首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultra-high-resolution  ( R ∼ 300 000)  profiles of four diffuse interstellar bands (DIBs) are presented. The λλ 5797-, 5850-, 6196- and 6379- Å DIBs were observed towards the reddened supergiant HD 24398, a line of sight free of Doppler splitting; thus the observed profiles can be considered as intrinsic to the DIB carriers. Three of the profiles show substructure which supports the hypothesis of a molecular origin for these DIBs.  相似文献   

2.
An upper limit of the column density of the C5 linear molecule in translucent interstellar clouds is estimated from high-resolution ( R =80 000) and very high signal-to-noise ratio (∼1000) echelle spectra. It is 1012 cm−2 per E ( B − V )=1 (two orders of magnitude lower than that of C2).  相似文献   

3.
We have applied the method of investigating extinction curves using statistically meaningful samples that was proposed by us 25 years ago. The extensive data sets of the ANS (Astronomical Netherlands Satellite) and 2MASS (Two Micron All Sky Survey) were used, together with UBV photometry to create average extinction curves for samples of OB stars. Our results demonstrate that in the vast majority of cases the extinction curves are very close to the mean galactic extinction curve. Only a few objects were found to be obviously discrepant from the average. The latter phenomenon may be related to nitrogen chemistry in translucent interstellar clouds (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The pure rotational spectrum of homonuclear diatomic molecules in the interstellar medium is strongly forbidden, and no such spectrum has been detected. In regions of high excitation, vibrational emission may occur, as is widely detected in the case of H2 in interstellar shocks and photon-dominated regions. However, it is of considerable interest to know the abundance of homonuclear diatomics in quiescent regions. We propose that vibrational emission from homonuclear diatomic molecules in cold clouds may be detectable, where the excitation is mainly through collisions with non-thermal electrons arising from the cosmic-ray ionization of H2. As an example, we estimate the intensity of emission from N2 in cold, dark interstellar clouds. We show that such emission is at the limit of detectability with current technology. Other excitation mechanisms may also contribute and enhance this emission.  相似文献   

5.
In order to interpret H2 quasar absorption-line observations of damped Lyα systems (DLAs) and subDLAs, we model their H2 abundance as a function of dust-to-gas ratio, including H2 self-shielding and dust extinction against dissociating photons. Then, we constrain the physical state of the gas by using H2 data. Using H2 excitation data for DLAs with H2 detections, we derive a gas density  1.5 ≲ log n (cm−3) ≲ 2.5  , temperature  1.5 ≲ log T (K) ≲ 3  , and an internal ultraviolet (UV) radiation field (in units of the Galactic value)  0.5 ≲ log χ≲ 1.5  . We then find that the observed relation between the molecular fraction and the dust-to-gas ratio of the sample is naturally explained by the above conditions. However, it is still possible that H2 deficient DLAs and subDLAs with H2 fractions less than  ∼10−6  are in a more diffuse and warmer state. The efficient photodissociation by the internal UV radiation field explains the extremely small H2 fraction  (≲10−6)  observed for  κ≲ 1/30  (κ is the dust-to-gas ratio in units of the Galactic value); H2 self-shielding causes a rapid increase in, and large variations of, H2 abundance for  κ≳ 1/30  . We finally propose an independent method to estimate the star formation rates of DLAs from H2 abundances; such rates are then critically compared with those derived from other proposed methods. The implications for the contribution of DLAs to the cosmic star formation history are briefly discussed.  相似文献   

6.
The effects of the production on dust grain surfaces of molecular hydrogen in excited states have been investigated. On the assumption that all of the H2 formed on the surface of grains has a sufficient level of excitation too vercome the energy barriers in the formation reactions for the important OH and CH+ radicals, we consider the likely abundances of excited H2 (H2 *), OH and CH+ in various situations. Two different models are employed; the first links the H2 * abundance directly to that of H2 using a steady-state approximation, whilst the second considers the time-dependence of H2 *. The second model is applied to gas that has been subjected to a strong isothermal shock (specifically, the shock-induced collapse of a diffuse cloud), which results in an extreme (high density, high atomic hydrogen abundance) environment. In general, it is found that the presence of the excited H2 has only marginal effects on the chemistry of interstellar clouds. However, in the isothermal shock model, the abundances of CH+ are significantly enhanced, but only on short timescales, whilst the effects on the OH abundances are smaller, but last longer. We conclude that other than in such exceptional environments there are no obvious chemical signatures of the formation of H2 *. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The possibility of nitrogen isotopic fractionation owing to ion–molecule exchange reactions involving the most abundant N-containing species in dense interstellar clouds has been explored. We find that exchange reactions between N atoms and N-containing ions have most influence on the fractionation, although the extent of fractionation is too small to be readily detectable.  相似文献   

8.
Recent laboratory experiments on interstellar dust analogues have shown that H2 formation on dust-grain surfaces is efficient in a range of grain temperatures below 20 K. These results indicate that surface processes may account for the observed H2 abundance in cold diffuse and dense clouds. However, high abundances of H2 have also been observed in warmer clouds, including photon-dominated regions (PDRs), where grain temperatures may reach 50 K, making the surface processes extremely inefficient. It was suggested that this apparent discrepancy can be resolved by chemisorption sites. However, recent experiments indicate that chemisorption processes may not be efficient at PDR temperatures. Here we consider the effect of grain porosity on H2 formation, and analyse it using a rate-equation model. It is found that porosity extends the efficiency of the recombination process to higher temperatures. This is because H atoms that desorb from the internal surfaces of the pores may re-adsorb many times and thus stay longer on the surface. However, this porosity-driven extension may enable efficient H2 formation in PDRs only if porosity also contributes to significant cooling of the grains, compared to non-porous grains.  相似文献   

9.
We have observed emission from both ortho and para spin states of ketene (CH2CO) towards several deeply-embedded protostars. The low CH2CO fractional abundances (∼10−10) and the rotation temperatures (∼20 K) are consistent with emission from the cooler envelope. We compare our results with previous studies and discuss possible production pathways to interstellar ketene. We suggest that, if low observed excitation temperatures of CH2CO, CH3CHO and H2CO are indicative of their absence from the hot core region, then this may be due to the extensive hydrogenation of pre-existing grain mantles prior to evaporation into the inner envelope, leading to lower abundances of these compounds and to mantles rich in alcohols.  相似文献   

10.
11.
We investigate the chemistry of a transient density fluctuation, with properties similar to those of a dense core within a molecular cloud. We run a multipoint chemical code through a core's condensation from a diffuse medium to its eventual dispersion, over a period of ∼1 Myr. We find a significant enhancement of the chemical composition of the core material on its return to diffuse conditions, whilst the expansion of the core as it disperses moves this material out to large distances from the core centre. This process transports molecular species formed in the high-density regions out into the diffuse medium. Chemical enrichment of the cloud as a whole also occurs, as other cores of various sizes, life-spans and separations evolve throughout. Enrichment is strongly affected by freeze-out on to dust grains, which takes place in high-density, high visual extinction regions. As the core disperses after reaching its peak density and the visual extinction drops below a critical value, grain mantles are evaporated back into the gas phase, initiating more chemistry. The influence of the sizes, masses and cycle periods of cores will be large both for the level of chemical enrichment of a dark cloud and ultimately for the low-mass star formation rate. We also consider the case of a self-gravitating core, by holding its peak density conditions for a further 0.4 Myr. We find that the differences are generally small, and the resultant column densities do not provide definitive criteria for detection of this condition. However, increases in fractional abundances due to reinjection of mantle-borne species may provide a criterion for a negative detection.  相似文献   

12.
A model is constructed of the material in front of the star Cygnus OB2 no. 12 in which dense cores are embedded in diffuse clumps of gas. The model reproduces the measured abundances of C2 and CO, and predicts a column density of 91010 cm2 for HCO+.  相似文献   

13.
We present a fully sampled C18O (1–0) map towards the southern giant molecular cloud (GMC) associated with the H  ii region RCW 106, and use it in combination with previous 13CO (1–0) mapping to estimate the gas column density as a function of position and velocity. We find localized regions of significant 13CO optical depth in the northern part of the cloud, with several of the high-opacity clouds in this region likely associated with a limb-brightened shell around the H  ii region G333.6−0.2. Optical depth corrections broaden the distribution of column densities in the cloud, yielding a lognormal distribution as predicted by simulations of turbulence. Decomposing the 13CO and C18O data cubes into clumps, we find relatively weak correlations between size and linewidth, and a more sensitive dependence of luminosity on size than would be predicted by a constant average column density. The clump mass spectrum has a slope near −1.7, consistent with previous studies. The most massive clumps appear to have gravitational binding energies well in excess of virial equilibrium; we discuss possible explanations, which include magnetic support and neglect of time-varying surface terms in the virial theorem. Unlike molecular clouds as a whole, the clumps within the RCW 106 GMC, while elongated, appear to show random orientations with respect to the Galactic plane.  相似文献   

14.
15.
Dense cores are the simplest star-forming sites that we know, but despite their simplicity, they still hold a number of mysteries that limit our understanding of how solar-type stars form. ALMA promises to revolutionize our knowledge of every stage in the life of a core, from the pre-stellar phase to the final disruption by the newly born star. This contribution presents a brief review of the evolution of dense cores and illustrates particular questions that will greatly benefit from the increase in resolution and sensitivity expected from ALMA.  相似文献   

16.
The chemistry of molecular clouds has been studied for decades, with an increasingly general and sophisticated treatment of the reactions involved. Yet the treatment of turbulent diffusion has remained extremely sketchy, assuming simple Fickian diffusion with a scalar diffusivity D. However, turbulent flows similar to those in the interstellar medium are known to give rise to anomalous diffusion phenomena, more specifically superdiffusion (increase of the diffusivity with the spatial scales involved). This paper considers to what extent and in what sense superdiffusion modifies molecular abundances in interstellar clouds. For this first exploration of the subject we employ a very rough treatment of the chemistry and the effect of non‐uniform cloud density on the diffusion equation is also treated in a simplified way. The results nevertheless clearly demonstrate that the effect of superdiffusion is quite significant, abundance values at a given radius being modified by order of unity factors. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Here we make a new study of the behaviour of the Na  i /K  i column density ratio in the interstellar medium, using a sample of new observations of 28 stars obtained at the Nordic Optical Telescope (NOT) in 1996 and 1997, and previously published observations (obtained by some of the authors) of 21 stars. The sightlines cover a range of distances and directions, including into the Galactic halo. We make use of new observations of the Na  i ultraviolet (UV) doublet for some 18 stars. This doublet is much weaker than the Na  i D doublet and so is less susceptible to saturation effects, and it is well known that it can be used to obtain more accurate Na  i column densities with a smaller error range. We find an average N (Na  i )/ N (K  i ) ratio from the Na  i UV data of about 90, which is rather higher than that found previously by Hobbs and Lequeux. The Na  UV–K  i   ratio shows a small increase in value with increasing column density, while we also find a sample of low N (Na  i )/ N (K  i ) ratio clouds generally seen towards distant objects on high-latitude sightlines that reach into the halo, so that the ratio decreases more sharply at lower column densities. As the values of the ratio for these halo clouds  (10–20)  bracket the cosmic Na/K abundance ratio, we suggest that these ratios result from a harder radiation field in the lower halo, such that the ionized fractions of Na  i and K  i become similar. Clearly caution needs to be applied in using any kind of 'standard value' for the Na  i /K  i column density ratio.  相似文献   

18.
We present multimolecular line maps obtained with the Mopra telescope towards the southern giant molecular cloud (GMC) complex G333, associated with the H  ii region RCW 106. We have characterized the GMC by decomposing the 3D data cubes with gaussclumps , and investigated spatial correlations among different molecules with principal component analysis (PCA). We find no correlation between clump size and linewidth, but a strong correlation between emission luminosity and linewidth. PCA classifies molecules into high- and low-density tracers, and reveals that HCO+ and N2H+ are anticorrelated.  相似文献   

19.
We present theoretically established values of the CO-to-H2 and C-to-H2 conversion factors that may be used to estimate the gas masses of external galaxies. We consider four distinct galaxy types, represented by M51, NGC 6946, M82 and SMC N27. The physical parameters that best represent the conditions within the molecular clouds in each of the galaxy types are estimated using a χ2 analysis of several observed atomic fine structure and CO rotational lines. This analysis is explored over a wide range of density, radiation field, extinction and other relevant parameters. Using these estimated physical conditions in methods that we have previously established, CO-to-H2 conversion factors are then computed for CO transitions up to J = 9 → 8. For the conventional CO(1–0) transition, the computed conversion factor varies significantly below and above the canonical value for the Milky Way in the four galaxy types considered. Since atomic carbon emission is now frequently used as a probe of external galaxies, we also present, for the first time, the C-to-H2 conversion factor for this emission in the four galaxy types considered.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号