首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When hydraulic power take off (PTO) is used to convert the mechanical energy of a wave energy converter (WEC) into a more useful form of energy, the PTO force needs to be controlled. Continuous controlled variation of the PTO force can be approximated by a set of discrete values. This can be implemented using either variable displacement pumps or several hydraulic cylinders or several high pressure accumulators with different pressure levels. This pseudo-continuous control could lead to a complex PTO with a lot of components. A simpler way for controlling this hydraulic PTO is declutching control, which consists in switching on and off alternatively the wave energy converter's PTO. This can be achieved practically using a simple by-pass valve. In this paper, the control law of the valve is determined by using the optimal command theory. It is shown that, theoretically when considering a wave activated body type of WEC, declutching control can lead to energy absorption performance at least equivalent to that of pseudo-continuous control. The method is then applied to the case of the SEAREV wave energy converter, and it is shown than declutching control can even lead to a higher energy absorption, both in regular and irregular waves.  相似文献   

2.
消除"不规则频率"的非连续高阶元方法   总被引:2,自引:0,他引:2  
针对使用边界元法计算波浪与结构物相互作用时所出现的“不规则频率”现象,采用连续高阶元和部分非连续高阶元对通过修改积分区域所获得的边界积分方程进行离散,有效地消除了“不规则频率”现象的发生。波浪作用下的截断圆柱所受到的水平波浪力和垂向波浪力的数值计算结果验证了该方法的有效性,同时考虑了非连续单元配置点的选择及单元划分数目对消除效果的影响。  相似文献   

3.
海洋波浪能平均功率的准确计算是波浪能开发和利用的基础。实践中,波浪能转换装置一般安装在有限水深区域。对于随机波,只有当详尽的波浪谱已知的时候,有限水深区的波能功率才能被准确计算出来。由于种种原因,实践中波浪的实测数据大多以散点图或有义波高和统计波周期的形式给出,而波浪谱信息有时则很难获得。基于这种情况,传统上人们利用无限水深条件下的相关公式来估算有限水深区域的波能功率,但这种做法会造成较大的误差。本研究显示,对于50 m水深的理论波谱JONSWAP谱来说该误差高达14.6%。为了提高波能功率计算的准确性,本文提出了一种基于能量频率的一阶和二阶近似算法,可以在未知波浪谱的情况下较为准确地计算不同水深时的波能功率。针对两种理论波浪谱的计算结果表明,本方法在计算有限带宽内的波能功率时计算误差低于2.8%。  相似文献   

4.
The Wells turbine is an axial-flow air-turbine designed to extract energy from ocean waves. An important consideration is the self-starting capability of the Wells turbine, a phenomenon encountered where the turbine accelerate by itself up to a certain speed for the best turbine performance. In order to clarify the self-starting characteristic and running performance of the Wells turbine in an irregular oscillating flow, a numerical simulation process is established in this paper on the rational assumption of quasi-steady flow conditions. Both self-starting characteristics and running performance are obtained through the numerical simulation and subsequently compared with the experimental data achieved on a computer-controlled oscillating flow test rig which could realize some irregular oscillating flow according to the specified spectrum. Results show that the self-starting time decreases with the increase of the significant wave height and the mean frequency of the irregular oscillating flow. Therefor  相似文献   

5.
L. Sun  B. Teng  C.F. Liu 《Ocean Engineering》2008,35(8-9):920-930
The phenomenon of irregular frequencies is a puzzle in the course of calculating the interaction of waves and structures by the boundary element method. To remove the irregular frequencies, the modified integral domain method is adopted, and continuous higher order elements and partial discontinuous higher order elements are used for discretization. By these means, the effects of the irregular frequencies are effectively removed. Effective strategies have been adopted to deal with singular integrals and nearly singular integrals at different situations. The numerical results of the horizontal wave force on a uniform cylinder in the first order and second order diffraction problems show that the present method has a good validity. At the same time, the influence of collocation parameter on accuracy of numerical results is examined in detail.  相似文献   

6.
Wave radiation stress is the main driving force of wave-induced near-shore currents. It is directly related to the hydrodynamic characteristics of near-shore current whether the calculation of wave radiation stress is accurate or not. Irregular waves are more capable of reacting wave motion in the ocean compared to regular waves.Therefore, the calculation of the radiation stress under irregular waves will be more able to reflect the wave driving force in the actual near-shore current. Exact solution and approximate solution of the irregular wave radiation stress are derived in this paper and the two kinds of calculation methods are compared. On the basis of this, the experimental results are used to further verify the calculation of wave energy in the approximate calculation method. The results show that the approximate calculation method of irregular wave radiation stress has a good accuracy under the condition of narrow-band spectrum, which can save a lot of computing time, and thus improve the efficiency of calculation. However, the exact calculation method can more accurately reflect the fluctuation of radiation stress at each moment and each location.  相似文献   

7.
This paper presents the results of a parametric study of irregular wave run-up over fringing reefs using the shock-capturing Boussinesq wave model Funwave-TVD to better understand the role of fringing reefs in the mitigation of wave-driven flooding. Laboratory experiments were newly performed with a typical fringing reef profile and typical hydrodynamic conditions to validate the model. Experimental data shows irregular wave run-ups are dominated by the low-frequency motions and confirms the run-up resonant phenomenon over the back-reef slope, which has been revealed in previous numerical studies. It is demonstrated that irregular wave evolution and run-up over fringing reefs are reasonably reproduced by the present model with a proper grid size. However, the infragravity run-up height and highest 2% run-up height over the back-reef slope are under-predicted due to the underestimation of the infragravity wave height over the reef flat. The validated model was then utilized to model irregular wave transformations and run-ups under different conditions. Through a series of numerical experiments, the effects of key hydrodynamic and reef geometry parameters, including the reef flat width, water depth over the reef flat, fore-reef slope angle and back-reef slope angle, on the irregular wave run-up were investigated. Variations of spectral components of irregular wave run-ups were examined to better understand the physical process underlying the effect of each parameter.  相似文献   

8.
The reflection of regular and irregular waves from a partially perforated caisson breakwater with a rock-filled core is examined. The present mathematical model is developed by means of the matched eigenfunction method. Numerical results of the present model are compared with the experimental data of different researchers. Numerical examples are given to examine the effect of rock fill on the reflection coefficient. The differences between regular and irregular waves are also investigated by means of theoretical and experimental results. It is found that the minimum reflection coefficient of irregular waves is larger than that of corresponding regular waves, but the contrary is the case for the maximum reflection coefficient.  相似文献   

9.
The reflection of regular and irregular waves from a partially perforated caisson breakwater with a rock-filled core is examined. The present mathematical model is developed by means of the matched eigenfunction method. Numerical results of the present model are compared with the experimental data of different researchers. Numerical examples are given to examine the effect of rock fill on the reflection coefficient. The differences between regular and irregular waves are also investigated by means of theoretical and experimental results. It is found that the minimum reflection coefficient of irregular waves is larger than that of corresponding regular waves, but the contrary is the case for the maximum reflection coefficient.  相似文献   

10.
The paper aims at introducing practical methods for power capture performance enhancement of a heaving wave energy converter in irregular seas. The optimum control solution requires tuning to wave frequency based on wave force information. However, identification of the wave frequency in irregular seas is considered to be a complex and difficult task. This is partly due to technical difficulties in determination of the wave force. Besides, there are no clear guidelines for identification of wave frequency from an irregular sea state based wave force information. In a typical application, one of the available sources of information about the wave properties is the wave elevation record. The proposed approach presents a method for estimation of the wave frequency information from the wave elevation data by using signal processing and filtering techniques. The proposed method uses filters to generate an estimation of wave force information, which is used to identify the local wave frequency by method of a time-series analysis of the data. This wave frequency information is then used in tuning the device. The details of the proposed techniques, the model of the wave energy converter, the simulated sea states and the related simulation results are also presented.  相似文献   

11.
The characteristics of wave and turbulence velocities created by a broad-banded irregular wave train breaking on a 1:35 slope were studied in a laboratory wave flume. Water particle velocities were measured simultaneously with wave elevations at three cross-shore locations inside the surf zone. The measured data were separated into low-frequency and high-frequency time series using a Fourier filter. The measured velocities were further separated into organized wave-induced velocities and turbulent velocity fluctuations by ensemble averaging. The broad-banded irregular waves created a wide surf zone that was dominated by spilling type breakers. A wave-by-wave analysis was carried out to obtain the probability distributions of individual wave heights, wave periods, peak wave velocities, and wave-averaged turbulent kinetic energies and Reynolds stresses. The results showed that there was a consistent increase in the kurtosis of the vertical velocity distribution from the surface to the bottom. The abnormally large downward velocities were produced by plunging breakers that occurred from time to time. It was found that the mean of the highest one-third wave-averaged turbulent kinetic energy values in the irregular waves was about the same as the time-averaged turbulent kinetic energy in a regular wave with similar deep-water wave height to wavelength ratio. It was also found that the correlation coefficient of the Reynolds stress varied strongly with turbulence intensity. Good correlation between u′ and w′ was obtained when the turbulence intensity was high; the correlation coefficient was about 0.3–0.5. The Reynolds stress correlation coefficient decreased over a wave cycle, and with distance from the water surface. Under the irregular breaking waves, turbulent kinetic energy was transported downward and landward by turbulent velocity fluctuations and wave velocities, and upward and seaward by the undertow. The undertow in the irregular waves was similar in vertical structure but lower in magnitude than in regular waves, and the horizontal velocity profiles under the low-frequency waves were approximately uniform.  相似文献   

12.
采用PHA体内注射肾细胞直接制片法及银染法研究真鲷和黑鲷的核型及Ag—NOR带。指出这两种鱼的核型公式分别为2n=48,2st+46t,NF=48和2n=48,4m+4sm+2st+38t,NF=56。两种鱼的核型中各自唯一的一对亚端部着丝点染色体(st染色体)为典型的具次缢痕的染色体。银染结果显示该次缢痕部位即为银染核仁组织者区域(Ag—Nucleolusorganizer regions NORs),并表现出多态性。同时,在这两种鱼的中期分裂相中普遍观察到了NORs联合现象。此外,还讨论了这两种鱼的亲缘关系和鲷科鱼类中两个类群及其核型的分化问题,认为从细胞遗传学角度看,鲷科鱼类的两个类群在演化过程中是分支进化的。  相似文献   

13.
Wave elevations and water particle velocities were measured in a laboratory surf zone created by the breaking of a narrow-band irregular wave train on a 1/35 plane slope. The incident waves form wave groups that are strongly modulated. It is found that the waves that break close to the shoreline generally have larger wave-height-to-water-depth ratios before breaking than the waves that break farther offshore. After breaking, the wave-height-to-water-depth ratio for the individual waves approaches a constant value in the inner surf zone, while the standard deviation of the wave period increases as the still water depth decreases. In the outer surf zone, the distribution of the period-averaged turbulent kinetic energy is closely correlated to the initial wave heights, and has a wider variation for narrow-band waves than for broad-band waves. In the inner surf zone, the distribution of the period-averaged turbulent kinetic energy is similar for narrow-band waves and broad-band waves. It is found that the wave elevation and turbulent kinetic energy time histories for the individual waves in a wave group are qualitatively similar to those found in a spilling regular wave. The time-averaged transport of turbulent kinetic energy by the ensemble-averaged velocity and turbulence velocity under the irregular breaking waves are also consistent with the measurements obtained in regular breaking waves. The experimental results indicate that the shape of the incident wave spectrum has a significant effect on the temporal and spatial variability of wave breaking and the distribution of turbulent kinetic energy in the outer surf zone. In the inner surf zone, however, the distribution of turbulent kinetic energy is relatively insensitive to the shape of the incident wave spectrum, and the important parameters are the significant wave height and period of the incident waves, and the beach slope.  相似文献   

14.
引入了局域小波能谱的局域间歇性度量,分析了不同风速下的风浪资料,结果表明,局域小波能谱可依局域频率分为三部分。风浪的群性在三维局域小波能谱图像下显示得更为明显,与风浪有关的一切性质都是局域的,包括风浪的群性。讨论了局域小波谱峰值与谱峰频率的涨落,指出了前者在工程设计中的重要意义,并发现了后者与风浪破碎有关的两种非线性现象。  相似文献   

15.
浮冰界面融化速率参数化方案的实验室研究   总被引:2,自引:2,他引:0  
融冰季节时天然浮冰表面、底面和侧向融化共存,三者融化速率是底面大于侧向,侧向大于表面。而且浮冰尺寸越小,侧向速率占比越高。为了解决将小尺度浮冰块尺度指标计入融化参数化方案,在低温环境实验室无辐射、无流速、控制气温和水温条件下对天然海冰和人工冻结淡水冰的圆盘试样,开展了不同初始水温和不同初始直径的圆盘试样融化过程实验,获得了圆盘试样直径、厚度和质量融化过程。依据这些实验数据,构建试样直径厚度比这一新指标,通过物理分析和数学统计手段,建立了海冰和淡水冰试样表面、底面融化速率同温度梯度,侧向融化速率和温差以及直径厚度比的关系式。这些关系式能够应用于天然直径100 m范围内浮冰的融化参数化方案,期望能解决北冰洋海冰和入海口近岸淡水冰夏季融化季节能量和质量平衡数值模拟的需求。  相似文献   

16.
A one-dimensional thermodynamic model of melt pond is established in this paper.The observation data measured in the summer of 2010 by the Chinese National Arctic Research Expedition(CHINARE-2010) are used to partially parameterize equations and to validate results of the model.About 85% of the incident solar radiation passed through the melt pond surface,and some of it was released in the form of sensible and latent heat.However,the released energy was very little(about 15%),compared to the incident solar radiation.More than 58.6% of the incident energy was absorbed by melt pond water,which caused pond-covered ice melting and variation of pond water temperature.The simulated temperature of melt pond had a diurnal variation and its value ranged between 0.0°C and 0.3°C.The melting rate of upper pond-covered ice is estimated to be around two times faster than snow-covered ice.At same time,the change of melting rate was relatively quick for pond depth less than 0.4 m,while the melting rate kept relatively constant(about 1.0 cm/d) for pond depth greater than 0.4 m.  相似文献   

17.
A heaving-buoy wave energy converter equipped with hydraulic power take-off is studied in this paper. This wave energy converter system is divided into five subsystems: a heaving buoy, hydraulic pump, pipelines, non-return check valves and a hydraulic motor combined with an electric generator. A dynamic model was developed by considering the interactions between the subsystems in a state space form. The transient pressures caused by starting/stopping the buoy or closing/opening the check valves were predicted numerically using the established model. The simulation results show that transmission line dynamics play a dominant role in the studied wave energy converter system. The length of the pipeline will not only affect the amplitude of the transient pressures but also affect the converted power. The variation of the time-averaged converted electric power with the pipeline length is estimated using the simulation method for the buoy exposed to one irregular sea state. Finally, it is suggested how reduced power efficiency due to the pipelines may be ameliorated.  相似文献   

18.
Cross-shore variations of wave groupiness by wavelet transform   总被引:1,自引:0,他引:1  
This paper proposes a new definition of groupiness factor (GF) based on the local wavelet energy density of the wave time series to describe the groupiness degree of waves. The main advantage of this new GF is that the effect of the operational definition on it is smaller than that on SIWEH-based GF or envelop-based GF. Then, the new GF is used to study the groupiness variations of mechanically generated irregular waves in a wave flume propagating on a slope of 1:45. The results of present study show that the decrease of groupiness in the coast is triggered by breaking. And energy distribution along the record time for the first harmonics of waves in the surf zone, which becomes more uniform than that out the surf zone, is the main reason causing the decrease of groupiness.  相似文献   

19.
Compared with solar and wind energy, wave energy is a kind of renewable resource which is enormous and still under development. In order to utilize the wave energy, various types of wave energy converters (WECs) have been proposed and studied. And oscillating-body WEC is widely used for offshore deployment. For this type of WEC, the oscillating motion of the floater is converted into electricity by the power take off (PTO) system, which is usually mathematically simplified as a linear spring and a damper. The linear PTO system is characteristic of frequency-dependent response and the energy absorption is less powerful for off resonance conditions. Thus a nonlinear snap through PTO system consisting of two symmetrically oblique springs and a linear damper is applied. A nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two oblique springs to the original length of both springs. JONSWAP spectrum is utilized to generate the time series of irregular waves. Time domain method is used to establish the motion equation of the oscillating-body WEC in irregular waves. And state space model is applied to replace the convolution term in the time domain motion equation. Based on the established motion equation, the motion response of both the linear and nonlinear WEC is numerically calculated using 4th Runge–Kutta method, after which the captured power can be obtained. Then the influences of wave parameters such as peak frequency, significant wave height, damping coefficient of the PTO system and the nonlinear parameter γ on the power capture performance of the nonlinear WEC is discussed in detail. Results show that compared with linear PTO system, the nonlinear snap through PTO system can increase the power captured by the oscillating body WEC in irregular waves.  相似文献   

20.
Computation of Diffraction of Irregular Waves Behind Double Jetty   总被引:1,自引:0,他引:1  
The coefficient of deffraction of regular waves behind the double jetty has been computed in this paper at first by using the singularity distribution method. The model tests conducted for diffraction of irregular waves with a unidirectional frequency spectrum have confirmed good agreement between the data measured in experiments and the results computed by the singularity distribution method plus the linear superposition method for the energy of component waves in the directional frequency spectra. Therefore, this technique for component waves in the directional spectra has been further used to compute diffraction of irregular waves of multidirection, including the employment of a directional distribution function of the cos2 type, as well as the Bretschneider-Misuyann frequency spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号