首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution geochemical, isotope and elemental data from core PC23A in the northern margin of the Aleutian Basin (Bering Sea) were used to reconstruct distinct paleoceanographic features of the last deglaciation (pre-Boreal[PB], Bølling-Allerød[BA], Younger Dryas[YD]). The PB and BA intervals are characterized by increased siliceous (diatom) and calcareous (coccolithophores and foraminifers) productivity represented by high biogenic opal and CaCO3 contents, respectively. The enhanced productivity can plausibly be attributed to an elevated sea-surface nutrient supply from increased melt-water input and enhanced Alaskan Stream injection under warm, restricted sea-ice conditions. High Corg/N ratios and low δ13C values of sediment organic matter during the PB and BA intervals reflect the contribution of terrestrial organic matters. The PB and BA intervals were also identified by laminated sediment layers of core PC23A, characterized by high Mo/Al and Cd/Al ratios, indicating that the bottom water condition remained anoxic. High δ15N values during the same period were attributed mainly to the increased nutrient utilization and subsequent denitrification of seawater nitrate. Part of high δ15N values may also be due to incorporation of inorganic nitrogen in the clay minerals. It is worthy of note that high total organic carbon (TOC) deposition occurred approximately 3,000 years before onset of the last deglaciation. Simultaneous high Corg/N ratios and low δ13C values clearly suggest that the high TOC content should be related to terrestrial organic carbon input. Low δ15N values during the high TOC interval also confirm the contribution of terrigenous organic matter. Although abundant calcareous phytoplankton production under cold, nutrient-poor conditions represented by Baex data was reported for high TOC deposition preceding the last deglaciation in an earlier study of the Okhotsk Sea, the main reason for the enhanced TOC deposition in the Bering Sea is an increased terrigenous input from the submerged continental shelves (Beringia) with a sea-level rise; this is further supported by Al enrichment of bulk sediments during the high TOC deposition.  相似文献   

2.
High-resolution sedimentological and micropaleontological studies of several deep-sea cores retrieved from the levees of the Celtic and Armorican turbidite systems (Bay of Biscay — North Atlantic Ocean) allow the detection of the major oscillations of the British–Irish Ice Sheet (BIIS) and ‘Fleuve Manche’ palaeoriver discharges over the last 30,000 years, which were mainly triggered by climate changes.Between 30 and 20 cal ka, the turbiditic activity on the Celtic–Armorican margin was weak, contrasting with previous stratigraphic models which predicted a substantial increase of sediment supply during low sea-level stands. This low turbidite deposit frequency was most likely the result of a weak activity of the ‘Fleuve Manche’ palaeoriver and/or of a reduced seaward transfer of sediments from the shelf to the margin. However, two episodes of turbiditic activity increase were detected in the Celtic–Armorican margin, during Heinrich events (HE) 3 and 2. This strengthening of the turbiditic activity was triggered by the meltwater releases from European ice sheets and glaciers favouring the seaward transfer of subglacial material, at least via ‘Fleuve Manche’ palaeoriver.At around 20 cal ka, a significant increase of turbidite deposit frequency occurred as a response to the onset of the last deglaciation. The retreat of the European ice sheets and glaciers induced a substantial increase of the ‘Fleuve Manche’ palaeoriver discharges and seaward transfer of continentally-derived material into the Armorican turbidite system. The intensification of the turbiditic activity on the Celtic system was directly sustained by the widespread transport of subglacial sediments from the British–Irish Ice Sheet (BIIS) to the Celtic Sea via the Irish Sea Basin. A sudden reduction of turbiditic activity in the Armorican system, between ca. 19 and 18.3 cal ka, could have been triggered by the first well known abrupt sea-level rise (‘meltwater pulse’, at around 19 cal ka) favouring the trapping of sediment in the ‘Fleuve Manche’ palaeoriver valleys and the decrease of the seaward transfer of continentally-derived material.The maximum of turbiditic activity strengthening in the Celtic–Armorican margin, between ca. 18.3 and 17 cal ka, was induced by the decay of European ice sheets and glaciers producing the most extreme episode of the ‘Fleuve Manche’ palaeoriver runoff and a great seaward transfer of subglacial material into the Bay of Biscay. Between ca. 17.5 and 16 cal ka, the turbiditic activity significantly decreased in both Celtic and Armorican turbidite systems in response to a global re-advance of glaciers and ice sheets in Europe. The last episode of ice sheet retreat, between ca. 16 and 14 cal ka, is well expressed in the Celtic system by a new increase of the turbiditic activity. The major episode of sea-level rise at around 14 cal ka (‘Meltwater Pulse 1A’), precluding the seaward transfer of sediments, induced the end of turbiditic activity in both the Celtic and the Armorican system.Although two main phases of global sea-level rise seem to have had an effect on the Celtic–Armorican margin, this work proposes the BIIS retreat and associated riverine discharges as the main trigger mechanisms of the turbiditic activity in this region during the last 30,000 years.  相似文献   

3.
通过对南海台西南盆地南部海域TS6柱状样沉积物样品常量元素地球化学特征的分析,结合粒度和AMS14C测年分析结果,探讨了研究区末次冰消期以来的沉积环境及气候变化特征。常量元素垂向序列显示元素Mn在沉积物近表层大量自生富集,指示近现代底层水高度富氧,表明研究区水体环境条件十分有利于水成成因的铁锰结核发育;常量元素统计分析表明,Al、Fe、Mg、K、Ti代表了陆源元素组合;陆源常量元素比值Al2O3/TiO2、TFe2O3/TiO2、MgO/TiO2和MgO/Al2O3记录了研究区末次冰消期以来的部分气候波动事件,其中全新世9.8~9.4 kaBP和6.5~5.8 kaBP阶段发生了两次气候变冷事件,指示东亚夏季风强度明显减弱,并且6.5~5.8 kaBP阶段冷事件表现出“双峰”特征。各常量元素比值指示末次冰消期18.5和15.8 kaBP左右可能也出现了气候变冷事件,其中15.8 kaBP出现的冷事件应该对应于H1事件。  相似文献   

4.
《Marine Geology》2006,225(1-4):223-246
We present detailed bathymetry, remotely operated vehicle (ROV) and submersible observations, and sedimentary and radiocarbon age data from carbonate deposits recovered from two submerged terraces at − 150 m (T1) and − 230 m (T2) off Lanai, Hawaii. The tops of the terraces are veneered by relatively thin (< 5 m) in situ accumulations of coralline algal nodule, coralgal nodule, Halimeda and a derived oolitic facies deposited in intermediate (30–60 m) to deep fore-reef slope settings (60–120 m). The data are used to develop a sedimentary facies model that is consistent with eustatic sea-level variations over the last 30 ka. Both nodule facies on T1 and T2 initiated growth 30–29 ka following a fall in sea level of ∼50 m and increase in bottom currents during the transition from Marine Isotope Stage 3 to 2. The nodules accreted slowly throughout the Last Glacial Maximum when sea-level was relatively stable. Drowning occurred during the early deglaciation (17–16 ka) and was marked by the complete drowning of coralline algal nodules facies on T2 and incipient drowning of coralgal facies on T1. Abrupt sea-level rise during the middle deglaciation, perhaps associated with global meltwater pulse 1A (14–15 ka), finally drowned the coralgal facies on T1, which in turn was overlain by a deep-water Halimeda facies or an oolitic facies derived from upslope. Our data indicates that Lanai has experienced relatively little vertical tectonic movement over the last 30 ka. Using paleobathymetric data derived from the sedimentary facies, age vs. depth relationships, and published sea-level curves, we estimate that Lanai could be either slowly uplifting or subsiding, but at rates < 0.1 m/kyr (uplift) or < 0.4 m/kyr (subsidence) over this 30 kyr period.  相似文献   

5.
Variations in the concentration of redox sensitive elements combined with pyrite framboid size data documented from a Marcellus Formation (Middle Devonian) core recovered from southwestern Pennsylvania elucidate the redox, organic matter accumulation, and diagenetic history of these deposits in this region of the basin. Uranium and Mo enrichment and Fe/Al display sharp increases coincident with diminishing Th/U upward through the initial 3rd order trangressive systems tract (lower Union Springs Member). These data as well as abundant small (<6 μm) pyrite framboids record establishment of strongly reducing benthic conditions, perhaps related to the expansion of an oxygen minimum zone induced by increased surface productivity. Strongly anoxic, even euxinic, conditions were interrupted by episodes of dysoxia, perhaps seasonal or longer term. Overlying regressive systems tract (RST) deposits record modestly improved redox conditions, likely a reflection of a receding oxygen minimum zone as base level dropped. A subsequent 3rd order base level rise and renewed expansion of the oxygen minimum zone triggered by increased surface productivity resulted in the accumulation of the organic-rich lower Oatka Creek Member. Still, the mix of abundant small and subordinate large (>10 μm) framboids preserves the record of oxygen deficient to sulfidic bottom conditions frequently interrupted by episodes of (dys)oxia. Improving redox conditions through the overlying RST were accompanied by a two-fold increase in Al and consequent dilution of the organic matter flux and authigenic trace metal uptake at the sediment–water interface. The upper half of the Oatka Creek comprises a depositional sequence not obvious from core inspection or gamma-ray signature but revealed by Mo enrichment and Al concentration profiles. Diagenetic modification of the Marcellus includes several horizons of authigenic calcium carbonate concretions and marked Ba enrichment. Both features reflect the effects of non-steady state microbial diagenesis within a methane-rich sedimentary column.  相似文献   

6.
We investigated marine and terrestrial environmental changes at the northern Japan margin in the northwestern Pacific during the last 23,000 years by analyzing biomarkers (alkenones, long-chain n-alkanes, long-chain n-fatty acids, and lignin-derived materials) in Core GH02-1030. The U 37K′-derived temperature in the last glacial maximum (LGM) centered at 21 ka was ∼10°C, which was 2°C lower than the core-top temperature (∼12°C). This small temperature drop does not agree with pollen evidence of a large air temperature drop (more than 4°C) in the Tokachi area. This disagreement might be attributed to a bias of U 37K′-derived temperature within 2.5°C by a seasonal shift in alkenone production. The U 37K′-derived temperature was significantly low during the last deglaciation. Because this cooling was significant in the Kuroshio-Oyashio transition zone, the temperature drops are attributable to the southward displacement of the Kuroshio-Oyashio boundary. Abundant lignin-derived materials, long-chain n-alkanes and long-chain n-fatty acids indicate a higher contribution of terrigenous organic matter from 17 to 12 ka. This phenomenon might have resulted from an enhanced coastal erosion of terrestrial soils due to marine transgression and/or an efficient inflow of higher plant debris to river waters from 17 to 12 ka.  相似文献   

7.
We analyzed the REE, Mn and Al concentrations and Nd isotopic ratios in marine suspensions collected on filters (0.65 μm porosity) with in situ pumping systems in the tropical northeastern Atlantic (20°N, 18–31°W). Previously we reported the same parameters on large sinking particles collected with moored sediment traps at the sites. Shale-normalized REE patterns of the filtered suspensions are characterized by a larger light REE (LREE) to heavy REE (HREE) enrichment compared to the trapped material and a Ce anomaly that evolves positively with depth. Depth profiles of REE/Al show maximum values at 50–100 m, where the Mn/Al ratio also reaches a maximum. The profile of the Nd isotopic ratios of the filtered suspensions shows variations similar to those of the seawater. These results suggest that the filtered suspensions preferentially scavenge the LREE, especially Ce, and that the particulate Mn oxides are potential REE carriers. The relationship between the Ce anomaly and the Ce/Al ratio demonstrates that the particulate Ce anomaly is formed by (1) the LREE adsorption onto the particulate Mn oxides in the surface water, (2) Ce(III) oxidation to insoluble Ce(IV)O2 and (3) preferential desorption of strict trivalent REE from the Mn oxides in deep water. Estimated authigenic Nd contents, using Nd isotopic ratios, decrease with depth. This is consistent with the adsorption of the REE in surface water and their desorption in deep water, suggested by the Ce anomaly formation. All the results show that the suspended particles record more clearly the authigenic REE contribution than the trapped material does. The suspended matter plays a key role in the scavenging of particle-reactive elements.  相似文献   

8.
Environmental changes in the surface and bottom water layers of the Ingøydjupet Basin and the history of the Atlantic Water inflow to the southwestern Barents Sea during the last 16 ka are reconstructed based on planktic and benthic foraminiferal assemblages. The multiproxy study of sediment cores PSh-5159R and PSh-5159N, including AMS 14C dating, provides a time resolution of about 200 years for the deglaciation, 100 years for the Holocene, and 25–50 years for the last 400 years. Stable polar conditions with the sea ice at the surface were typical for the Early Deglaciation period. Unstable bottom settings and the onset of ice rafting marked the Oldest Dryas. The cold Atlantic Water inflow increased notably during the Bölling-Alleröd interstadial nearby the site location and then decreased during the Younger Dryas. The initial Holocene was characterized by abrupt warming in bottom and surface water layers, especially ~9.7–7.6 ka BP. Stable conditions prevailed during the Middle Holocene. Remarkable changes in the sea-surface temperature and bottom environments occurred during the last 2.5 cal. ka BP.  相似文献   

9.
Based on seismic profiles, multibeam bathymetry and sediment cores, an improved understanding of the deglaciation/postglacial history of the southern part of the Norwegian Channel has been obtained. The Norwegian Channel Ice Stream started to recede from the shelf edge ca. 15.5 ka BP (14C ages are used throughout). Approximately 500–1000 years later the ice margin was located east of the deep Skagerrak trough. At that time, the Norwegian Channel off southern Norway had become a large fjord-like embayment, surrounded by the grounded ice sheet along the northern slope and possibly stagnant ice remnants at the southern flank. The Norwegian Channel off southern Norway has been the main sediment trap of the North Sea, and south of Egersund more than 200 m of sediments have been deposited since the start of the deglaciation. Five seismic units are mapped. The oldest unit E occurs in some of the deepest troughs, and was deposited immediately after the ice became buoyant. Unit D is acoustically massive and comprises mass-movement deposits in eastern Skagerrak and south of Egersund. Unit C (in the channel southwest of Lista/Egersund) is interpreted to comprise mainly bottom current deposits derived from palaeo-rivers, e.g. Elben. During deposition of unit C (ca. 14.5–13 ka BP), there was limited inflow of Atlantic water. A change in depositional environment at ca. 13 ka BP is related to an increased inflow of saline water and more open hydrographic circulation. Widely distributed, acoustically stratified clays of unit B were deposited ca. 13–10 ka BP. The Holocene Unit A shows a depositional pattern broadly similar to that of unit B.  相似文献   

10.
氧化还原敏感元素(Redox Sensitive Elements,RSE)如V、Cr、Mo、U等,通常在氧化条件下呈溶解态,在还原沉积环境中除Fe、Mn外,RSE被还原成低价态转移至沉积物中富集积累,因此可以利用氧化还原敏感元素在沉积物中的富集情况反演沉积环境的氧化还原状况。本文通过研究东海内陆架季节性低氧海区Zb7沉积柱中氧化还原敏感元素V、Cr、Ni、Cu、Zn、Mo、U的垂直分布、富集特征和比值,探究沉积环境氧化还原状况;发现RSE/Al和富集系数自1978年以来呈增加的趋势,但自2009年开始有所降低,整体RSE富集系数均小于3,未见明显富集。RSE比值V/Cr<2、Ni/Co<5、U/Th<0.75、0.25<(Cu+Mo)/Zn<0.55,以及MoEF/UEF比值主要分布在0.08~0.3倍海水Mo/U值之间,均指示氧化的沉积环境。RSE/Al与Fe/Al、Mn/Al具有显著的相关性,表明RSE在剔除陆源碎屑输入后,主要通过与Fe、Mn氧化物结合进入沉积物,也指示氧化的沉积环境。研究结果与该区域溶解氧历史数据反映的季节性低氧结果不一致,可能与RSE在夏季季节性低氧时,沉积物中的富集信号在秋冬季溶氧水平恢复后缺失有关。尽管RSE不能有效指示东海季节性低氧环境,但Zb7沉积柱RSE在1978年后富集程度的增加以及2011年后的降低,在一定程度上反映了该区域自1978年后季节性低氧程度加重,2009年后又有所缓解的变化趋势。  相似文献   

11.
The Arabian Sea oxygen minimum zone (OMZ) impinges upon the Indian continental margin at bathyal depths (150-1500 m) producing changes in ambient oxygen availability and sediment geochemistry across the seafloor. The influence of these environmental changes upon the epi-benthic megafaunal assemblage was investigated by video survey at six stations spanning the OMZ core (540 m), lower boundary (800-1100 m) and below the OMZ (2000 m), between September and November 2008. Structural changes in the megafaunal assemblage were observed across the six stations, through changes in both megafaunal abundance and lebensspuren (biogenic traces). Most megafauna were absent in the OMZ core (540 m), where the assemblage was characterised by low densities of fishes (0.02-0.03 m−2). In the lower OMZ boundary, megafaunal abundance peaked at 800 m, where higher densities of ophiuroids (0.20-0.44 m−2) and decapods (0.11-0.15 m−2) were present. Total abundance declined with depth between 800 and 2000 m, as the number of taxa increased. Changes in the megafaunal assemblage were predicted by changes in abundance of seven taxonomic groups, correlated to both oxygen availability and sediment organic matter quality. Lebensspuren densities were highest in the OMZ boundary (800-1100 m) but traces of large infauna (e.g., echiurans and enteropneusts) were only observed between 1100 and 2000 m station, where the influence of the OMZ was reduced. Thus, changes in the megafaunal assemblage across the Indian margin OMZ reflect the responses of specific taxa to food availability and oxygen limitation.  相似文献   

12.
We study fish scales as a proxy of fish abundance and preservation biases together with phosphorus from fish remains (Pfish) in a sediment core retrieved off Callao, Peru (12°1′S, 77°42′W; water depth=179 m; core length=52 cm). We interpret our results as a function of changing redox conditions based on ratios of redox-sensitive trace elements (Cu/Al, Mo/Al, Ni/Al, Zn/Al, V/Al), terrigenous indicators (Fe in clays, Ti, Al), and biogenic proxies (CaCO3, biogenic opal, total nitrogen, organic carbon, barite Ba). The core covers roughly 700 years of deposition, based on 210Pb activities extrapolated downcore and 14C dating at selected intervals. Our fish-scale record is dominated by anchovy (Engraulis ringens) scales followed by hake (Merluccius gayii) scales.The core presented an abrupt lithological change at 17 cm (corresponding to the early 19th century). Above that depth, it was laminated and was more organic-rich (10–15% organic carbon) than below, where the core was partly laminated and less organic-rich (<10%). The lithological shift coincides with abrupt changes in dry bulk density and in the contents of terrigenous and redox-sensitive trace elements, biogenic proxies, and fish scales. The remarkable increase in redox-sensitive trace elements in the upper 17 cm of the core suggests more reducing conditions when compared with deeper and older horizons, and is interpreted as an intensification of the oxygen minimum zone off Peru beginning in the early 19th century. Higher fish-scale contents and higher Pfish/Ptotal ratios were also observed within the upper 17 cm of the core. The behavior of biogenic proxies and redox-sensitive trace elements was similar; more reduced conditions corresponded to higher contents of CaCO3, Corg, total nitrogen and fish scales, suggesting that these proxies might convey an important preservation signal.  相似文献   

13.
An oxygen minimum zone (OMZ) currently exists at intermediate water depths on the northern Japanese margin in the northwestern Pacific. The OMZ results largely from a combination of high surface–water productivity and poor ventilation of intermediate waters. We investigated the late Quaternary history (last 27 kyr) of the intensity of this OMZ using changes in benthic foraminiferal carbon isotopes and assemblages in a sediment core taken on the continental slope off Shimokita Peninsula, northern Japan, at a water depth of 975 m. The core was located well within the region of the present-day OMZ and high surface–water productivity. The benthic foraminiferal δ13C values, which indicate millennial-scale fluctuations of nutrient contents at the sediment–water interface, were 0.48‰ lower during the last glacial maximum (LGM) than during the late Holocene. These results do not indicate the formation of glacial intermediate waters of subarctic Pacific origin, but rather the large contribution of high-nutrient water masses such as the Antarctic Intermediate Water, implying that the regional circulation pattern during the LGM was similar to that of modern times. Benthic foraminiferal assemblages underwent major changes in response to changes in dissolved oxygen concentrations in ocean floor sediments. The lowest oxygen and highest nutrient conditions, marked by dysoxic taxa and negative values of benthic foraminiferal δ13C, occurred during the Bølling/Allerød (B/A) and Pre-Boreal warming events. Dysoxic conditions in this region during these intervals were possibly caused by high surface–water productivity at times of reduced intermediate–water ventilation in the northwestern Pacific. The benthic assemblages show dysoxic events on approx. 100- to 200-year cycles during the B/A, reflecting centennial-scale productivity changes related to freshwater cycles and surface–water circulation in the North Pacific.  相似文献   

14.
Within the Russian–German research project on “Siberian River Run-off (SIRRO)” dealing with freshwater discharge and its influence on biological, geochemical, and geological processes in the Kara Sea, sedimentological and organic-geochemical investigations were carried out on two well-dated sediment cores from the Yenisei Estuary area. The main goal of this study was to quantify terrigenous organic carbon accumulation based on biomarker and bulk accumulation rate data, and its relationship to Yenisei river discharge and climate change through Holocene times. The biomarker data in both cores clearly indicate the predominance of terrigenous organic matter, reaching 70–100 and 50–80% of total organic carbon within and directly north of the estuary, respectively. During the last ca. 9 cal ka b.p. represented in the studied sediment section, siliciclastic sediment and (terrigenous) organic carbon input was strongly influenced by postglacial sea-level rise and climate-related changes in river discharge. The mid-Holocene Climatic Optimum is documented by maximum river discharge between 8.2 and 7.3 cal ka b.p. During the last 2,000 years, river discharge probably decreased, and accumulation of both terrigenous and marine organic carbon increased due to enhanced coagulation of fine-grained material.  相似文献   

15.
对南海东北部69柱(20°07.10'N,118°49.0'E)沉积物岩心进行碎屑矿物-地球化学特征研究,结果表明,以孔深165cm为界可划分出晚更新世末次冰期沉积和全新世冰后期沉积,这一地层划分结果与根据浮游有孔虫氧、碳同位素分析得出的结果是一致的.末次冰期时自生黄铁矿和硫元素高度富集,钠与铝、镁与铝和钠与钾的比值均较高,重矿物和SiO2含量较高,CaCO3含量较低,反映当时是一种相对闭塞的缺氧环境,气候干寒,化学风化作用较弱,以机械风化作用为主;研究区主要接受粒径较粗的硅质沉积;陆源物质的稀释作用可能是造成碳酸盐含量相对较低的主要原因.冰后期褐铁矿出现高含量,钠与铝、镁与铝和钠与钾的比值均降低,Al2O3和CaCO3含量增高,反映沉积环境渐变为开放的氧化环境,气候转变为化学风化作用较强的湿热气候;研究区以接受较细粒的铝硅酸盐沉积为主,冰消期时还出现了碳酸盐保存高峰事件.  相似文献   

16.
The Cabo Frio region in the state of Rio de Janeiro, southeast coast of Brazil, is characterized by a local coastal upwelling system and converging littoral sediment transport systems that are deflected offshore at Cabo Frio, as a consequence of which a thick cross-shelf sediment deposit has developed over time. To investigate the evolution of this muddy deposit, geophysical, sedimentological and geochemical data from four sediment cores (3.8–4.1 m in length) recovered in water depths between 88 and 141 m were analyzed. The high-resolution seismic data show variable sediment thicknesses ranging from 1 to 20 m, comprising two sedimentary units separated by a high-impedance layer at a depth of about 10 m below the seafloor at the coring sites. According to the available age datings, the upper sedimentary unit is late Pleistocene to Holocene in age, whereas the lower unit (not dated) must, by implication, be entirely Pleistocene in age. The boomer-seismic reflection signal can be divided into three echo-types, namely transparent (inner shelf), stratified (middle shelf) and reflective (outer shelf), each type seemingly related to the local sediment composition. The upper 4 m of the upper sedimentary unit is dominated by silty sediment on the middle shelf, and by upward-fining sediments (silty sand to sandy silt) on the inner and outer shelf. The downcore trends of P-wave velocity, gamma-ray density and acoustic impedance are largely similar, but generally reversed to those of water and organic carbon contents. Total organic carbon contents increase with decreasing mean grain size, periodic fluctuations suggesting temporal changes in the regional hydrodynamics and primary productivity fuelled by the local upwelling system. The reconstruction of sedimentation rates in the course of the Holocene is based on 35 AMS age datings of organic material recovered from variable downcore depths. These range from a maximum of 13.3 cm/decade near the base of the inner shelf core (7.73–7.70 ka BP) to generally very low values (<0.11 cm/century) over the last thousand years in all cores. Over the last 6 ka there appear to have been three distinct sedimentation peaks, one between 6 and 5 ka BP, another between 4 and 3 ka PB, and one around 1 ka BP. Due to different time intervals between dates, not every peak is equally well resolved in all four cores. Based on the similar sedimentology of the inner and outer shelf cores, an essentially identical sedimentation model is proposed to have been active in both cases, albeit at different times. Thus, already during the last glacial maximum, alongshore sediment transport was deflected offshore by a change in shoreline orientation caused by the Cabo Frio structural high. The source of terrigenous material was probably a barrier-island complex that was subsequently displaced landward in the course of sea-level rise until it stabilized some 6.5 ka BP along the modern coast.  相似文献   

17.
Abstract

A large number of surface sediments as well as short sediment cores collected in the Central Indian Ocean Basin have been subjected to various geochemical investigations during the last one and half decade. The studies varied, covering different aspects of sediments and resulting in a number of publications. In the present article, we have put together the data from 82 surface sediments and 14 short sediment cores, including 25 new analyses, to study the trend of their distribution and source at large. The distribution maps of elements show that highest concentrations of Mn, Cu, Ni, Zn, Co, and biogenic opal in the surface sediment occurs between 10°S and 16°S latitude, where diagenetic ferromanganese nodules rich in Mn, Cu, Ni, and Zn are present. The studies highlight that the excess element concentration (detrital unsupported) such as Mn, Cu, Ba, Ni, Co, Pb, and Zn have contributed >80% of their respective bulk composition. These excess elements exhibit strong positive correlation with each other suggesting their association with a single authigenic phase such as Mn oxide. Biogenic opal contributes 30–50% of the total silica in the siliceous sediment. Aluminum, Fe, and K have contributed >60% from terrigenous detrital source compared to their bulk composition. In calcareous ooze, Ca, and Sr excess contribute >95% while, in siliceous ooze it is only 50% of their bulk composition. Nearly 35% of structurally unsupported Al in the sediment raises doubt of using Al as a terrigenous index element to normalize the trace and minor elements. Biogenic apatite is evident by the positive correlation between Ca (<1%) and P. Calcium, Sr, and P depict a common source such as biogenic. Bulk element concentration such as Li, V, Cr, Sc, and Zr are positively correlated with Ti indicating their terrigenous detrital source. Rare earth element (REE) concentration increases from calcareous ooze to siliceous ooze and reaches a maximum in the red clay. Presence of positive Eu-anomaly in these sediments has been attributed to aeolian input. REE in these sediments are mostly carried by authigenic phases such as manganese oxide and biogenic apatite. Based on the distribution of transition elements in the sediment cores, three distinct zones—oxic at top, suboxic at intermediate depth, and a subsurface maxima—have been identified. Oxic and suboxic zones are incidentally associated with high and low micronodule abundance in the coarse fraction (>63 μm) respectively. Ash layers encountered at intermediate depth between 10 to 35 cm are correlative with the Youngest Toba eruption of ~74ka from Northern Sumatra. This ash is mainly responsible for the high bulk Al/Ti ratio up to 48.5 (three times higher than Post Archean Australian Shale), other than scavenging of dissolved Al by biogenic components.  相似文献   

18.
This paper presents reconstructions of ice sheet boundaries, lacustrine and marine paleobasins, as well as the connections of the Barents and Baltic seas with the North Atlantic from the Last Glacial Maximum to the Holocene. The reconstructions are based on original and published data obtained from the northern and western parts of the Barents Sea and Baltic depressions with account for the available regional schematic maps of deglaciation. The early deglaciation of the Scandinavian–Barents ice sheet culminated with the Bølling-Allerød interstadial (14.5–12.9 cal ka BP), which was characterized by a more vigorous Atlantic meridional overturning circulation (AMOC) and a corresponding increase in surface Atlantic water inflow into the Barents Sea through deep troughs. The Baltic Ice Lake (BIL) remained a dammed-up isolated basin during deglaciation from 16.0 to 11.7 cal ka BP. In the Younger Dryas (YD), the lake drained into the North Sea and was replaced by a brackish Yoldia Sea (YS) at the beginning of the Holocene (Preboreal, 11.7–10.7 cal ka BP), due to a limited connection between two basins through the Närke Strait. In the Barents Sea, the next increase in the Atlantic water influx into the deep basins corresponded to terminal YD and Preboreal events with a culmination in the Early Holocene. The Yoldia Sea became a lake again during the next stage, the Ancylus (~10.7–8.8 cal ka BP). Atlantic water inflow both into the Barents and Baltic seas varied during the Holocene, with a maximum contribution in the Early Holocene, when the Littorina Sea (LS, 8–4 cal ka BP) connection with the North Sea via the Danish Straits was formed to replace the Ancylus Lake. The recent, post-Littorina stage (PS, the last 4 cal ka) of the Baltic Sea evolution began in the Late Holocene.  相似文献   

19.
Physical evidence on the dimensions of icebergs released from the mouth of Hudson Strait into the northwest Atlantic during the last Heinrich event (H-0) is presented. Side-scan sonar imagery shows scour marks up to 700 m wide and longer than 28 km. These scour marks were carved by gigantic icebergs (megabergs) with keel drafts possibly as great as 660 m capable of scouring trenches 20 to 25 m deep into the seabed. These icebergs were likely calved from the grounding margin of a thick (possibly as thick as 640 m) rapidly-flowing glacial margin during the H-0 Heinrich event (11 ka BP). Along with the relatively few megabergs released were large numbers of smaller icebergs that calved from the ice margin at the same time and were also produced from break-up of the megabergs. Scouring of the seabed by the large and smaller icebergs happened at the same time, with megabergs scouring only in the deep waters of Hatton Basin, and the smaller bergs scouring only on the eastern, shallow margin of the Basin at the continental shelf break.  相似文献   

20.
The upper 40 m of stratigraphy of the Yellow River (Huang He) subaqueous delta has been well documented, but the nature of the underlying strata is currently unknown at high-resolution. To address this deficiency we used a Geopulse seismic system to image shallow sedimentary deposits up to 120 m deep on the Yellow River delta. High-resolution seismic reflection images were processed with a series of specific techniques (e.g. swelling attenuation, dynamic s/n filter; f-x deconvolution, predictive deconvolution dipscan stack), and used with borehole data to investigate the Quaternary offshore sequences in the Yellow River (Huang He) delta. Repetitive sequences were observed and interpreted as containing layers of transgressive and regressive deposits. Six seismic transgressive and regressive cycles are identified. Unit M6F–C6F correlates with a relative sea-level rise (173–157 ka) and fall (231–173 ka), while Unit M5F–C5F is associated with a relative sea-level rise (124–100 ka) and fall (157–124 ka). Unit M4F–C4F spans a period of sea-level fall at 100–87 ka, followed by a rise at 87–76 ka. Unit M3F–C3F is a transgressive–regressive cycle dated as 76–58 ka. Unit M2F–C2F correlates with relative sea level fall at 58.2–36 ka and subsequent rise at 36–22 ka. Unit M1F–C1F was deposited during relative sea level fall (22–18 ka), followed by a rise, especially since 8.5 ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号