共查询到20条相似文献,搜索用时 15 毫秒
1.
Two regionally significant microbial-foraminiferal episodes (∼150 kyr each) occur within the Early Aptian shallow marine platform in Oman and throughout eastern Arabia. The stratigraphically lower of these two intervals is characterized by isolated or coalescent domes that share similarities with modern, open-marine stromatolites from the Exuma Cays, Bahamas. The upper interval is predominantly built by a problematic Lithocodium/Bacinella consortium in buildup and massive boundstone facies. Based on high-resolution chemostratigraphy, these shoalwater intervals are coeval with oceanic anoxic event 1a (OAE1a; Livello Selli). Field evidence demonstrates that the buildup episodes alternate with stratigraphic intervals dominated by rudist bivalves. This biotic pattern is also recognized in other coeval Tethyan sections and is perhaps a characteristic shoalwater expression of the OAE1a. The short-lived regional expansions of this microbial-foraminiferal out-of-balance facies cannot be explained by local environmental factors (salinity and oxygen level) alone and the buildup consortia do not occupy stressed refugia in the absence of grazing metazoans. Judging from recent analogues, the main fossil groups, i.e. microbial assemblages, macroalgae, larger sessile foraminifera, and rudist bivalves, all favoured elevated trophic levels but with different tolerance limits. The implication of this is that the influence of palaeofertility events, possibly related to OAE1a, on carbonate platform community structures must be investigated. The observations made in these coastal sections are a significant first step for the improved understanding of the Early Aptian period of biotic, oceanic and climatic change. 相似文献
2.
STEFAN HUCK NIELS RAMEIL TVRTKO KORBAR ULRICH HEIMHOFER THOMAS D. WIECZOREK ADRIAN IMMENHAUSER 《Sedimentology》2010,57(7):1585-1614
Ocean‐wide anoxic events represent intensively investigated anomalies in the global carbon cycle. Most previous research has focussed on hemipelagic and pelagic settings and on the relationship between black‐shale deposition and carbon‐isotope excursions. The study of ocean‐wide anoxic events and coeval shallow‐water settings is now increasingly seen as an interesting complementary approach, but one that is not without problems. Whereas platform drowning characterizes the Early Aptian of the northern Tethyan margin, Lithocodium–Bacinella‐rich facies and ongoing shoal‐water sedimentation at the southern Tethyan margin (Oman) bears important information on potential causes of carbon‐cycle perturbations. The present paper seeks to test the supra‐regional relevance of the Oman data by investigating coeval central Tethyan limestones. Three Lower Aptian shoal‐water sections in Istria (Croatia), deposited on the isolated Adriatic Carbonate Platform, are investigated applying chemostratigraphy (carbon and strontium) and detailed sedimentological analysis. The focus is on peritidal to lagoonal facies characterized by mass occurrences of Lithocodium–Bacinella, an enigmatic microencruster community. Lithocodium–Bacinella facies occurs predominantly in layers ranging from one to several centimetres in stratigraphic thickness, with several layers merging to metre‐thick packages. Growth fabrics within the layers include oncoidal morphotypes, lumps, interconnected patches and columns, layers and rare nodular to massive bindstone facies. These growth patterns show a remarkable regional extent and consistency over study sites distributed several kilometres apart. This widespread distribution suggests that specific Lithocodium–Bacinella morphotypes might serve as regional stratigraphic markers. The high‐resolution carbon‐isotope chemostratigraphy presented here is based on pristine rudist shells and matrix micrite samples and calibrated against strontium‐isotope data obtained from screened rudist low‐Mg calcite. The chemostratigraphic data are consistent with existing biostratigraphic data and place the studied strata at the onset of Early Aptian oceanic anoxic event 1a. Moreover, results indicate the near‐coeval nature of Lithocodium–Bacinella bloom facies in Istria and Oman. The outcomes of this study point to latitudinally different responses of Tethyan shoal‐water carbonate systems (platform drowning versus Lithocodium–Bacinella blooms) to the ocean‐wide anoxic event 1a. 相似文献
3.
Nicolas Thibault Micha Ruhl Clemens V. Ullmann Christoph Korte David B. Kemp Darren R. Gröcke Stephen P. Hesselbo 《Proceedings of the Geologists' Association. Geologists' Association》2018,129(3):372-391
The Toarcian Oceanic Anoxic Event (T-OAE, ~183 Ma) was characterized by enhanced carbon burial, a prominent negative carbon-isotope excursion (CIE) in marine carbonate and organic matter, and numerous geochemical anomalies. A precursor excursion has also been documented at the Pliensbachian/Toarcian boundary, but its possible causes are less constrained. The T-OAE is intensively studied in the Cleveland Basin, Yorkshire, UK, whose sedimentary deposits have been litho-, bio- and chemostratigraphically characterised. Here, we present new elemental data produced by hand-held X-ray fluorescence analysis to test the expression of redox-sensitive trace metals and detrital elements across the upper Pliensbachian to mid-Toarcian of the Cleveland Basin. Detrital elemental concentrations (Al, Si, Ti, Zr) are used as proxies for siliciclastic grain content and thus, sea-level change, which match previous sequence stratigraphic interpretations from the Cleveland Basin. The timescale of the event is debated, though our new elemental proxies of relative sea level change show evidence for a cyclicity of 350 cm that may be indicative of ~405 kyr eccentricity cycles in Yorkshire. Trends in total organic carbon and redox-sensitive elements (S, Fe, Mo, As) confirm scenarios of widespread ocean deoxygenation across the T-OAE. The correlation of comparable trends in Mo across the T-OAE in Yorkshire and the Paris Basin suggests a similar oceanic drawdown of this element accompanying widespread anoxia in the two basins. Data from Yorkshire point to a transgressive trend at the time of the Mo drawdown, which contradicts the “basin restriction” model for the euxinic conditions that characterise the CIE interval. 相似文献
4.
PAOLA RONCHI FLAVIO JADOUL ANDREA CERIANI ANDREA DI GIULIO PAOLO SCOTTI ANDREA ORTENZI ELISABETTA PREVIDE MASSARA 《Sedimentology》2011,58(2):532-565
The Early Jurassic dolomitized carbonates are a hydrocarbon exploration target in Northern Italy. Of these carbonates, the Liassic Albenza Formation platform and the overlying Sedrina Formation shelf were studied to define a pervasive dolomitization model and to shed light on dolomite distribution in the sub‐surface. Field work, as well as analyses of well cores, stable isotopes, trace elements and fluid inclusions, was carried out on the outcropping thrust belt and sub‐surface deformed foreland of the Southern Alps. Petrographic analyses showed a first, pervasive, replacement dolomitization phase (D1) followed by volumetrically less important dolomite cement precipitation phases (D2, D3 and D4). The δ18O values fall between ?8·2‰ and 0·1‰ Vienna‐Pee Dee Belemnite with the more depleted samples belonging to dolomite cement‐rich dolostones; the δ13C ranges from 2·6‰ to 3·7‰ Vienna‐Pee Dee Belemnite. Analysis of trace elements showed different Fe and Mn contents in the sub‐surface and outcropping dolostones, and a higher Fe in the younger dolomite cements. An increase in the precipitation temperature (up to 130 °C from fluid inclusion data) and a decrease in diagenetic fluid salinity (from sea water to brackish) are observed from the first pervasive replacement dolomite to the dolomite cement phases. Field observations indicate that, in the Albenza Formation, dolomitization was limited to palaeohighs or faulted platform margins in the Early Jurassic carbonates. The pervasive replacement phase is interpreted based on a ‘compaction model’; the formation fluids expelled from compacting basinal carbonates could have funnelled along faults into permeable palaeohighs. The high homogenization temperature of the dolomite cements and decreased salinities indicate precipitation at great depth with an influx of meteoric water. These data, along with the thermal history, suggest that the dolomite cements precipitated according to the ‘tectonic squeegee’ dolomitization model. The dolomite precipitation temperature was set against the thermal history of the carbonate platform to interpret the timing of dolomite precipitation. The dolomite precipitation temperatures (90 to 100 °C) were reached in the studied formations first in the thrust fold belt (Early Tertiary, 60 Ma), and then in the foreland succession during the Late Tertiary (10 Ma). This observation suggests that the dolomite precipitation fronts moved southwards over time, recording a ‘diagenetic wave’ linked to the migration of the orogenic system. Observations suggest that the porosity increased during the first phase of replacement dolomitization while the dolomite cementation phases partially occluded the pores. The distribution of porous dolomitized bodies is therefore linked to the ‘compaction dolomitization’ model. 相似文献
5.
Nicholas P. Ettinger Toti E. Larson Charles Kerans Alyson M. Thibodeau Kelly E. Hattori Sean M. Kacur Rowan C. Martindale 《Sedimentology》2021,68(1):63-107
Severe global climate change led to the deterioration of environmental conditions in the oceans during the Toarcian Stage of the Jurassic. Carbonate platforms of the Western Tethys Ocean exposed in Alpine Tethyan mountain ranges today offer insight into this period of environmental upheaval. In addition to informing understanding of climate change in deep time, the effect of ancient carbon cycle perturbations on carbonate platforms has important implications for anthropogenic climate change; the patterns of early Toarcian environmental deterioration are similar to those occurring in modern oceans. This study focuses on the record of the early Toarcian Oceanic Anoxic Event (ca 183.1 Ma) in outcrops of the north‐west Adriatic Carbonate Platform in Slovenia. Amidst environmental deterioration, the north‐west Adriatic Platform abruptly transitioned from a healthy, shallow‐water environment with diverse metazoan ecosystems to a partially drowned setting with low diversity biota and diminished sedimentation. An organic carbon‐isotope excursion of ?2.2‰ reflects the massive injection of CO2 into the ocean‐atmosphere system and marks the stratigraphic position of the Toarcian Oceanic Anoxic Event. A prominent dissolution horizon and suppressed carbonate deposition on the platform are interpreted to reflect transient shoaling of the carbonate compensation depth to unprecedentedly shallow levels as the dramatic influx of CO2 overwhelmed the ocean’s buffering capacity, causing ocean acidification. Trace metal geochemistry and palaeoecology highlight water column deoxygenation, including the development of photic‐zone anoxia, preceding and during the Toarcian Oceanic Anoxic Event. Ocean acidification and reduced oxygen levels likely had a profoundly negative effect on carbonate‐producing biota and growth of the Adriatic Platform. These effects are consistent with the approximate doubling of the concentration of CO2 in the ocean‐atmosphere system from pre‐event levels, which has previously been linked to a volcanic triggering mechanism. Mercury enrichments discovered in this study support a temporal and genetic link between volcanism, the Toarcian Oceanic Anoxic Event and the carbonate crisis. 相似文献
6.
The ubiquity of carbonate platforms throughout the Cretaceous Period is recognized as a product of high eustatic sea-level and a distinct climatic optimum induced by rapid sea-floor spreading and elevated levels of atmospheric carbon-dioxide. Notably, a series of global oceanic anoxic events (OAEs) punctuate this time-interval and mark periods of significantly reduced free oxygen in the world's oceans. The best records of these events are often from one-dimensional shelf or basin sections where only abrupt shifts between oxygenated carbonates and anoxic shales are recorded. The Comanche Platform of central Texas provides a unique opportunity to study these events within a well-constrained stratigraphic framework in which their up-dip and down-dip sedimentologic effects can be observed and the recovery of the platform to equilibrium states can be timed and understood. Stable isotope data from whole cores in middle Hauterivian through lower Campanian mixed carbonate-siliciclastic strata are used to construct a 52-myr carbon isotope reference profile for the northern Gulf of Mexico. Correlation of this composite curve to numerous global reference profiles permits identification of several anoxic events and allows their impact on platform architecture and facies distribution to be documented. Oceanic anoxic events 1a, 1b, 1d, and 2 occurred immediately before, after, or during shale deposition in the Pine Island Member, Bexar Member, Del Rio Formation, and Eagle Ford Group, respectively. Oceanic anoxic event 3 corresponds to deposition of the Austin Chalk Group. Platform drowning on three occasions more closely coincided with globally recognized anoxic sub-events such as the Fallot, Albian-Cenomanian, and Mid-Cenomanian events. This illustrates that the specific anoxic event most affecting a given carbonate platform varied globally as a function of regional oceanographic circumstances.Using chemo- and sequence-stratigraphic observations, a four-stage model is proposed to describe the changing facies patterns, fauna, sedimentation accumulation rates, platform architectures, and relative sea-level trends of transgressive-regressive composite sequences that developed in response to global carbon-cycle perturbations. The four phases of platform evolution include the equilibrium, crisis, anoxic, and recovery stages. The equilibrium stage is characterized by progradational shelf geometries and coral-rudist phototrophic faunal assemblages. Similar phototrophic fauna typify the crisis stage; however, incipient biocalcification crises of this phase led to retrogradational shelf morphologies, transgressive facies patterns, and increased clay mineral proportions. Anoxic stages of the Comanche Platform were coincident with back-ground deposition of organic-rich shale on drowned shelves and heterotrophic fauna dominated by oysters or coccolithophorids. Eustatic peaks of this stage were of moderate amplitude (∼30 m), yet relative sea-level rises were greatly enhanced by reduced sedimentation rates. In the recovery stage, heterotrophic carbonate factories re-established at the shoreline as progradational ramp systems and sediment accumulation rates slowly increased as dysoxia diminished. Full recovery to equilibrium conditions may or may not have followed. Geochemical and stratigraphic trends present in the four stages are consistent with increased volcanism along mid-ocean ridges and in large-igneous provinces as primary drivers of Cretaceous OAEs and the resulting transgressive-regressive composite sequences. 相似文献
7.
Lower Jurassic epicontinental carbonates and mudstones from England and Wales: chemostratigraphic signals and the early Toarcian anoxic event 总被引:5,自引:0,他引:5
Sections through Lower Jurassic epicontinental carbonates from Southern Britain (Junction Bed and equivalent) show a positive carbon-isotope excursion (δ13Ccarbonate), detectable in bulk rock, in the falciferum Zone of the lower Toarcian. Isotopic data from organic matter in more clay-rich sections from Wales and north-east England, together with determinations on belemnite calcite, indicate that highest δ13C values are localized in the upper exaratum Subzone of the falciferum Zone. Levels of particular enrichment in organic carbon were developed in the early to mid-exaratum Subzone and hence pre-date this δ13C maximum. These phenomena reflect the impact of the early Toarcian oceanic anoxic event in the British area. Similar isotopic trends have been recorded in other Toarcian sections from Tethyan Europe and are interpreted as reflecting the chemistry of sea water. On the assumption of isotopic correlation between the English and Tethyan sections, the δ13C maximum would be everywhere dated as latest exaratum Subzone in terms of the north European ammonite scheme. Absolute oxygen-isotope values in carbonates probably reflect both early diagenetic cementation and later temperature-related burial diagenesis, although a palaeotemperature maximum is tentatively identified as characterizing the early falciferum Zone. Subsequent climatic deterioration may have been triggered by drawdown of CO2, related to regional excess carbon burial during the oceanic anoxic event. Using the positive δ13C excursion as a correlative level in sections from different faunal provinces (Britain, Italy and Spain) implies that lower Toarcian zonal stratigraphy is diachronous between northern and southern Europe. There is evidence for partitioning of water masses between the north European shelf and the Tethyan continental margin during the Early Jurassic. 相似文献
8.
JOÃO TRABUCHO ALEXANDRE JUAN PEDRO RODRÍGUEZ‐LÓPEZ POPPE L. DE BOER 《Sedimentology》2011,58(5):1217-1246
The Aptian/Albian oceanic anoxic event 1b contains the record of several perturbations in the global carbon cycle and multiple black shale levels, particularly in the Western Tethys. The local lithological expression of an oceanic anoxic event depends on palaeogeographical and depositional setting as well as on regional palaeoclimate. Marine sediments at a particular location may therefore be more or less organic‐rich (or not at all) and they may consist of different lithologies. In most studies, however, much of the lithological variability associated with oceanic anoxic events is left unaccounted for and, thus, the exact processes leading to the enrichment of organic matter in these marine sediments and their subsequent preservation in the geological record are unknown. This study focuses on the local sedimentary processes behind the deposition of organic‐rich sediments at Deep Sea Drilling Project Site 545 and Ocean Drilling Program Sites 1049 and 1276 in the North Atlantic during oceanic anoxic event 1b. Although specifically dealing with the sediments deposited during this particular event at these localities, it is expected that the same processes were responsible for determining the exact sedimentary products at localities in similar settings, as well as during other similar events in the Mesozoic. Here, it is shown that the deposition of organic‐rich sediments during oceanic anoxic event 1b was a consequence of the enhanced productivity favoured by upwelling and by riverine nutrient input, or aeolian fertilization of the euphotic zone depending on geographical location. Slope instability processes resulted in the transfer of part of these organic‐rich sediments from the shelf to deep sea depocentres as mud‐laden organic‐rich turbidites, especially in the northern North Atlantic. The so‐called ‘black shales’ are much more varied than their name implies. The end product of sedimentation during an oceanic anoxic event at a particular location is commonly the result of several equifinal processes acting on a local scale rather than the direct result of basinal or even global mechanisms. 相似文献
9.
NADIA SABATINO RODOLFO NERI ADRIANA BELLANCA HUGH C. JENKYNS† FRANÇOIS BAUDIN‡ GUIDO PARISI§ DANIELE MASETTI¶ 《Sedimentology》2009,56(5):1307-1328
The Toarcian oceanic anoxic event ( ca 183 Ma) coincides with a global perturbation marked by enhanced organic carbon burial and a general decrease in calcium carbonate production, probably triggered by changes in the composition of marine plankton and elevated carbon dioxide levels in the atmosphere. This study is based on high-resolution sampling of two stratigraphic successions, located in Valdorbia (Umbria–Marche Apennines) and Monte Mangart (Julian Alps), Italy, which represent expressions of the Toarcian oceanic anoxic event in deep-water pelagic sediments. These successions are characterized by the occurrence of black shales showing relatively low total organic carbon concentrations (compared with coeval strata in Northern Europe), generally < 2%, and low hydrogen indices. On this basis, they are similar to other Toarcian black shales described from the Tethyan region. The positive and negative carbon-isotope records from the two localities permit a high-resolution correlation such that ammonite biostratigraphy information from Valdorbia can be transferred to those parts of the Monte Mangart section that lack these fossils. Spectral analyses of δ13 Corg values and of CaCO3 percentages from the sedimentary records of both the Valdorbia and Monte Mangart sections reveal a strong cyclic pattern, best interpreted as an eccentricity signal which hence implies a duration of ca 500 kyr for the negative carbon-isotope excursion. Based on the carbon-isotope curves obtained, the high-resolution correlation between the Italian successions and a section in Yorkshire (Northern Europe) confirms the supposition that the apparent mismatch between the dating of the Toarcian oceanic anoxic event in the Boreal and Tethyan realms is an artefact of biostratigraphy. 相似文献
10.
The early Paleogene experienced the most pronounced long-term warming trend of the Cenozoic, superimposed by transient warming events such as the Paleocene–Eocene Thermal Maximum (PETM). The consequences of climatic perturbations and associated changes on the evolution of carbonate platforms are relatively unexplored. Today, modern carbonate platforms, especially coral reefs are highly sensitive to environmental and climatic change, which raises the question how (sub)tropical reef systems of the early Paleogene reacted to gradual and sudden global warming, eutrophication of shelf areas, enhanced CO2 levels in an ocean with low Mg/Ca ratios. The answer to this question may help to investigate the fate of modern coral reef systems in times of global warming and rising CO2 levels.Here we present a synthesis of Tethyan carbonate platform evolution in the early Paleogene (~ 59–55 Ma) concentrating on coral reefs and larger foraminifera, two important organism groups during this time interval. We discuss and evaluate the importance of the intrinsic and extrinsic factors leading to the dissimilar evolution of both groups during the early Paleogene. Detailed analyses of two carbonate platform areas at low (Egypt) and middle (Spain) paleolatitudes and comparison with faunal patterns of coeval platforms retrieved from the literature led to the distinction of three evolutionary stages in the late Paleocene to early Eocene Tethys: Stage I, late Paleocene coralgal-dominated platforms at low to middle paleolatitudes; stage II, a transitional latest Paleocene platform stage with coralgal reefs dominating at middle paleolatitudes and larger foraminifera-dominated (Miscellanea, Ranikothalia, Assilina) platforms at low paleolatitudes; and stage III, early Eocene larger foraminifera-dominated (Alveolina, Orbitolites, Nummulites) platforms at low to middle paleolatitudes. The onset of the latter prominent larger foraminifera-dominated platform correlates with the Paleocene/Eocene Thermal Maximum.The causes for the change from coral-dominated platforms to larger foraminifera-dominated platforms are multilayered. The decline of coralgal reefs in low latitudes during platform stage II is related to overall warming, leading to sea-surface temperatures in the tropics beyond the maximum temperature range of corals. The overall low occurrence of coral reefs in the Paleogene might be related to the presence of a calcite sea. At the same time larger foraminifera started to flourish after their near extinction at the Cretaceous/Paleogene boundary. The demise of coralgal reefs at all studied paleolatitudes in platform stage III can be founded on the effects of the PETM, resulting in short-term warming, eutrophic conditions on the shelves and acidification of the oceans, hampering the growth of aragonitic corals, while calcitic larger foraminifera flourished. In the absence of other successful carbonate-producing organisms, larger foraminifera were able to take over the role as the dominant carbonate platform inhabitant, leading to a stepwise Tethyan platform stage evolution around the Paleocene/Eocene boundary. This szenario might be also effective for threatened coral reef sites. 相似文献
11.
托阿尔期早期早侏罗世大洋缺氧事件(T-OAE,~183.8 Ma)是一次全球性的地质事件,鄂尔多斯盆地下侏罗统富县组记录了此次地质事件的陆地响应过程。主要基于盆地东缘野外地质调查、扫描电镜及薄片分析,本次研究描述了盆地东北部富县组岩性、颜色和沉积序列,利用前人研究成果总结了富县期岩相古地理变化规律及沉积模式,认为富县期经历了由干旱到湿润的古气候变化: 富县组下部含植物化石较为丰富的白色砂砾岩及黑色、灰色泥页岩沉积于湿润气候时期,对应着盆地下切河谷发育期和填平补齐期; 而上覆的罕见植物化石的杂色、红色泥页岩为(富县期晚期)相对平坦地形条件下的沉积,对应着早、中侏罗世湿润气候背景下的一次干旱气候脉动,为托阿尔期大洋缺氧事件在陆相环境的气候响应,可由此进行富县组区域等时性对比。研究认为“粗富县”为下切谷内河流充填沉积, “细富县”形成于湖泊环境或河漫环境, “黑富县”和“白富县”是湿润气候条件下沉积产物,而“红富县”和“杂富县”为T-OAE期后干旱条件下形成。 相似文献
12.
Vassilis Karakitsios Harilaos Tsikos Yvonne van Breugel Lyda Koletti Jaap S. Sinninghe Damsté Hugh C. Jenkyns 《International Journal of Earth Sciences》2007,96(2):343-352
Integrated biostratigraphic (planktonic foraminifera, calcareous nannofossils), chemostratigraphic (bulk C and O isotopes)
and compound-specific organic geochemical studies of a mid-Cretaceous pelagic carbonate—black shale succession of the Ionian
Zone (western Greece), provide the first evidence for the Cenomanian–Turonian oceanic anoxic event (OAE2, ‘Bonarelli’ event)
in mainland Greece. The event is manifested by the occurrence of a relatively thin (35 cm), yet exceptionally organic carbon-rich
(44.5 wt% TOC), carbonate-free black shale, near the Cenomanian–Turonian boundary within the Vigla limestone formation (Berriasian–Turonian).
Compared to the ‘Bonarelli’ black-shale interval from the type locality of OAE2 in Marche–Umbria, Italy, this black shale
exhibits greatly reduced stratigraphic thickness, coupled with a considerable relative enrichment in TOC. Isotopically, enriched
δ13C values for both bulk organic matter (−22.2‰) and specific organic compounds are up to 5‰ higher than those of underlying
organic-rich strata of the Aptian-lower Albian Vigla Shale member, and thus compare very well with similar values of Cenomanian–Turonian
black shale occurrences elsewhere. The relative predominance of bacterial hopanoids in the saturated, apolar lipid fraction
of the OAE2 black shale of the Ionian Zone supports recent findings suggesting the abundance of N2-fixing cyanobacteria in Cretaceous oceans during the Cenomanian–Turonian and early Aptian oceanic anoxic events. 相似文献
13.
Within the upper Valanginian to upper Albian deposits of the easternmost part of the Prebetic Zone of the Betic Cordillera (Iberian Peninsula), seven lithostratigraphic formations made up of shallow-water carbonate and carbonate-siliciclastic sediments and of outer-platform hemipelagic sediments have been recognized. These formations were deposited in the most distal part of a platform that developed on the Southern Iberian Continental Palaeomargin. The geodynamic context was a margin affected by extensional or transtensional faults that produced tilted blocks. The interval studied records three major second-order transgressive-regressive facies cycles: (I) A late Valanginian to earliest Aptian cycle, mostly represented by hemipelagic and condensed sedimentation, with the development of a tectonically controlled high without sedimentation that separated two sectors with different sedimentary evolution and that ended with an episode of shallow-water carbonate platform development; (II) An earliest to latest Aptian cycle, with a transgressive phase represented by a retrogradational shallow-water carbonate platform capped by a drowning event leading to hemipelagic sedimentation, which was affected by an anoxic event (OAE 1a); the regressive phase is represented by progradation and aggradation of shallow-water carbonate deposits. Finally (III) a latest Aptian to early-late Albian cycle that records the expansion of mixed platform deposits in the entire area, ending with a phase of shallow-water carbonate platform development. Extensional tectonics leading to spatial and temporal changes in subsidence patterns is envisaged as the main control on sedimentation at a local scale, resulting in notable lateral changes in thickness as the main signature. Tectonics exerted a strong control on the distribution of sedimentary environments only during Cycle I. At a higher order, sea-level fluctuations are responsible for sequential organization, and environmental factors determined shallow-water carbonate platform development and demise, as well as oceanic anoxic events. The relevant continuity of the stratigraphic record in the distal part of the Prebetic platform has led to the recognition of events related to cycle boundaries, which result mainly from a combination of tectonics and sea-level changes. 相似文献
14.
DARIO HARAZIM BAS VAN DE SCHOOTBRUGGE KATRIN SORICHTER JENS FIEBIG ANDRIES WEUG GUILLAUME SUAN WOLFGANG OSCHMANN 《Sedimentology》2013,60(2):359-390
In order to constrain spatial variability in watermass conditions within the European Epicontinental Seaway prior to, during and after the Toarcian Oceanic Anoxic Event, carbon (δ13Cbel, δ13Ccarb) and oxygen (δ18Obel, δ18Ocarb) isotope records were obtained from three sections in the Grands Causses Basin (southern France). These data were then compared with similar records along a north–south transect across the European Epicontinental Seaway. As the conclusions reached here strongly depend on the reliability of belemnite calcites as archives of palaeoceanographic changes, an attempt was made to improve the understanding of isotope signals recorded in belemnite calcite. Intra‐rostral carbon and oxygen‐isotope data from six belemnite specimens belonging to the genus Passaloteuthis were collected. Intra‐rostral carbon‐isotopes are influenced by vital effects, whereas oxygen‐isotopes reflect relative changes in temperature and salinity. Palaeotemperatures calculated from δ18Obel‐isotope records from the Grands Causses Basin confirm relatively low temperatures throughout the Late Pliensbachian. Similar cool water conditions have previously been shown in Germany, England, Spain and Portugal. A temperature increase of up to 6 °C is observed across the Pliensbachian–Toarcian boundary. A pronounced negative shift of at least ?3‰ (Vienna‐Pee Dee Belemnite) is recorded in bulk carbonate carbon during the lower Harpoceras serpentinum zone, typical of the Toarcian Oceanic Anoxic Event. Before and after the Toarcian Oceanic Anoxic Event, a good correlation between δ13Ccarb and δ13Cbel exists, indicating well‐ventilated bottom‐waters and normal marine conditions. Instead, data for the Toarcian Oceanic Anoxic Event indicate the development of a strong north–south gradient in salinity stratification and surface‐water productivity for the Western Tethyan realm. This study thus lends further support to a pronounced regional overprint on carbon and oxygen‐isotope records in epicontinental seaways. 相似文献
15.
High-resolution clay-mineral analyses were performed on upper Hauterivian to lower Aptian sediments along a platform-to-basin transect through the northern Tethyan margin from the Neuchâtel area (Switzerland), to the Vocontian Trough (France) in order to investigate links between climate change, carbonate platform evolution, and fractionation patterns in clay minerals during their transport.During the Hauterivian, the northern Tethyan carbonate platform developed in a heterozoan mode, and the associated ramp-like topography facilitated the export of detrital material into the adjacent basin, where clay-mineral assemblages are dominated by smectite and kaolinite is almost absent, thereby suggesting dry-seasonal conditions. During the Late Hauterivian Balearites balearis ammonite zone, a change to a more humid climate is documented by the appearance of kaolinite, which reaches up to 30% of the clay fraction in sediments in the Vocontian Trough. This prominent change just preceded the Faraoni Oceanic Anoxic Event and the onset of the demise of the Helvetic Carbonate Platform, which lasted to the late early Barremian.From the Late Barremian onwards, the renewed growth of the northern Tethyan carbonate platform in a photozoan mode and the associated development of a marginally confined platform topography fractionated the clay-mineral assemblages exported into hemipelagic settings: kaolinite particles were preferentially retained in proximal, platform settings, due to their size and their relatively high specific weight. In the inner platform environment preserved in the Swiss Jura, an average of 32% of kaolinite in the clay fraction is observed during the latest Barremian–earliest Aptian, whereas clay-mineral assemblages of coeval sediments from deeper depositional settings are dominated by smectite and show only minor amounts of kaolinite.This signifies that besides palaeoclimate conditions, the morphology and ecology of the carbonate platform had a significant effect on the distribution and composition of clay assemblages during the Late Hauterivian–Early Aptian along the northern Tethyan margin. 相似文献
16.
The Middle Oxfordian of the eastern Paris Basin constitutes a remarkable example of the growth and demise of a carbonate platform. Fischer plots, sedimentary and diagenetic features allow the identification of four depositional cycles (S5 to S8) in the Transversarium Zone; they are inserted in a lower frequency cycle of increased/decreased accommodation space (SoIII). The long‐term period of accommodation creation occurred during the older S5 and S6 cycles, the maximum accommodation zone being located in the lower part of the S6 cycle. This high accommodation period was tectonically controlled and was coeval with local distensive activity of a Hercynian fault. A major minimum accommodation zone exists during the S8 cycle. At that time, the platform was isolated and presented both a windward and a leeward margin. The growth of the platform was favoured by a warm and arid climate, oligotrophic conditions and reduced siliciclastic input during a highstand in relative sea‐level. These palaeoenvironmental features favoured the proliferation of phototrophic organisms producing carbonate material. The death of the platform was generated by a reduction in the carbonate production surface during a lowstand in relative sea‐level and by the appearance of mesotrophic conditions induced by the increase in siliciclastic inputs at the beginning of a period with a cooler and more humid climate. In the eastern Paris Basin, during the Middle Oxfordian, the parasequences are ordered and present ‘greenhouse’ characteristics. In contrast, at the beginning of the S8 cycle, the randomness in the thickness of contiguous parasequences increased. Decreased carbonate production during the lowstand caused by a transition from photozoan to heterozoan benthic communities certainly favoured this randomness and the appearance of catch‐down parasequences. 相似文献
17.
MELODY STEIN ANNIE ARNAUD‐VANNEAU THIERRY ADATTE DOMINIK FLEITMANN JORGE E. SPANGENBERG KARL B. FÖLLMI 《Sedimentology》2012,59(3):939-963
A major shift from Urgonian oligotrophic carbonate accumulation to orbitolinid‐rich mixed siliciclastic–carbonate deposition is observed near the Barremian–Aptian boundary in many sections both within and outside the shallow‐marine Tethyan Realm. This important facies change in the Swiss Helvetic Alps is documented here and interpreted in the context of general palaeoenvironmental change. To achieve this, a detailed micropalaeontological, sedimentological, mineralogical and geochemical study has been carried out on six sections across the upper part of the lower Schrattenkalk Member (Late Barremian), the Rawil Member (formerly ‘Lower Orbitolina Beds’, earliest Aptian) and the lowermost part of the upper Schrattenkalk Member (Early Aptian). The sediments of the Rawil Member exhibit inner‐platform facies with rudists, miliolids, orbitolinids and dasycladals to outer‐platform facies characterized by small benthic foraminifera, orbitolinids, crinoids and bryozoans. Stratigraphic trends in microfacies environments and the composition of microfossil assemblages, indicate that the Rawil Member includes a transgressive systems tract and the base of a highstand systems tract which are composed of an increasing number of parasequences in distal directions (five to nine in the sections studied here). The sea‐level rise discerned in the Rawil Member is coeval with increased detrital input and phosphorus burial, with maximum values up to 80 times and 21 times the background values in the subjacent part of the lower Schrattenkalk Member, respectively. Furthermore, the Rawil Member records the appearance of kaolinite, indicating a change towards tropical and more humid climate conditions. This change may have led to an increase in continental weathering rates and an associated increase in detrital and nutrient fluxes towards the ocean. The phase of climate change observed near the Barremian–Aptian boundary may have been triggered by a phase of intensified volcanic activity linked with the onset of the Ontong Java large igneous province and the Rawil Member may be the expression of a precursor episode to Oceanic Anoxic Event 1a in the shallow‐marine environment. 相似文献
18.
The early Albian Oceanic Anoxic Event (OAE), i.e., OAE1b, is well documented in western Tethys and in the primary North Atlantic Ocean, but has not yet been reported from eastern Tethys. In this paper, we present bulk carbon isotope data of hemipelagites to examine if it was recorded in eastern Tethys. Samples were taken from the upper Chuangdepu Member (nannofossil zone CC8) of the lower Gyabula (former Shadui) Formation at the Bangbu section, Qonggyai, southern Tibet of China. The δ13C values mainly range from −0.6‰ to 1.8‰ with a maximum of 1.87‰ and a minimum of −0.69‰. Three stages of carbon isotope evolution were distinguished with three boundaries. By the constraint of the stratigraphic sequence and nannofossil biostratigraphic zone CC8, the rapid δ13C change and correlation with western Tethys and Atlantic Ocean together suggest that these three boundaries of the carbon isotope evolution probably correspond to three subevents of the early Albian OAE1b, and the subevent levels of upper Kilian, Paquier, and Leenhardt are recorded in eastern Tethys (southern Tibet). The fact that the amount of δ13C shift is less by ∼1.5–2.0‰ in eastern Tethys than in western Tethys and Atlantic Ocean is interpreted as a result of possible cool sea surface (∼14–16 °C) of the southeastern Tethys (northern Indian passive margin of Greater India), which was probably located in a medium–high latitude during the Albian, leading to low primary productivity. The recognition of OAE-1b from Tethys Himalaya can improve our understanding of the Tethys and global paleoclimatic and paleoceanographic changes during the mid-Cretaceous. 相似文献
19.
The Soritoidea (Foraminifera) represent an important component of Cenomanian microfossil assemblages of the central and southern Tethyan carbonate platforms and are widely used as biostratigraphic markers. In this paper a new taxon, Fissumella motolae n. gen. n. sp., is described from the Cretaceous carbonate platform facies of central and southern Italy. It is characterized by its small size, planispiral-involute arrangement of chambers, fissure-shaped single aperture and few and short radial septula subdividing the marginal lumen of the chambers. Fissumella motolae n. gen. n. sp. represents the first soritoidean in the fossil record showing internal subdivisions of the chamber lumen. Carbon isotope stratigraphy supports an earliest Albian age for this significant step in the evolution of the superfamily Soritoidea. The new subfamily Fissumellinae is established for soritoidean foraminifera with planispiral-involute lens-shaped shells, single aperture and chamber lumen subdivided by few and short septula. 相似文献
20.
Sihem Salmi-Laouar Bruno Ferré Khoudair Chaabane Rabah Laouar Adrian J. Boyce Anthony E. Fallick 《Arabian Journal of Geosciences》2018,11(8):182
At the southern margin of the Tethys, the Es Souabaa area recorded traces of Oceanic Anoxic Event 2 (OAE2) around the Cenomanian-Turonian boundary (C/Tb). The dark, laminated, filament- and pyrite-bearing limestones represent the typical facies of this event. In terms of sedimentary environment, these features reflect a transgressive drowning that had induced hypoxia in these sedimentary environments. Such conditions favored the deposition and preservation of organic matter of marine origin, the distribution of which was controlled by paleogeography and halokinetic tectonics at that period. The OAE2 reached a climax between the last upper Cenomanian occurrence of Rotalipora cushmani and the lower Turonian occurrence of Whiteinella praehelvetica. Positive shift of the δ13C excursion along with relatively high total organic carbon (TOC) contents during OAE2 both indicate palaeo-environmental modifications enhanced by a significant change in primary marine productivity. Meanwhile, negative δ18O peaks in carbonates reflect increasing temperatures. Comparison of the data from this study with those from the neighboring Kalaat Senan section (Tunisia) suggests close similarities of events, although OAE2 is much more enhanced in Algeria. 相似文献