首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defining the 3D geometry and internal architecture of reservoirs is important for prediction of hydrocarbon volumes, petroleum production and storage potential. Many reservoirs contain thin shale layers that are below seismic resolution, which act as impermeable and semi-permeable layers within a reservoir. Predicting the storage volume of a reservoir with thin shale layers from conventional seismic data is an issue due to limited seismic resolution. Further, gas chimneys indicative of gas migration pathways through thin shale layers, are not easily defined by conventional seismic data. Additional information, such as borehole data, can be used to aid mapping of shale layers, but making lateral predictions from 1D borehole data has high uncertainty. This paper presents an integrated workflow for quantitative seismic interpretation of thin shale layers and gas chimneys in the Utsira Formation of the Sleipner reservoir. The workflow combines the use of attribute and spectral analysis to add resolution to conventional seismic amplitude data. Detailed interpretation of these analyses reveals the reservoirs internal thin shale architecture, and the presence of gas chimneys. The comprehensive interpretation of the reservoirs internal structure is used to calculate a new reservoir storage volume. This is done based on the distribution of sand and interpreted shale layers within the study area, for this active CO2 storage site.  相似文献   

2.
‘Offshore CO2 storage’ refers to the injection of liquefied CO2 into deep geological formations beneath the seabed (e.g. depleted oil and gas reservoirs, and saline aquifers) for the purpose of storing it there on a permanent basis. The storage in this manner of captured CO2 emissions from industrial installations and power plants has attracted considerable scientific and technical interest as a potential mitigation response to climate change. A key issue facing policymakers in several countries is how to reconcile policy commitments to develop offshore CO2 storage with other competing – and potentially conflicting – uses of the marine environment. With a view to informing policy responses to this issue, this paper presents a case study of legal and policy frameworks concerning offshore CO2 storage in United Kingdom. The paper maps key design features of the United Kingdom׳s framework for marine permitting and planning, appraising the extent to which they enable orderly development of offshore CO2 storage in a manner consistent with relevant high-level policy objectives.  相似文献   

3.
The CO2CRC Otway Project is the first demonstration scale project for geosequestration of CO2 in Australia. The storage site is located in the depleted Waarre reservoir of the Naylor gas field contained within a single fault block, in the onshore Otway Basin of Victoria. During 2009, approximately 65,000 tonnes of a mixture of CO2 and CH4 (∼80%/20%) was injected into the reservoir, accumulating at the top of the structure.To fully understand the pressure response of a depleted reservoir to CO2 injection all of the mechanisms that may impact the reservoir pressure, prior to injection, must be identified. In the case of the Otway Project there were five possible mechanisms with potential for impacting the Naylor Field pressure. These are (1) the rate of recovery due to gas production from the Naylor Field; (2) depletion from the nearby Boggy Creek CO2 production field; (3) depletion from the nearby Buttress CO2 Field, the source of the CO2 for injection into the Naylor Field; (4) depletion from the regional Waarre Formation reservoir which has been producing gas (and water) since 1986; and (5) hydraulic potentiometric disequilibrium via connection to other active aquifers.These mechanisms were examined through a regional conceptual hydrodynamic model as part of the pre-injection site characterisation. The reservoir pressure measured at the Naylor-1 well, prior to production, was lower than predicted by the hydrodynamic model. Examination of regional drawdown demonstrated that the reservoir is experiencing pressure decline which could have extended to the Naylor Field at this time.Ongoing monitoring of the Naylor-1 well, prior to injection, showed the depleted reservoir recovering faster than predicted by the reservoir simulation model matched to the production history. Connecting the target fault block to the regional aquifer using a dual aquifer model supported by the hydrodynamic model significantly improved the predicted recovery of the depleted reservoir.  相似文献   

4.
This case study demonstrates how natural heterogeneities of formation and injection waters can be applied to a number of production related applications, extending into the mature life of a reservoir. Break-through of injection water, identification and characterisation of production intervals and evaluation of responses to operational events are some of the possible applications during production.The Oseberg Øst oil field in the North Sea represents a complex situation with commingled production from all Brent Group formations. The Sr isotope composition is an excellent parameter for defining the natural baseline of formation water, with a good spatial resolution and vertical stratification. Aquifer water from the Utsira Formation is injected for pressure support, and reinjection of produced water has also been applied since the onset of water production. Utsira Formation water has high Mg, low Ba and low Sr content compared to the reservoir formation waters. Isotopic compositions (δD and 87Sr/86Sr) are also distinct. A non-reactive behaviour of Ba and Sr is verified from binary cross-plots and geochemical modelling. Break-through of injection water could be identified in five production wells based on Ba/Mg ratios. In one of the reservoir compartments (Beta Saddle), water injection points were changed after approximately three years. The Ba/Mg ratio could also identify the second injection water break-through in one of the wells due to an intermediate period of higher formation water content. Since the Sr content in the Utsira water is low, the 87Sr/86Sr ratio is a good natural tracer for formation water movements even at high ratios of injected water. In particular, the vertical stratification of 87Sr/86Sr is useful for quantifying production from different intervals in commingled wells. A methodology for using operational events, such as production allocations or shut-ins, for characterisation of production zones is discussed.  相似文献   

5.
This paper demonstrates geospatial modification of the USGS methodology for assessing geologic CO2 storage resources, and was applied to the Pre-Punta Gorda Composite and Dollar Bay reservoirs of the South Florida Basin. The study provides detailed evaluation of porous intervals within these reservoirs and utilizes GIS to evaluate the potential spatial distribution of reservoir parameters and volume of CO2 that can be stored. This study also shows that incorporating spatial variation of parameters using detailed and robust datasets may improve estimates of storage resources when compared to applying uniform values across the study area derived from small datasets, like many assessment methodologies. Geospatially derived estimates of storage resources presented here (Pre-Punta Gorda Composite = 105,570 MtCO2; Dollar Bay = 24,760 MtCO2) were greater than previous assessments, which was largely attributed to the fact that detailed evaluation of these reservoirs resulted in higher estimates of porosity and net-porous thickness, and areas of high porosity and thick net-porous intervals were incorporated into the model, likely increasing the calculated volume of storage space available for CO2 sequestration. The geospatial method for evaluating CO2 storage resources also provides the ability to identify areas that potentially contain higher volumes of storage resources, as well as areas that might be less favorable.  相似文献   

6.
The long-term integrity of CO2 storage in deep saline aquifers has become uncertain due to the unsteady character of surrounding factors, and the time-dependent nature of the aquifer's overburden load (the vertical stress imposed on the aquifer by the weight of overlying materials (rock/soil layers), which may vary over time as a result of natural incidents such landslides and earthquakes) is critical. The aim of this study is to identify the influence of overburden load variations on the long-term integrity of the CO2 storage process in deep saline aquifers. High-pressure tri-axial strength and permeability tests, along with acoustic emission (AE) and scanning electron microscopy (SEM) analyses, were conducted on Hawkesbury sandstone obtained from the Gosford basin.According to the results, the injection of CO2 into the Hawkesbury formation may dissolve aquifer rock minerals, enhancing aquifer flow performance and reducing aquifer strength. Increasing the stress applied on the aquifer causes aquifer flow ability to reduce to some extent due to pore matrix compaction. Further increase of the overburden pressure may accelerate the aquifer's flow performance due to dilation-induced pore opening. This permeability transition point occurs earlier at greater CO2 injection pressures and overlaps with the crack formation point of the aquifer rock mass. Therefore, weakening of the rock mass after the transition point can be expected. Importantly, this permeability transition point occurs at lower overburden loads after longer interaction of CO2 with the saline aquifer. This exhibits the long-term risk associated with CO2 sequestration in saline aquifers. Permeability enhancement after the transition point may also produce environmental disasters, such as sudden leakages of injected CO2 from the reservoir to surrounding fresh water aquifers (Evans et al. 2004; Little and Robert 2010), exceeding the specific rates proposed by many regulatory frameworks. Therefore, it is essential to study the long-term integrity of the sequestration process in order to develop a regulatory structure to meet the demands of deep saline sequestration projects.  相似文献   

7.
The geological storage of carbon dioxide (CO2) offers notable potential, as part of larger carbon dioxide capture and storage (CCS) processes, to be a significant climate change mitigation technology. This paper challenges the argument often put forward that, due to the greater distances from centres of population, it will be ‘easier’ to garner public and stakeholder support for offshore CO2 storage than onshore. Based on the results of research interviews carried out with stakeholders and informed publics in Scotland, challenges for public and stakeholder acceptance of sub-seabed CO2 storage that may require further policy attention are identified. Whilst existing policy for sub-seabed CO2 storage is cognisant of the need for societal engagement, it may be the case that these regulations may need further reinforcement to ensure future developments are able to address social acceptability issues as fully as possible. The value of taking into account social as well as physical characteristics at the site selection phase, the need for mechanisms to take seriously stakeholder conceptions of uncertainty, and the importance of extending social engagement beyond risk communication are discussed.  相似文献   

8.
Purposeful deep-sea carbon dioxide sequestration by direct injection of liquid CO2 into the deep waters of the ocean has the potential to mitigate the rapid rise in atmospheric levels of greenhouse gases. One issue of concern for this carbon sequestration option is the impact of changes in seawater chemistry caused by CO2 injection on deep-sea ecosystems. The effects of deep-sea carbon dioxide injection on infaunal deep-sea organisms were evaluated during a field experiment in 3600 m depth off California, in which liquid CO2 was released on the seafloor. Exposure to the dissolution plume emanating from the liquid CO2 resulted in high rates of mortality for flagellates, amoebae, and nematodes inhabiting sediments in close proximity to sites of CO2 release. Results from this study indicate that large changes in seawater chemistry (i.e. pH reductions of ∼0.5–1.0 pH units) near CO2 release sites will cause high mortality rates for nearby infaunal deep-sea communities. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
We have carried out a small-scale (∼20 l) CO2 sequestration experiment off northern California (684 m depth, ∼5°C, background ocean pH ∼7.7) designed as an initial investigation of the effects of physical forcing of the fluid, and the problem of sensing the formation of a low pH plume. The buoyant CO2 was contained in a square frame 1.2 m high, exposing 0.21 m2 to ocean flow. Two pH electrodes attached to the frame recorded the signal; a second frame placed 1.9 m south of the CO2 pool was also equipped with two recording pH electrodes. An additional pH electrode was held in the ROV robotic arm to probe the fluid interface. Local water velocities of up to 40 cm sec−1 were encountered, creating significant eddies within the CO2 box, and forcing wavelets at the fluid interface. This resulted in rapid CO2 dissolution, with all CO2 being depleted in a little more than 2 days. The pH record from the sensor closest (∼10 cm) to the CO2 showed many spikes of low pH water, the extreme value being ∼5.9. The sensor 1 m immediately below this showed no detectable response. The electrodes placed 1.9 m distant from the source also recorded very small perturbations. The results provide important clues for the design of future experiments for CO2 disposal and biogeochemical impact studies. These include the need for dealing with the slow CO2 hydration kinetics, better understanding of the fluid dynamics of the CO2-water interface, and non-point source release designs to provide more constant, controlled local CO2 enrichments within the experimental area. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Coal-fired power stations in Collie, Western Australia emit 10 million tonnes of CO2 per year. This study assesses the potential opportunities of geological storage of CO2 both within the Collie Basin and the onshore part of the adjacent Southern Perth Basin of Western Australia within 50 km of Collie town site through a desktop evaluation of existing data. The aquifers and coal formations within both basins have been evaluated for their suitability for storage based on geological, geographical and environmental criteria related to storage capacity, injectivity, proximity to sources of CO2, location of other natural resources and containment security. The study has concluded that there is limited scope for large-scale storage of CO2 within the Collie Basin. In addition the potential for storage within coals of either basin is not a viable solution. This assessment is based on published criteria for CO2 storage in sedimentary basins and coal-bearing formations.  相似文献   

11.
The effects of low-pH, high-pCO2 conditions on deep-sea organisms were examined during four deep-sea CO2 release experiments simulating deep-ocean C sequestration by the direct injection of CO2 into the deep sea. We examined the survival of common deep-sea, benthic organisms (microbes; macrofauna, dominated by Polychaeta, Nematoda, Crustacea, Mollusca; megafauna, Echinodermata, Mollusca, Pisces) exposed to low-pH waters emanating as a dissolution plume from pools of liquid carbon dioxide released on the seabed during four abyssal CO2-release experiments. Microbial abundance in deep-sea sediments was unchanged in one experiment, but increased under environmental hypercapnia during another, where the microbial assemblage may have benefited indirectly from the negative impact of low-pH conditions on other taxa. Lower abyssal metazoans exhibited low survival rates near CO2 pools. No urchins or holothurians survived during 30–42 days of exposure to episodic, but severe environmental hypercapnia during one experiment (E1; pH reduced by as much as ca. 1.4 units). These large pH reductions also caused 75% mortality for the deep-sea amphipod, Haploops lodo, near CO2 pools. Survival under smaller pH reductions (ΔpH<0.4 units) in other experiments (E2, E3, E5) was higher for all taxa, including echinoderms. Gastropods, cephalopods, and fish were more tolerant than most other taxa. The gastropod Retimohnia sp. and octopus Benthoctopus sp. survived exposure to pH reductions that episodically reached −0.3 pH units. Ninety percent of abyssal zoarcids (Pachycara bulbiceps) survived exposure to pH changes reaching ca. −0.3 pH units during 30–42 day-long experiments.  相似文献   

12.
We have carried out a series of in situ experiments to investigate the formation of a CO2 hydrate (CO2:5.75 H2O) for the purpose of evaluating scenarios for ocean fossil fuel CO2 disposal with a solid hydrate as the sequestered form. The experiments were carried out with a remotely operated vehicle in Monterey Bay at a depth of 619 m. pH measurements made in close proximity to the hydrate–seawater interface showed a wide range of values, depending upon the method of injection and the surface area of the hydrate formed. Rapid injection of liquid CO2 into an inverted beaker to form a flocculant mass of hydrate resulted in pH initially as low as 4.5 within a few centimeters of the interface, decaying slowly over 1–2 h towards normal seawater values as dense CO2 rich brine drained from the hydrate mass. In a second experiment, slower injection of the liquid CO2 to produce a simple two-layer system with a near planar interface of liquid CO2 with a thin hydrate film yielded pH values indistinguishable from the in situ ocean background level of 7.6. Both field and laboratory results now show that the dissolution rate of a mass of CO2 hydrate in seawater is slow but finite.  相似文献   

13.
To study the biological impacts of CO2 ocean sequestration on floating marine organisms, a full Eulerian-Eulerian scheme model has been developed in a large-eddy simulation (LES) version using one-way coupling of the equations of seawater flow to the transport equations of the bio-scalar variables. Special attention was paid to deriving the transport equation, involving non-conservative scalars to describe the degree of injury to floating organisms due to the change in the pH environment resulting from CO2 dissolution. The source terms of the transport equations of bio-scalar variables are based on experimental data on zooplankton activities affected by lower pH seawater, allowing construction of empirical sub-models of three kinds of floating marine organisms: Gaidius variabilis, Paraeuchaeta Birostrata, and Multi-organisms. An example is given to show the applicability of the model to the assessment of the biological impact of CO2 sequestration in the ocean. Given an initial CO2 droplet diameter of 8.0 mm and an injection rate of 1.0 kg/sec, the model simulation predicts that the zooplanktons lose approximately 90% of their activity when the lowest pH inside the plume decreases from 7.57 to 5.61. These injured zooplanktons then recovered gradually to their normal state within two hours due to dilution of the plume. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A direct method involving a single iteration (a quadratic equation solved twice) is given for the calculation of carbonate ion concentration from total CO2 and titration alkalinity. The simplified calculation should allow wider use of existing total CO2 and titration alkalinity data.  相似文献   

15.
Ketzin, in the Northeast German Basin (NEGB), is the site for pilot injection of CO2 (CO2SINK project) into a saline aquifer (the Upper Triassic Stuttgart Formation) situated at a depth of about 630–700 m. This paper reports the baseline characterization of the reservoir formation based on new core material and well-logs obtained from one injection well and two observations wells, drilled at a distance from 50 m to 100 m from each other. The reservoir is lithologically heterogeneous and made up by fluvial sandstones and siltstones interbedded with mudstones showing remarkable differences in porosity. The thickest sandstone units are associated with channel sandstone, whose thickness varies over short lateral distances. In-depth petrographic, mineralogical, mineral-chemical, and whole-rock geochemical analysis were performed focusing on the sandstone intervals, which display the best reservoir properties for CO2 injection. The dominantly fine-grained and well to moderately-well sorted, immature sandstones classify as feldspathic litharenites and lithic arkoses. Quartz (22–43 wt.%), plagioclase (19–32 wt.%), and K-feldspar (5–13 wt.%) predominate mineralogically. Muscovite plus illite and mixed-layer minerals are omnipresent (4–13 wt.%). Quartz, feldspar, as well as meta-sedimentary and volcanic rock fragments comprise the most abundant detrital components, which often are rimmed by thin, early diagenetic coatings of ferric oxides, and locally of clay minerals. Feldspar grains may be unaltered and optically clear, partially to completely dissolved, partially altered to sheet silicates (mainly illite), or albitized. Analcime and anhydrite constitute the most widespread, often spatially associated pore-filling cement minerals. Authigenic dolomite, barite, and coelestine is minor. The percentage of cements ranges in total from about 5 vol.% to 32 vol.%. Except of samples intensely cemented by anhydrite and analcime, total porosities of the sandstones range from 13% to 26%. The fraction of intergranular porosity varies between 12% and 21%. About 1–5% porosity has been generated by dissolution of detrital plagioclase, K-feldspar, and volcanic rock fragments. The comparatively large modal abundance of feldspars, micas, chlorite, clay minerals, Fe–Ti-oxides, and analcime account for the richness in Ti, Al, Fe, Mg, Na, and K, and the paucity in Si, of the Stuttgart sandstones relative to mature sandstones. Altogether, these sandstones are comparatively rich in minerals that may potentially react with the injected CO2.  相似文献   

16.
The depth of penetration of anthropogenic CO2 in the North Pacific Ocean based on carbonate data in the literature is discussed. The results indicate that the deepest penetration (over 2000 m) is found in the northwest North Pacific. The shallowest penetration (to less than 400 m) is found in the eastern equatorial Pacific. Depth of penetration of anthropogenic CO2 appears to have been controlled by such factors as deep water formation in the Northwest Pacific; upwelling in the equatorial Pacific and; vertical mixing in the western boundary areas. These results compare well with results implied from tritium, C-14, and freons distributions. The total inventory of excess carbon in the North Pacific was 14.7±4×1015 g around 1980.  相似文献   

17.
Fine-grained siliciclastic lithologies commonly act as sealing caprocks to both petroleum fields and host reservoirs for carbon capture (CO2 sequestration) projects. Fine-grained lithologies are thus of great importance in controlling fluid flow and storage in the subsurface. However, fine-grained rocks are rarely characterised in terms of primary sedimentary characteristics, diagenesis and how these relate to their flow properties (i.e. sealing or caprock quality). Seventeen samples from Lower Carboniferous estuarine caprock to a gas field (also to be used as a carbon capture site), have been analysed using a range of petrological and petrophysical techniques. The rock unit that represents the caprock to this gas field was found to be predominantly silt grade with porosity values as low as 1.8%. In these rocks, caprock quality (porosity) is controlled by intrinsic and extrinsic factors linked to primary mineralogy and diagenetic processes. Depositional mineralogy was dominated by quartz, detrital mica, detrital clay (likely Fe-rich 7Å clay and illite–smectite) with minor feldspar and oxide phases. Diagenetic processes included compaction, minor feldspar dissolution and kaolinite growth and the more important processes of chlorite, siderite and quartz cementation, as well as the likely transformation of smectite into illite. Caprock quality is controlled by the primary quantity of illite-muscovite in the sediment and also by the localised extent of chlorite and quartz cementation. Deposition in an estuarine environment led to highly heterogeneous distribution of primary and diagenetic minerals, and thus caprock quality, between and within the samples.  相似文献   

18.
During CREAMS expeditions, fCO2 for surface waters was measured continuously along the cruise tracks. The fCO2 in surface waters in summer varied in the range 320–440 μatm, showing moderate supersaturation with respect to atmospheric CO2. In winter, however, fCO2 showed under-saturation of CO2 in most of the area, while varying in a much wider range from 180 to 520 μatm. Some very high fCO2 values observed in the northern East Sea (Japan Sea) appeared to be associated with the intensive convection system developed in the area. A gas-exchange model was developed for describing the annual variation of fCO2 and for estimating the annual flux of CO2 at the air-sea interface. The model incorporated annual variations in SST, the thickness of the mixed layer, gas exchange associated with wind velocity, biological activity and atmospheric concentration of CO2. The model shows that the East Sea releases CO2 into the atmosphere from June to September, and absorbs CO2 during the rest of the year, from October through May. The net annual CO2 flux at the air-sea interface was estimated to be 0.032 (±0.012) Gt-C per year from the atmosphere into the East Sea. Water column chemistry shows penetration of CO2 into the whole water column, supporting a short turnover time for deep waters in the East Sea. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Only a limited number of comparative studies have explored the diagenetic differences of reservoirs caused by the charging of natural gases with different compositions during the migration and accumulation of oil and gas. In this study, we quantitatively assessed the diagenetic variations of the lower Zhuhai Formation reservoirs in the WC-A sag, the Pearl River Mouth Basin, as a result of natural gas charging with different compositions. The employed methods included electron microscopy, scanning electron microscopy, cathode luminescence, X-ray diffraction, chemical composition analysis of formation water, stable isotope analysis, and fluid inclusion determination. The results indicated that: (1) in the lower Zhuhai Formation reservoir that are near the large fractures, the late-charging of CO2-rich thermal fluid promoted the dissolution of minerals, and changed the porosity, permeability, pH value of fluid, and the contents of ions such as K+, Na+, Mg2+ of the reservoirs. These changes, in turn, indirectly affected the content, form, and distribution of clay minerals in the reservoirs. In addition, the secondary enlargement of quartz was enhanced. (2) The charging of CO2-rich thermal fluid caused strong dissolution and produced high contents of cements. The dissolution mainly occurred in a half open system with strong fluid activity. Consequently, the significantly decreasing of permeability was hindered and middle porosity–middle permeability reservoirs were generated. The reservoirs that are far from the large fractures, however, were mainly early charged by the hydrocarbon-rich fluid. The dissolution was weak and the generated cements were limited. In addition, the dissolution products could not be discharged in such closed diagenetic systems. As a result, the permeability of the reservoir was declined sharply and resulted in low porosity–low permeability reservoirs.  相似文献   

20.
Excess CO2 and pHexcess showing an increase in dissolved inorganic carbon and a decrease in pH from the beginning of the industrial epoch (middle of the 19th century) until the present time have been calculated in the intermediate water layer of the northwestern Pacific and the Okhotsk Sea. It is concluded that: (1) The Kuril Basin (Okhotsk Sea) and the Bussol' Strait areas are characterized by the greatest concentrations of excess CO2 at isopycnal surfaces due to the processes of formation and transformation of intermediate water mass. (2) The largest difference in excess CO2 concentration between the Okhotsk Sea and the western subarctic Pacific (about 8 µmol/kg) is found at the = 27.0. (3) The difference in excess CO2 between the western subarctic Pacific and subtropical regions is significant only in the upper part of the intermediate water layer ( = 26.7–27.0). (4) About 10% of the excess CO2 accumulation in the subtropical north Pacific is determined by water exchange with the subarctic Pacific and the Okhotsk Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号