on the distribution of cementation and compaction based on petrography and SEM/micro probe analyses of core samples related to facies associations and key stratigraphic surfaces. The most significant authigenic minerals are kaolinite, calcite and siderite. Kaolinite and secondary porosity from dissolution of feldspar and biotite are in particular abundant in the fluvial sandstones. The carbonate minerals show complex compositional and micro-structural variation of pure siderite (Sid I), Mg-siderite (Sid II), Fe-dolomite, ankerite and calcite, displaying decreasing Fe from early to late diagenetic carbonate cements. An early diagenetic origin for siderite and kaolinite is inferred from micro-structural relations, whereas pore filling calcite and ankerite formed during later diagenesis. The Fe-dolomite probably related to mixing-zone dolomitization from increasing marine influences, and a regional correlatable calcite cemented layer has been related to a flooding event. Porosity values in non-cemented sandstone samples are generally high in both FCH and SBF facies associations averaging 27%. Differential compaction between sandstone and mudstone has a ratio of up to 1:2 and with lower values for MBF. We emphasize the role of eogenetic siderite cementation in reducing compactability in the fine-grained, coal-bearing sediments most prominent in MBF facies. This has implications for modeling of differential compaction between sandstone and mudstones deposited in fluvial-deltaic environments.  相似文献   

13.
This work presents new insights of the generation, quality and migration pathways of the hydrocarbons in the East Baghdad Oil Field.The Khasib and Tannuma formations in East Baghdad are considered as oil reservoirs according to their high porosity (15-23%) and permeability (20-45 mD) in carbonate rocks. The hydrocarbons are trapped by structural anticline closure trending NW-SE. Gas chromatography analysis on these oil reservoirshave shown biomarkers of abundant ranges of n-alkanes of less than C22 (C17-C21) with C19 and C18 peaks. This suggests mainly liquid oil constituents of paraffinic hydrocarbons from marine algal source of restricted palaeoenvironments in the reservoir. The low non aromatic C15 + peaks are indicative for slight degradation and water washing. Oil biomarkers of Pr./Ph. = 0.85, C31/C30 < 1.0, location in triangle of C27-C29 sterane, C28/C29 of 0.6 sterane, Oleanane of 0.01 and CPI = 1.0, indicate an anoxic marine environment with carbonate deposits of Upper Jurassic to Early Cretaceous age. Four Miospores, seven Dinoflagellates and one Tasmanite species confirm affinity to the upper most Jurassic to Lower Cretaceous Chia Gara and Ratawi Formations.The recorded palynomorphs from the Khasib and Tannuma Formations are of light brown color of TAI = 2.8-3.0 and comparable to the mature palynomorphs that belong to the Chia Gara and the Lower part of Ratawi Formations.The Chia Gara Formation generated oil during Upper Cretaceous to Early Palaeogene and accumulated in structural traps of Cretaceous age, such as the Khasib and Tannuma reservoirs. The Chia Gara Formation generated and expelled high quantities of oil hydrocarbons according to their TOC wt% of 0.5-8.5 with S2 = 2.5-18.5 mg Hc/g Rock, high hydrogen index of the range 150-450 mg Hc/g Rock, good petroleum potential of 4.5-23.5 mg Hc/g Rock, mature (TAI = 2.8-3.0 and Tmax = 428-443C), kerogen type II and palynofacies parameters of up to 100% AOM (Amorphous Organic Matters). This includes algae deposits in a dysoxic-anoxic to suboxic-anoxic environment.Alternative plays are discussed according to the migration pathways.  相似文献   

14.
Delta-front sand bodies with large remaining hydrocarbon reserves are widespread in the Upper Cretaceous Yaojia Formation in the Longxi area of the Western Slope, Songliao Basin, China. High-resolution sequence stratigraphy and sedimentology are performed based on core observations, well logs, and seismic profile interpretations. An evaluation of the reservoir quality of the Yaojia Formation is critical for further petroleum exploration and development. The Yaojia Formation is interpreted as a third-order sequence, comprising a transgressive systems tract (TST) and a regressive systems tract (RST), which spans 4.5 Myr during the Late Cretaceous. Within this third-order sequence, nine fourth-order sequences (FS9–FS1) are recognized. The average duration of a fourth-order sequence is approximately 0.5 Myr. The TST (FS9–FS5) mostly comprises subaqueous distributary channel fills, mouth bars, and distal bars, which pass upward into shallow-lake facies of the TST top (FS5). The RST (FS4–FS1) mainly contains subaqueous distributary-channel and interdistributary-bay deposits. Based on thin-sections, X-ray diffraction (XRD), scanning electron microscope (SEM) and high-pressure mercury-intrusion (HPMI) analyses, a petrographic study is conducted to explore the impact of the sedimentary cyclicity and facies changes on reservoir quality. The Yaojia sandstones are mainly composed of lithic arkoses and feldspathic litharenites. The sandstone cements mostly include calcite, illite, chlorite, and secondary quartz, occurring as grain coating or filling pores. The Yaojia sandstones have average core plug porosity of 18.55% and permeability of 100.77 × 10−3 μm2, which results from abundant intergranular pores and dissolved pores with good connectivity. Due to the relatively coarser sediments and abundant dissolved pores in the feldspars, the FS4–FS1 sandstones have better reservoir quality than the FS9–FS5 sandstones, developing relatively higher porosity and permeability, especially the FS1 and FS2 sandstones. The source–reservoir–cap-rock assemblages were formed with the adjoining semi-deep lake mudstones that were developed in the Nenjiang and Qingshankou Formations. This study reveals the deposition and distribution of the delta-front sand bodies of the Yaojia Formation within a sequence stratigraphic framework as well as the factors controlling the Yaojia sandstones reservoir quality. The research is of great significance for the further exploration of the Yaojia Formation in the Longxi area, as well as in other similar lacustrine contexts.  相似文献   

15.
Upper Jurassic organic matter-rich, marine shales of the Mandal Formation have charged major petroleum accumulations in the North Sea Central Graben including the giant Ekofisk field which straddles the graben axis. Recent exploration of marginal basin positions such as the Mandal High area or the Søgne Basin has been less successful, raising the question as to whether charging is an issue, possibly related to high thermal stability of the source organic matter or delayed expulsion from source to carrier.The Mandal Formation is in part a very prolific source rock containing mainly Type II organic matter with <12 wt.-% TOC and HI < 645 mg HC/g TOC but Type III-influenced organofacies are also present. The formation is therefore to varying degrees heterogeneous. Here we show, using geochemical mass balance modelling, that the petroleum expulsion efficiency of the Mandal Formation is relatively low as compared to the Upper Jurassic Draupne Formation, the major source rock in the Viking Graben system. Using maturity series of different initial source quality from structurally distinct regions and encompassing depositional environments from proximal to distal facies, we have examined the relationship between free hydrocarbon retention and organic matter structure. The aromaticity of the original and matured petroleum precursors in the Mandal source rock plays a major role in its gas retention capacity as cross-linked monoaromatic rings act on the outer surface of kerogen as sorptive sites. However, oil retention is a function of both kerogen and involatile bitumen compositions. Slight variations in total petroleum retention capacities within the same kerogen yields suggest that texture of organic matter (e.g. organic porosity) could play a role as well.  相似文献   

16.
Only a limited number of comparative studies have explored the diagenetic differences of reservoirs caused by the charging of natural gases with different compositions during the migration and accumulation of oil and gas. In this study, we quantitatively assessed the diagenetic variations of the lower Zhuhai Formation reservoirs in the WC-A sag, the Pearl River Mouth Basin, as a result of natural gas charging with different compositions. The employed methods included electron microscopy, scanning electron microscopy, cathode luminescence, X-ray diffraction, chemical composition analysis of formation water, stable isotope analysis, and fluid inclusion determination. The results indicated that: (1) in the lower Zhuhai Formation reservoir that are near the large fractures, the late-charging of CO2-rich thermal fluid promoted the dissolution of minerals, and changed the porosity, permeability, pH value of fluid, and the contents of ions such as K+, Na+, Mg2+ of the reservoirs. These changes, in turn, indirectly affected the content, form, and distribution of clay minerals in the reservoirs. In addition, the secondary enlargement of quartz was enhanced. (2) The charging of CO2-rich thermal fluid caused strong dissolution and produced high contents of cements. The dissolution mainly occurred in a half open system with strong fluid activity. Consequently, the significantly decreasing of permeability was hindered and middle porosity–middle permeability reservoirs were generated. The reservoirs that are far from the large fractures, however, were mainly early charged by the hydrocarbon-rich fluid. The dissolution was weak and the generated cements were limited. In addition, the dissolution products could not be discharged in such closed diagenetic systems. As a result, the permeability of the reservoir was declined sharply and resulted in low porosity–low permeability reservoirs.  相似文献   

17.
Natural gas samples from two gas fields located in Eastern Kopeh-Dagh area were analyzed for molecular and stable isotope compositions. The gaseous hydrocarbons in both Lower Cretaceous clastic reservoir and Upper Jurassic carbonate reservoir are coal-type gases mainly derived from type III kerogen, however enriched δD values of methane implies presence of type II kerogen related material in the source rock. In comparison Upper Jurassic carbonate reservoir gases show higher dryness coefficient resulted through TSR, while presence of C1C5 gases in Lower Cretaceous clastic reservoir exhibit no TSR phenomenon. Carbon isotopic values indicate gas to gas cracking and TSR occurrence in the Upper Jurassic carbonate reservoir, as the result of elevated temperature experienced, prior to the following uplifts in last 33–37 million years. The δ13C of carbon dioxide and δ34S of hydrogen sulfide in Upper Jurassic carbonate reservoir do not primarily reflect TSR, as uplift related carbonate rock dissolution by acidic gases and reaction/precipitation of light H2S have changed these values severely. Gaseous hydrocarbons in both reservoirs exhibit enrichment in C2 gas member, with the carbonate reservoir having higher values resulted through mixing with highly-mature-completely-reversed shale gases. It is likely that the uplifts have lifted off the pressure on shale gases, therefore facilitated the migration of the gases into overlying horizons. However it appears that the released gases during the first major uplift (33–37 million years ago) have migrated to both reservoirs, while the second migrated gases have only mixed with Upper Jurassic carbonate reservoir gases. The studied data suggesting that economic accumulations of natural gas/shale gases deeper than Upper Jurassic carbonate reservoir would be unlikely.  相似文献   

18.
The Upper Jurassic marlstones (Mikulov Fm.) and marly limestones (Falkenstein Fm.) are the main source rocks for conventional hydrocarbons in the Vienna Basin in Austria. In addition, the Mikulov Formation has been considered a potential shale gas play. In this paper, organic geochemical, petrographical and mineralogical data from both formations in borehole Staatz 1 are used to determine the source potential and its vertical variability. Additional samples from other boreholes are used to evaluate lateral trends. Deltaic sediments (Lower Quarzarenite Member) and prodelta shales (Lower Shale Member) of the Middle Jurassic Gresten Formation have been discussed as secondary sources for hydrocarbons in the Vienna Basin area and are therefore included in the present study.The Falkenstein and Mikulov formations in Staatz 1 contain up to 2.5 wt%TOC. The organic matter is dominated by algal material. Nevertheless, HI values are relative low (<400 mgHC/gTOC), a result of organic matter degradation in a dysoxic environment. Both formations hold a fair to good petroleum potential. Because of its great thickness (∼1500 m), the source potential index of the Upper Jurrasic interval is high (7.5 tHC/m2). Within the oil window, the Falkenstein and Mikulov formations will produce paraffinic-naphtenic-aromatic low wax oil with low sulfur content. Whereas vertical variations are minor, limited data from the deep overmature samples suggest that original TOC contents may have increased basinwards. Based on TOC contents (typically <2.0 wt%) and the very deep position of the maturity cut-off values for shale oil/gas production (∼4000 and 5000 m, respectively), the potential for economic recovery of unconventional petroleum is limited. The Lower Quarzarenite Member of the Middle Jurassic Gresten Formation hosts a moderate oil potential, while the Lower Shale Member is are poor source rock.  相似文献   

19.
Carbonate cements are the most abundant authigenic mineral and impact on physical properties greatly in sandstone reservoir. In this paper, Pinghu Formation of Xihu Sag was taken as a target. Characteristics,distribution and formation of carbonate cements were investigated via optical microscopy, cathodoluminescence(CL), electron probe and in-situ carbon-oxygen isotope. The results showed that carbonate cements varied in types and shapes. Calcite/dolomite mainly present as poikilotopic cements, ...  相似文献   

20.
The Upper Triassic Xujiahe Formation in the northwestern Sichuan Basin, China, is a typical tight gas sandstone reservoir that contains natural fractures and has an average porosity of 1.10% and air permeability less than 0.1 md because of compaction and cementation. According to outcrops, cores and image logs, three types of natural fractures, namely, tectonic, diagenetic and overpressure-related fractures, have developed in the tight gas sandstones. The tectonic fractures include small faults, intraformational shear fractures and horizontal shear fractures, whereas the diagenetic fractures mainly include bed-parallel fractures. According to thin sections, the microfractures also include tectonic, diagenetic and overpressure-related microfractures. The diagenetic microfractures consist of transgranular, intragranular and grain-boundary fractures. Among these fractures, intraformational shear fractures, horizontal shear fractures and small faults are predominant and significant for fluid movement. Based on the Monte Carlo method, these intraformational shear fractures and horizontal shear fractures improve the reservoir porosity and permeability, thus serving as an important storage space and primary fluid-flow channels in the tight sandstones. The small faults may provide seepage channels in adjacent layers by cutting through layers. In addition, these intragranular and grain-boundary fractures increase the connectivity of the tight gas sandstones by linking tiny pores. The tectonic microfractures improve the seepage capability of the tight gas sandstones to some extent. Low-dip angle fractures are more abundant in the T3X3 member than in the T3X2 and T3X4 members. The fracture intensities of the sandstones in the T3X3 member are greater than those in the T3X2 and T3X4 members. The fracture intensities do not always decrease with increasing bed thickness for the tight sandstones. When the bed thickness of the tight sandstones is less than 1.0 m, the fracture intensities increase with increasing bed thickness in the T3X3 member. Fluid inclusion evidence and burial history analysis indicate that the tectonic fractures developed over three periods. The first period was at the end of the Triassic to the Early Jurassic. The tectonic fractures developed during oil generation but before the matrix's porosity and permeability reduced, which suggests that these tectonic fractures could provide seepage channels for oil migration and accumulation. The second period was at the end of the Cretaceous after the matrix's porosity and permeability reduced but during peak gas generation, which indicates that gas mainly migrated and accumulated in the tectonic fractures. The third period was at the end of the Eogene to the Early Neogene. The tectonic fractures could provide seepage channels for secondary gas migration and accumulation from the Upper Triassic Xujiahe Formation into the overlying Jurassic Formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号