首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we preliminarily investigated the dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake by using an extended boundary integral equation method, in which the effect of ground surface can be exactly included. Parameters for numerical modeling were carefully assigned based on previous studies. Numerical results indicated that, although many simplifications are assumed, such as the fault plane is planar and all heterogeneities are neglected, distribution of slip is still consistent roughly with the results of kinematic inversion, implying that for earthquakes in which ruptures run up directly to the ground surface, the dynamic processes are controlled by geometry of the fault to a great extent. By taking the common feature inferred by various kinematic inversion studies as a restriction, we found that the critical slip-weakening distance <i<D</i<<sub<c</sub< should locate in a narrow region 60 cm, 70 cm, and supershear rupture might occur during this earthquake, if the initial shear stress before the mainshock is close to the local shear strength.  相似文献   

2.
In this study, we preliminarily investigated the dynamic rupture process of the 1999 Chi-Chi, Taiwan, earthquake by using an extended boundary integral equation method, in which the effect of ground surface can be exactly included. Parameters for numerical modeling were carefully assigned based on previous studies. Numerical results indicated that, although many simplifications are assumed, such as the fault plane is planar and all heterogeneities are neglected, distribution of slip is still consistent roug...  相似文献   

3.
4.
A great number of free-field ground motion records are obtained during the 1999 Chi-Chi, Taiwan, earthquake. Records from 130 near fault free-field stations within 55 km to the causative fault surface are used as database, and characteristics of earthquake peak ground acceleration, velocity, displacement and duration are analyzed. According to this study, near fault ground motions are strongly affected by distance to fault, fault rupture directivity, site condition, as well as thrust of hanging wall. Compared with empirical strong ground motion attenuation relations used in China, US and Japan, the PGAs and PGVs recorded in this earthquake are not as large as what we have expected for a large earthquake as magnitude 7.6. However, the largest PGV and PGD worldwide were recorded in this event, which are 292 cm/s and 867 cm, respectively. Caused by nonlinear site effects of soil, peaks and corresponding ratios on E-class site were markedly different from those on other sites. Just as observed in historic earthquakes, fault rupture directivity effects caused significant differences between peaks of ground motion of two horizontal components, but took very slight effects on the duration of ground motion. The significant velocity pulses associated with large PGVs and PGDs, as well as large permanent displacements, which may result from the large thrust of the hanging wall, became the outstanding character of this event. Based on this study, we point out that 3D waveform modeling is needed to understand and predict near fault ground motion of large earthquakes.  相似文献   

5.
In the Taiwan region, the empirical spectral models for estimating ground motion parameters were obtained recently on the basis of recordings of small to moderate (5.0≤ML≤6.5) earthquakes. A large collection of acceleration records from the recent ML 7.3 (MW 7.6) Chi-Chi earthquake (20 September, 1999) makes it possible to test the applicability of the established relationships in the case of larger events. The comparison of ground motion parameters (peak accelerations and response spectra), which were calculated using the stochastic approach based on the modeled Fourier amplitude spectra, and the observed data demonstrates that the models may be successfully used for ground motion prediction for earthquakes of magnitudes up to ML=6.8–7.0 and hypocentral depth more than 10 km. To satisfy to the peculiarities of ground motion during shallow (depth less than 10 km) and larger (ML>7.0) events, the models were revised.  相似文献   

6.
This paper investigates long-period ground motion characteristic of the 1999 Jiji (Chi-Chi), Taiwan, mainshock and aftershocks on the basis of lots of high quality digital strong motion records. The study attaches the importance to the variation of strength of the long-period ground motion with the magnitude, distance, and site condition. In the meantime, the near-fault long-period ground motion characteristic is analyzed. The result shows that the shape of the long-period response spectrum is mainly controlled by site condition and magnitude (the spectrum of class D+E is wider than that of class B+C, and the spectrum of larger magnitude is wider than that of smaller magni- tude), and the effect of fault distance on the shape is not evident. And near-fault long-period ground motion characteristic depends on fault activity apparently, that is to say, the long-term ground motion in the hanger is stronger than that in the footwall, and the long-term ground motion in the north is stronger than that in the south.  相似文献   

7.
Introduction The study of attenuation relations for long-period ground motion is to meet the requirement of economy development. During the earthquakes such as the June 16, 1964 Niigata, Japan, M=7.5 earthquake, the March 24, 1977 Romania M=7.3 earthquake, the March 29, 1970 Gediz, Turkey, M=7.1 earthquake, the May 26, 1983 M=7.7 earthquake in the middle Japanese Sea, the September 19, 1985 Mexico M=8.1 earthquake, the September 16, 1994 M=7.3 earthquake in Tai- wan Strait, and the No…  相似文献   

8.
2009年吉林伊通M4.3地震,辽宁省及吉林省强震动台网有8个强震台站记录到地面运动,记录的最大加速度为30.8 cm·s-2,初步展现了强震动台网建设的功效.  相似文献   

9.

Based on the measurement of the arrival time of maxima magnitude from band-pass filtering signals which were determined using a new Morlet wavelet multiple-filter method, we develop a method for measuring intrinsic and attenuative dispersion of the first cycle direct P-wave. We determine relative group delays of spectral components of direct P-waves for 984 ray paths from SML and ALS stations of the Taiwan Central Weather Bureau Seismic Network (CWBSN). Using continuous relaxation model, we deduce a new transfer function that relates intrinsic dispersion to attenuation. Based on the genetic algorithm (GA), we put forward a new inversion procedure for determining which is defined the flat part of quality factor Q(ω) spectrum, τ1 and τ2 parameters. The results indicate that ① The distribution of Qm values versus epicentral distance and depth show that Qm values linearly increase with increasing of epicentral distance and depth, and Qm values is clearly independent of earthquakes magnitude; ② In the different depth ranges, Qm residual show no correlation with variations in epicentral distance. Some significant changes of Qm residual with time is likely caused by pre-seismic stress accumulation, and associated with fluid-filled higher density fractures rock volume in the source area of 1999 Chi-Chi Taiwan earthquake. We confirm that Qm residual with time anomaly appears about 2.5 years before the Chi-Chi earthquake; ③ A comparison of Qm residual for different depth range between SML and ALS stations show that the level of stress has vertical and lateral difference; ④ The area near observation station with both anomalously increasing and decreasing averaged Qm residual is likely an unstable environment for future strong earthquake occurrence. This study demonstrates the capability of direct P-waves dispersion for monitoring attenuation characteristics and its state changes of anelastic medium of the Earth at short propagation distance using seismograms recorded from very small events.

  相似文献   

10.
Introduction In the study of ground motion attenuation model the considered parameters are generally sim-plified as ground motion parameters (acceleration, velocity, displacement, response spectrum, dura-tion, etc), earthquake magnitude, distance and site condition. As the accumulation of ground motion records, it was found that the characteristic of ground motion attenuation in tectonicly compressional region was different from that in tectonicly tensional region and the peak ground accelerat…  相似文献   

11.
We evaluate the non-linear behaviour of soil sediments, analysing five weak and four strong motions observed at depths of 1 m and 28 m, in eastern Shizuoka prefecture, Japan. We identify S-wave velocities and frequency-dependent damping factors by minimizing the residual between observed and theoretical spectral ratios, based on a linear one-dimensional model. We find that S-wave velocities identified from strong motions, whose peak ground acceleration are 440, 210, 176, and 140 cm/s2, are significantly smaller than those identified from weak motions. The shear modulus reduction ratios estimated from identified S-wave velocities become clear above an effective shear strain of 10-4 and agree with laboratory test results below an effective shear strain of 8×10-4. The differences of damping factors between weak and strong motions are not clear below this effective shear strain, as the laboratory test suggested. The equivalent linear one-dimensional model, with frequency-dependent damping factors, is confirmed to be valid to simulate strong motions at least an effective shear strain of less than 4×10-4. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Based on the measurement of the arrival time of maxima magnitude from band-pass filtering signals which were determined using a new Morlet wavelet multiple-filter method,we develop a method for measuring intrinsic and attenuative dispersion of the first cycle direct P-wave.We determine relative group delays of spectral components of direct P-waves for 984 ray paths from SML and ALS stations of the Taiwan Central Weather Bureau Seismic Network(CWBSN).Using continuous relaxation model,we deduce a new transfer...  相似文献   

13.
Kohtaro  Ujiie 《Island Arc》2005,14(1):2-11
Abstract   The 1999 Chi-Chi earthquake in Taiwan ( M w = 7.6) produced a surface rupture along the north–south-striking Chelungpu thrust fault with pure dip-slip (east side up) and left lateral strike-slip displacements. Near-field strong-motion data for the northern part of the fault illustrate a distinct lack of the high-frequency seismic radiation associated with a large slip (10–15 m) and a rapid slip velocity (2–4 m/s), suggesting a smooth seismic slip associated with low dynamic frictional resistance on the fault. A drillhole was constructed at shallow depths in the possible fault zones of the northern part of the Chelungpu Fault, which may have slipped during the 1999 earthquake. One of the zones consists of a 20-cm-thick, unconsolidated fault breccia with a chaotic texture lacking both discrete slip surfaces (e.g. Riedel shears) and grain crushing. Other possible fault zones are marked by the narrow (less than a few centimeters) gouge zone in which clayey material intrudes into the damaged zone outside of the gouge zone. These characteristic fault rock textures suggest that the slip mechanisms at shallow levels during the earthquake involved either granular flow of initially unconsolidated material or slip localization under elevated pore pressure along the narrow clayey gouge zone. Because both mechanisms lead to low dynamic frictional resistance on the fault, the rapid seismic slip in the deep portions of the fault (i.e. the source region of strong-motion radiation) could have been accommodated by frictionless slip on the shallow portions of the fault. The combination of strong-motion data and fault rock analysis suggests that smooth slip associated with low dynamic friction occurred on both the deep and shallow portions of the fault, resulting in a large slip between the source region and the surface in the northern region.  相似文献   

14.
— In this paper, the site characteristics of the Dahan downhole array are studied by analyzing the September 21, 1999 M 7.3 Chi-Chi earthquake sequence including the main shock and some aftershocks. The four-level array (0 m, 50 m, 100 m and 200 m) is located to the north of Hualien City in eastern Taiwan. Polarization analysis is used to check the orientation errors of the seismometers at different levels of depth. If the surface instrument is chosen as reference, the angle between the major polarization axes of the surface and any downhole records is the orientation error that must be corrected for the downhole accelerographs. The orientation errors at depths of 50 m, 100 m and 200 m are 32°, 120° and –84°. After the corrections, the coherency between the surface and downhole records is substantially improved. Spectral ratio analysis shows that the predominant frequency of the Chi-Chi main shock shifts to a lower frequency. We also simulate ground motions at different depths by using the Haskell method with a linear velocity structure model. The record at surface is chosen as the input motion. Compared with the observed data, ground acceleration can be well reproduced for the aftershocks (weak-motion events) of the September 21, 1999 M 7.3 Chi-Chi earthquake. However, for the Chi-Chi main shock, the synthetic waveform cannot match well with the observation neither in amplitude nor in phase. This indicates that large ground shaking probably induced the nonlinear site effect at that time, and the model used cannot support it.Acknowledgement. The authors would like to express their thanks to Dr. L.F. Bonilla and one anonymous reviewer for their valuable suggestions. This research was supported by the National Science Council under grant number NSC 89-2921-M-194-007. The Institute of Earth Sciences, Academia Sinica supplied the strong-motion data. The support of these organizations is gratefully acknowledged.  相似文献   

15.
Using the seismic records of 83 temporary and 17 permanent broadband seismic stations deployed in Tangshan earthquake region and its adjacent areas (39°N–41.5°N, 115.5°E–119.5°E), we conducted a nonlinear joint inversion of receiver functions and surface wave dispersion. We obtained some detailed information about the Tangshan earthquake region and its adjacent areas, including sedimentary thickness, Moho depth, and crustal and upper mantle S-wave velocity. Meanwhile, we also obtained the vP/vS structure along two sections across the Tangshan region. The results show that: (1) the Moho depth ranges from 30 km to 38 km, and it becomes shallower from Yanshan uplift area to North China basin; (2) the thickness of sedimentary layer ranges from 0 km to 3 km, and it thickens from Yanshan uplift region to North China basin; (3) the S-wave velocity structure shows that the velocity distribution of the upper crust has obvious correlation with the surface geological structure, while the velocity characteristics of the middle and lower crust are opposite to that of the upper crust. Compared with the upper crust, the heterogeneity of the middle and lower crust is more obvious; (4) the discontinuity of Moho on the two sides of Tangshan fault suggests that Tangshan fault cut the whole crust, and the low vS and high vP/vS beneath the Tangshan earthquake region may reflect the invasion of mantle thermal material through Tangshan fault.  相似文献   

16.
The characteristics of the inelastic response of structures affected by hanging wall and forward directivity in the 1999 Chi-Chi earthquake are investigated. Inelastic displacement ratios (IDRs) for ground motions impacted by these near- field effects are evaluated and comprehensively compared to far-field ground motions. In addition, the inelastic displacement responses to hanging wall and footwall ground motions are compared. It is concluded that the inelastic displacement response is significantly affected in the short period range by hanging wall and in the long period range by footwall. Although high peak ground acceleration was observed at hanging wall stations, the IDRs for structures on hanging wall sites are only larger than footwall sites in the very long period range. Forward directivity effects result in larger IDRs for periods longer than about 0.5s. Adopting statistical relationships for IDRs established using far-field ground motions may lead to either overestimation or underestimation in the seismic evaluation of existing structures located in near-field regions, depending on their fundamental vibration periods.  相似文献   

17.
H/V spectral ratios from microtremors areused to retrieve the S-velocity structurefrom a single ambient vibration record, byusing its relation to the ellipticity ofthe fundamental mode Rayleigh wave and theamplitude of observed H/V ratio.Constraints are needed in order to restrictthe possible range of solutions, and theinversion is applied to sites where thethickness of the unconsolidated sedimentsis approximately known from boreholeinformation. Within the uncertainty, theinverted structures agree well with theresults from other S-wave measuringtechniques such as downhole and cross-holemeasurements, and the analysis of ambientvibrations measured on an array.The influence of the inversion uncertaintyon site-amplification estimates forearthquakes is then investigated. For allinverted models, site response is computedfor a large number of events, which allowsto define the uncertainty by the aprioriunknown source position and mechanism of afuture earthquake. In most cases thevariability between the results obtainedfor the different models is much smallerthan the variability introduced by theunknown source position. The accuracy withwhich S-wave velocity structures can beretrieved from observed H/V ratios istherefore sufficient for an application ofthe method in seismic hazard analysis for aspecific site.  相似文献   

18.
Kenshiro  Otsuki  Takayuki  Uduki  Nobuaki  Monzawa  Hidemi  Tanaka 《Island Arc》2005,14(1):22-36
Abstract   The seismic slip that occurred during the 1999 Chi-Chi earthquake in Taiwan showed contrastive behaviors in different regions along the Chelungpu Fault: A large and smooth slip occurred in the north, while a relatively small slip associated with high-frequency seismic wave radiation occurred in the south. The core samples from shallow boreholes at northern (Fengyuan) and southern (Nantou) sites penetrating the seismic Chelungpu Fault were analyzed. The fault zones at the northern site are characterized by soft clayey material associated with clayey injection veins. This suggests that the fault zones were pressurized during ancient seismic slip events, and hence the elastohydrodynamic lubrication occurred effectively. In contrast, the fault rock from the southern site is old pseudotachylyte that has been shattered by repeated ancient seismic slip events. Statistical analysis of many pseudotachylyte fragments reveals that the degree of frictional melting tended to be low. In this case, the seismic slip is restrained by the mechanical barrier of a highly viscous melt layer. These contrastive fault rocks were produced by repeated ancient seismic slip events, but the two corresponding mechanisms of friction are likely to have also occurred during the 1999 Chi-Chi earthquake, thus causing the contrastive slip behaviors in the north and south.  相似文献   

19.
云南壳幔S波速度结构与强震的构造背景   总被引:6,自引:2,他引:6       下载免费PDF全文
本文选取云南及周边65个台站记录到的47个地震事件,利用相匹配滤波技术分离出了基阶Rayleigh面波信号.选取与震中处于同一大圆弧上的两个台站,利用双台格林函数法获取了台间相速度频散,频散的周期范围在10~80 s之间.从2000个波形记录中提取了152个台站对之间的相速度频散,最后,利用台间的相速度频散反演得到云南地区0~200 km深度范围内的S波速度结构.结果表明:云南地区地壳厚度整体上呈南北向变化趋势,从南部的30 km变化到北部的60 km.在局部地区Moho面呈现出隆起和凹陷,基本上呈"一隆两凹"的特征.另外,滇西地区大致以红河断裂为界,其两侧的岩石圈结构存在明显的差异.西侧从70 km深处开始,滇缅泰块体上的保山、畹町、沧源、思茅一带大范围内均为低速区,并且一直延伸到120 km深处.而红河断裂东侧的滇中块体,只有在康滇古隆起区存在上地幔低速区,其余大部分地区上地幔S波速度在4.4~4.6 km/s之间.  相似文献   

20.
The relationships between the spectral characteristics of earthquake ground motions and those of micro‐tremors are investigated using the observed data from a dense strong‐motion network consisting of 108 stations in the Yun‐Li, Chia‐Yi and Tai‐Nan areas in southwestern Taiwan. Many high‐quality recordings, including those of the 921 Chi‐Chi earthquake (Mw=7.6), the 1022 Chia‐Yi mainshock (ML=6.4), the 1022 major aftershock (ML=6.0), as well as some weak motion events are selected to evaluate site responses. Microtremor measurements are also performed at most ground motion stations. With many stations in the area located on an alluvium structure, however, it is difficult to find good reference stations on rock sites, which therefore necessitates the calculation of single‐station H/V ratios. The predominant frequencies obtained from H/V ratios are consistent with those from spectral ratios. The site characteristics between the strong and weak events are different, however. This implies that a nonlinear effect probably occurred with the strong‐motion events. The main peak in the H/V spectra of the microtremors is in good agreement with the first peak obtained from the spectra of earthquake ground motions. It is reasonable to claim that the main peak reflects the deep underground structure. On the basis of the H/V ratios of the microtremors, it is concluded that the lower predominant frequencies appear in the plain area, while the higher values are near the mountainous region. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号