首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents the 3D finite element simulation of tidal flow and Sediment transport in the estuarine region of the Haihe river. The proposed model adopts sigma-transformation of the hydrodynamic and sediment transport equations. The hydrodynamic and sediment transport models are verified in case of a simple test problem for which analytical solutions are available. Finally the models are applied to muddy Haihe river estuary of North China and it is claimed that hydrodynamic and sediment transport models give a reliable comparison with the observed field data. However, there are certain discrepancies, and some reasonable questions regarding the present state-of-art, in the modeling of three-dimensional multilevel hydrodynamics and sediment transport, which are provided below for answer.  相似文献   

2.
A MATHEMATICAL MODEL FOR RESERVOIR SEDIMENTATION AND FLUVIAL PROCESSES   总被引:3,自引:1,他引:3  
I. INTRODUCTIONAt present moot sediment transport models applied in engineering practice are based on equilibriumsediment transport approach, i. e. sediment--carrying Capacity is used to replace the actual sediment concentration (ref. 1 -- 9). However, the sediment--carrying capacity, in general, is not equal to sedimentconcentration, they may differ a lot especially for the case of reservoir sedimentation process and/orthe scouring process of river channel in the downstream of a reservoi…  相似文献   

3.
The suspended sediment flux field in the Yellow and East China Seas(YECS) displays its seasonal variability.A new method is introduced in this paper to obtain the flux field via retrieval of ocean color remote sensing data,statistical analysis of historical suspended sediment concentration data,and numerical simulation of three-dimensional(3D) flow velocity.The components of the sediment flux field include(i) surface suspended sediment concentration inverted from ocean color remote sensing data;(ii) vertical distribution of suspended sediment concentration obtained by statistical analysis of historical observation data;and(iii) 3D flow field modeled by a numerical simulation.With the improved method,the 3D suspended sediment flux field in the YECS has been illustrated.By comparison with the suspended sediment flux field solely based on the numerical simulation of a suspended sediment transport model,the suspended sediment flux field obtained by the improved method is found to be more reliable.The 3D suspended sediment flux field from ocean colour remote sensing and in situ observation are more closer to the reality.Furthermore,by quantitatively analyzing the newly obtained suspended sediment flux field,the quantity of sediment erosion and deposition within the different regions can be evaluated.The sediment exchange between the Yellow Sea and the East China Sea can be evident.The mechanism of suspended sediment transport in the YECS can be better understood.In particular,it is suggested that the long-term transport of suspended sediment is controlled mainly by the circulation pattern,especially the current in winter.  相似文献   

4.
One-dimensional numerical models are popularly used in sediment transport research because they can be easily programmed and cost less time compared with two- and three-dimensional numerical models. In particular, they possess greater capacity to be applied in large river basins with many tributaries. This paper presents a one-dimensional numerical model capable of calculating total-load sediment transport. The cross-section-averaged sediment transport capacity and recovery coefficient are addressed in the suspended load model. This one-dimensional model, therefore, can be applied to fine suspended loads and to hyperconcentrated flows in the Yellow River. Moreover, a new discretization scheme for the equation of unsteady non-uniform suspended sediment transport is proposed. The model is calibrated using data measured from the Yantan Reservoir on the Hongshui River and the Sanmenxia Reservoir on the Yellow River. A comparison of the calculated water level and river bed deformation with field measurements Shows that the improved numerical model is capable of predicting flow, sediment transport, bed changes, and bed-material sorting in various situations, with reasonable accuracy and reliability.  相似文献   

5.
An integrated two-dimensional depth-average numerical model was developed to simulate hydrodynamics and to track the fate and transport of contaminants in the Erh-Chung Flood Way wetland in northem Tai...  相似文献   

6.
NUMERICAL SIMULATION OF SEDIMENT RELEASE FROM RESERVOIRS   总被引:1,自引:0,他引:1  
1 INTRODUCTION Reservoirs sedimentation is a serious problem in many countries, including the I. R. of Iran. Accumulation of sediment deposits decreases worldwide reservoir storage capacity by one percent per year (Mahmood, 1987). The loss of reservoir st…  相似文献   

7.
1 INTRODUCTION The transport of sediment in rivers with active floodplains is a two-dimensional process because the main channel and the floodplain can have very different transport capacities. Therefore, two-dimensional (2D) models are often used to simulate the streamwise and transverse variations of sediment erosion and deposition. Many 2D numerical models have been presented to simulate sediment transport in floodplains (James, 1985; Pizzuto, 1987; Howard, 1992; Nicholas and Walli…  相似文献   

8.
1 INTRODUCTIONUnderstanding the flow characters in open channel or other water area, whether natufal water bodies(such as rivers and estuaries) or man-made strUctures (such as navigational channels, harbors), isimportant for addressing numerous hydraulic engineering problems. These include the selechons ofsuitable waste disposal sites, contndnant transport, sediment transport and other ecological problems.The major difficulty for solving these problems is that it often requires an optimal…  相似文献   

9.
Understanding the impact of marine sand mining operations in a complex coastal environment requires a combined observational and modeling approach. Here, we use field measurements collected during mining operations in Kyunggi Bay, Korea to develop sediment parameters and source conditions for a three-dimensional (3D) sediment transport model built on the Regional Ocean Modeling System (ROMS). The model is run with realistic forcing obtained from a 9 km meteorological model, tides, and river discharges. The resulting vertical and horizontal distributions of sediment show encouraging agreement with the field data, demonstrating markedly different dispersal patterns due largely to the differential settling of the various sand classes. The resulting depositional patterns suggest that only the coarser size classes (500 and 250 μm) particles remain close to the mined site, while finer size classes are widely dispersed. These results suggest that this new methodology of multi-size class, 3D sediment transport modeling is quite promising, and further work is ongoing to include more realistic representation of sediment resuspension processes.  相似文献   

10.
Wind erosion is an important soil erosion and hence a soil degradation problem in the Sahelian zone of West Africa. Potentially, the characteristic dryland vegetation with scattered trees and shrubs can provide for soil erosion protection from wind erosion, but so far adequate quantification of vegetation impacts is lacking. The aim of this study was to develop a model of wind‐blown soil erosion and sediment transport around a single shrub‐type vegetation element. Starting with the selection of a suitable transport equation from four possible sediment transport equations, the effects of a single vegetation element on wind speed were parameterized. The modified wind speed was then applied to a sediment transport equation to model the change in sediment mass flux around a shrub. The model was tested with field data on wind speed and sediment transport measured around isolated shrubs in a farmer's field in the north of Burkina Faso. The simple empirical equation of Radok (Journal of Glaciology 19 : 123–129, 1977) performed best in modelling soil erosion and sediment transport, both for the entire event duration and for each minute within an event. Universal values for the empirical constants in the sediment transport equation could not be obtained because of the large variability in soil and roughness characteristics. The pattern of wind speed, soil erosion and sediment transport behind a shrub and on either side of it was modelled. The wind speed changed in the lee of the vegetation element depending on its porosity, height and downwind position. Wind speed was recovered to the upstream speed at a downwind distance of 7·5 times the height of the shrub. The variability in wind direction created a ‘rotating’ area of influence around the shrub. Compared to field measurements the model predicted an 8% larger reduction in sediment transport in the lee of the vegetation element, and a 22% larger increase beside the vegetation element. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The characteristics of water flow and sediment transport in a typical meandering and island-braided reach of the middle Yangtze River is investigated using a two-dimensional (2D) mathematical model. The major problems studied in the paper include the carrying capacity for suspended load, the incipient velocity and transport formula of non-uniform sediment, the thickness of the mixed layer on the riverbed, and the partitioning of bed load and suspended load. The model parameters are calibrated using extensive field data. Water surface profiles, distribution of flow velocities, riverbed deformation are verified with site measurements. The model is applied to a meandering and island-braided section of the Wakouzi-Majiazui reach in the middle Yangtze River, which is about 200 km downstream from the Three Gorges Dam, to study the training scheme of the navigation channels. The model predicts the processes of sediment deposition and fiver bed erosion, changes of flow stage and navigation conditions for the first 20 years of impoundment of the Three Gorges Project.  相似文献   

12.
A field study was conducted to analyze root throw and associated sediment transport in Hawk Creek Watershed, Canadian Rockies. A large crown fire in 2003 allowed the opportunity to study pre‐fire and post‐fire root throw. Based on field data, a significant relation was found between gradient and root plate volume, as well as individual root plate dimensions. Given that tree diameters increase as trees age and that a relation in the field data was found between tree diameter and root plate volumes, sediment transport due to root throw is expected to change in response to forest disturbance and stand age. Sediment disturbance, which is the amount of sediment upheaved during tree topple and does not take into account transport distance, shows higher values on steeper gradients. Sediment transport was notable for the steepest plots, with pre‐fire values of 0·016 cmcm–1 a–1 and post‐fire values of 0·18 cmcm–1 a–1. A tree population dynamics model is then integrated with a root throw transport model calibrated for the Canadian Rockies to examine the temporal dynamics of sediment transport. Fire is incorporated as a disturbance that initiates development of a new forest, with the model cycling through generations of forest. Trees fall according to an exponential rate that is based on time since death, resulting in a time lag between tree mortality and sediment transport. When values of time‐since‐previous‐fire are short, trees are generally <13 cm, and minimal sediment is upheaved during toppling. If trees reach a critical diameter at breast height (dbh) at time of fire, a pulse of sediment occurs in the immediate post‐fire years due to falling of killed trees, with tree fall rates decreasing exponentially with time‐since‐fire. A second pulse of root throw begins at about 50 years after the previous fire, once new recruits reach a critical dbh and with initiation of competition‐induced mortality. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The variability of hillslope form and function is examined experimentally using a simple model catchment in which most landscape development parameters are either known or controlled. It is demonstrated that there is considerable variability in sediment output from similar catchments, subjected to the same hydrological processes, and for which the initial hillslope profiles are the same. The results demonstrate that, in the case of catchments with a linear initial hillslope profile, the sediment output is initially high but reduces through time, whereas for a concave initial profile the sediment output was smaller and relatively constant. Concave hillslope profiles also displayed reduced sediment output when compared with linear slopes with the same overall slope. Using this experimental model catchment data, the SIBERIA landscape evolution model was tested for its ability to predict temporal sediment transport. When calibrated for the rainfall and erodible material, SIBERIA is able to simulate mean temporal sediment output for the experimental catchment over a range of hillslope profiles and rainfall intensities. SIBERIA is also able to match the hillslope profile of the experimental catchments. The results of the study provide confidence in the ability of SIBERIA to predict temporal sediment output. The experimental and modelling data also demonstrate that, even with all geomorphic and hydrological variables being known and/or controlled, there is still a need for long‐term stream gauging to obtain reliable assessments of field catchment hydrology and sediment transport. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In order to simulate the dynamics of fine sediments in short tidal basins, like the Wadden Sea basins, a 1D cross-sectional averaged model is constructed to simulate tidal flow, depth-limited waves, and fine sediment transport. The key for this 1D model lies in the definition of the geometry (width and depth as function of the streamwise coordinate). The geometry is computed by implementing the water level and flow data, from a 2D flow simulation, and the hypsometric curve in the continuity equation. By means of a finite volume method, the shallow-water equations and sediment transport equations are solved. The bed shear stress consists of the sum of shear stresses by waves and flow, in which the waves are computed with a depth-limited growth equation for wave height and wave frequency. A new formulation for erosion of fines from a sandy bed is proposed in the transport equation for fine sediment. It is shown by comparison with 2D simulations and field measurements that a 1D schematization gives a proper representation of the dynamics in short tidal basins.  相似文献   

15.
A 2D depth-averaged numerical model is set up to simulate the macro-scale hydrodynamic characteristics, sediment transport patterns and morphological evolution in Hangzhou Bay, a large macro-tidal estuary on the eastern coast of China. By incorporating the shallow water equations, the suspended sediment transport equation and the mass-balance equation for sediment; short-term hydrodynamics, sediment transport and long-term morphological evolution for Hangzhou Bay are simulated and the underlying physical mechanisms are analyzed. The model reproduces the spatial distribution patterns of suspended sediment concentration (SSC) in Hangzhou Bay, characterized by three high SSC zones and two low SSC zones. It also correctly simulates the residual flow, the residual sediment transport and the sediment accumulation patterns in Hangzhou Bay. The model results are in agreement with previous studies based on field measurements. The residual flow and the residual sediment transport are landwards directed in the northern part of the bay and seawards directed in the southern part. Sediment accumulation takes place in most areas of the bay. Harmonic analysis revealed that the tide is flood-dominant in the northern part of the bay and ebb-dominant in the southern part of the bay. The strength of the flood-dominance increases landwards along the northern Hangzhou Bay. In turn sediment transport in Hangzhou Bay is controlled by this tidal asymmetry pattern. In addition, the direction of tidal propagation in the East China Sea, the presence of the archipelago in the southeast and the funnel-shaped geometry of the bay, play important roles for the patterns of sediment transport and sediment accumulation respectively.  相似文献   

16.
Under natural conditions, barrier islands might grow vertically and migrate onshore under the influence of long‐term sea level rise. Sediment is transported onshore during storm‐induced overwash and inundation. However, on many Dutch Wadden Islands, dune openings are closed off by artificial sand‐drift dikes that prevent the influx of sediment during storms. It has been argued that creating openings in the dune row to allow regular flooding on barrier islands can have a positive effect on the sediment budget, but the dominant hydrodynamic processes and their influence on sediment transport during overwash and inundation are unknown. Here, we present an XBeach model study to investigate how sediment transport during overwash and inundation across the beach of a typical mesotidal Wadden Sea barrier island is influenced by wave, tide and storm surge conditions. Firstly, we validated the model XBeach with field data on waves and currents during island inundation. In general, the XBeach model performed well. Secondly, we studied the long‐term sediment transport across the barrier island. We distinguished six representative inundation classes, ranging from frequently occurring, low‐energy events to infrequent, high‐energy events, and simulated the hydrodynamics and sediment transport during these events. An analysis of the model simulations shows that larger storm events cause larger cross‐shore sediment transport, but the net sediment exchange during a storm levels off or even becomes smaller for the largest inundation classes because it is counteracted by larger mean water levels in the Wadden Sea that oppose or even reverse sediment transport during inundation. When taking into account the frequency of occurrence of storms we conclude that the cumulative effect of relatively mild storms on long‐term cross‐shore sediment transport is much larger than that of the large storm events. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

17.
Sediment transport is known to have a significant impact on hydropower infrastructures and changes in sediment transport rates are important for sediment management measures and hydroelectricity production. In this study, we present how climate change may affect bedload transport in 66 high alpine catchments used by hydropower companies in the Valais, Switzerland. Future sediment yield is estimated with a runoff‐based sediment transport model for the two future 30 year time periods 2021–2050 and 2070–2099. The analysis is integrated into a modelling chain in which error‐corrected and downscaled climate scenarios generated in the framework of the ENSEMBLES project are coupled to the hydrological model PREVAH, glacier retreat and bedload transport. To calibrate the sediment transport model, we used the observed sediment volumes in water intakes and reservoirs if such data were available. The results obtained show on average a decrease of sediment yield due to the reduced runoff generation during summer, especially for the scenario period 2070–2099. A shift of the seasonal sediment transport regime with a current maximum during July and August to earlier months in the year is predicted. Projections of future sediment yield rely on the accuracy of the individual modeling chain elements. The different sources of uncertainty are discussed qualitatively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
1 INTRODUCTION Flow and sediment transport in natural rivers are generally unsteady, and exhibit temporal and spatial lags. Traditionally, in most hydraulic engineering problems the unsteady flow and sediment transport are approximately treated as steady …  相似文献   

19.
Hydrologic changes have a great impact on the long-term river morphology. The most common anthropic cause is the construction of dams, which often reduces both the discharge regime and sediment transport, producing a narrowing and degradation of the river bed. In this study we propose a simple, lumped morphodynamic model that describes fluvial cross-section dynamics consequent to changes in discharge and sediment transport induced by external factors. The model provides the temporal dynamics of the river width and bed quote. These dynamics result not to be trivial and can exhibit non monotonic behavior, with aggradations and degradations, and narrowing and widening. The model has been tested on real rivers using data obtained from field studies. The agreement between the outcomes and the data measured in the field works is always satisfactory.  相似文献   

20.
Medium-term prediction of sediment transport and morphological behaviour in the coastal zone is becoming increasingly important as a result of human interference and changing environmental conditions. The interaction of waves and tides is shown to play a pivotal role in the net (annual) sediment transport and morphodynamics of the coastal zone. The Telemac Modelling System has been applied to the Dyfi Estuary and neighbouring coastline, mid Wales, to recreate the annual wave–current conditions and the resulting sediment fluxes. ‘Input reduction’ methods have been required to produce realistic schematisations of events in practical computation times. A field campaign carried out in 2006 provided data for validation of the flow module (Telemac-2D) and also observations to verify the patterns predicted by the wave module (Tomawac). To improve model accuracy refinements were implemented with regard to the sand transport formulation used in the sand transport module (Sisyphe). Here, a parameterisation of the results from the UWB 1DV sand transport ‘research’ model, for the conditions in the Dyfi Estuary, has been introduced, allowing Sisyphe to provide greater realism in the morphological predictions. The model predictions are presented along with a discussion of the success/failure and limitations of the modelling methods applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号