首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Bitterroot metamorphic core complex is an exhumed, mid-crustal, plutonic–metamorphic complex that formed during crustal thickening and subsequent extension in the hinterland of the North American Cordilleran Orogen, in the northern Idaho batholith region. Extension was accommodated mainly on the Bitterroot mylonite zone, a 500–1500-m-thick shear zone that deforms granitic intrusive rocks as young as 53–52 Ma, as well as older high-grade metamorphic rocks and plutons. Exhumation of the core complex, in Eocene time, is marked in the shear zone by the transition from amphibolite-facies mylonitization, to greenschist-facies mylonitization, chloritic brecciation, to brittle faulting that progressed from shallower crustal levels in the west to deeper crustal levels in the east from ca. 53 –30 Ma based on U–Pb, Ar–Ar, and fission-track data. Apatite and zircon fission-track data record the lower-temperature part of the exhumation history and help define when the shear zone became inactive, as well as the transition from rapid, core complex-style extension to slower basin-and-range-style extension. They indicate that the western part of the complex was exhumed to within 1–2 km of the surface by 48–45 Ma, while the eastern part of the complex was still at amphibolite-facies conditions and that the eastern part of the complex was not exhumed below 60 °C until after 30 Ma. Younger apatite fission-track ages (≤26 Ma) on the eastern range front of the Bitterroot Mountains suggest that the present topographic expression of the mylonite front was due to Miocene high-angle faulting and widening of the Bitterroot Valley.  相似文献   

2.
Abstract

The Aegean continental domain is known to be the site of widespread “back-arc” extension since at least 13 Ma, on the basis of seismotectonic, stratigraphic and fault analysis studies. This extension is documented to overprint structures related to the Mesozoic-Cenozoic Hellenic orogeny. Features attributed to early thrusting include the overall ductile deformation within two broad belts that have suffered HP/LT metamorphism across the Aegean. This study presents a structural analysis of the central Aegean area (Cyclades and Evvia Islands), examining in particular the relationship between ductile and brittle deformation, both in the field and on a regional scale. Extension appears to be responsible for most of the ductile deformation within HP rock units that have experienced penetrative greenschist facies and higher grade metamorphic over-printing. On each studied island, progressive extensional deformation has occurred through the development of a major normal-sense detachment zone down to depths of about 18-25 km. Large displacement along the detachment zone accounts for rapid cooling and exhumation of ductile lower crust to form a local metamorphic dome or core complex. Structural and stratigraphic features support a progressive migration of normal faulting away from the dome axis, and a rotation of previously active faults toward low dips, as in kinematic models recently suggested for the development of extensional detachment systems. All the studied domes, except that seen on los Island, show a dominant top-to-the north or north-east sense of shear, while on the southern flank of many of them, an opposite sense of shear is observed, displaying the same progressive evolution from ductile to brittle rock behaviour. This opposite sense of shear is thought not to result from shearing along a major conjugate detachment zone, as in some recent models, but from the accommodation in the ductile crust of upward bending of the brittle upper crust in the footwall of the north-dipping detachment. Available radiometric and stratigraphie data indicate an early minimum age (22-19 Ma) for the onset of extension. The relationship between early metamorphic domes and shallow-dipping detachments, on one hand, and Messinian-Quaternary steep normal faults and grabens, on the other hand, is best explained with the progressive and continuous development of new normal faults away from the domes axes, rather than with a two-stage evolutionary model (core-complex stage, then Basin-and-Range stage) of the type invoked for the North American Cordillera.  相似文献   

3.
大别山早白垩世变质核杂岩的结构与演化   总被引:7,自引:0,他引:7       下载免费PDF全文
大别山中部混合岩-片麻岩穹隆的构造属性认识方面一直众说纷纭.通过对中大别杂岩及其边界剪切带或断裂带的构造解析,并结合对前人相关研究的总结,我们将中大别杂岩厘定为早白垩世的变质核杂岩,其中商麻断裂与晓天-磨子潭断裂和水吼-五河剪切带构成了一个完整的拆离断层带,并将变质核杂岩的形成时间限定在145~120 Ma.中大别杂岩...  相似文献   

4.
Kinematic analysis of the deformation in central Crete suggests that the structural evolution and exhumation of the high pressure/low temperature (HP/LT) rocks outcropping at the Mount Psiloritis metamorphic core complex are associated with a regional, Miocene, north-south extension and thinning of the continental crust. This tectonic regime developed under bulk coaxial strain conditions, with ductile deformation in the lower and brittle deformation in the upper crust, and followed, on the decompressional path, a north-south compression associated with a HP/LT metamorphism in the lower crust. This compressional event took place during Oligocene—Early Miocene and led to overthickening of the accretionary wedge in the Hellenic Arc. An east-west directed compression accompanied, in the final stages, the Miocene north-south extension of the continental crust.  相似文献   

5.
ABSTRACT The high-grade migmatitic core to the southern Brittany metamorphic belt has mineralogical and textural features that suggest high-temperature decompression. The chronology of this decompression and subsequent cooling history have been constrained with 40Ar/39 Ar ages determined for multigrain concentrates of hornblende and muscovite prepared from amphibolite and late-orogenic granite sheets within the migmatitic core, and from amphibolite of the structurally overlying unit. Three hornblende concentrates yield plateau isotope correlation ages of c. 303–298 Ma. Two muscovite concentrates record well-defined plateau ages of c. 306–305 Ma. These ages are geologically significant and date the last cooling through temperatures required for intracrystalline retention of radiogenic argon. The concordancy of the hornblende and muscovite ages suggest rapid post-metamorphic cooling. Extant geochronology and the new 40Ar/39Ar data suggest a minimum time-integrated average cooling rate between c. 725 °C and c. 125 °C of c. 14 ± 4°C Ma-1, although below 600 °C the data permit an infinitely fast rate of cooling. Mineral assemblages and reaction textures in diatexite migmatites suggest c. 4 kbar decompression at 800–750 °C. This must have pre-dated the rapid cooling. Emplacement of two-mica granites into the metamorphic belt occurred between 345 and 300 Ma. The youngest plutons were emplaced synkinematically along shallow-dipping normal faults interpreted to be reactivated Eo-Variscan thrusts. A penetrative, west-plunging stretching lineation developed in these granites suggests that extension was orogen-parallel. Extension was probably related to regional uplift and gravitational collapse of thermally weakened crust during constrictional (escape) tectonics in this narrow part of the Variscan orogen. This followed slab breakoff during the terminal stages of convergence between Gondwana and Laurasia; detachment may have been consequent upon a change in kinematics leading to dextral displacement within the orogen. Dextral ductile strike-slip displacement was concentrated in granites emplaced synkinematically along the South Armorican Shear Zone. Rapid cooling is interpreted to have resulted from tectonic unroofing with emplacement of granite along decollement surfaces. The high-grade migmatitic core of the southern Brittany metamorphic belt represents a type of metamorphic core complex formed during orogen-parallel extensional unroofing and regional-scale ductile flow.  相似文献   

6.
渤海湾盆地周缘发育的多个变质核杂岩,很好地记录了华北克拉通东部晚中生代以来的地壳伸展过程。文中以渤海湾盆地西部献县凸起和饶阳凹陷为研究区,试图揭示盆地内部变质核杂岩的发育特征。根据井、震结合的方法,通过精细的构造解释,厘定了献县断层及其上盘的构造变形特征;利用凹陷内的钻井资料对献县凸起上发育地层的时代和岩性进行限定;结合区域上变质核杂岩的发育特征和形成背景,讨论了献县变质核杂岩的发育时间和成因演化模式。结果表明:在研究区内呈弧形展布的献县断层具有主拆离断层的特征,断层上盘的饶阳凹陷南部残留有中元古界和下古生界,且凹陷内发育有数量众多、不同倾向的次级断层;献县凸起上发育的地层为太古宇-古元古界,岩性包括角闪片麻岩、黑云二长片麻岩,局部发育有花岗片麻岩。研究认为,献县变质核杂岩具有典型变质核杂岩的基本特征,其形成时间为晚中生代(K1?),发育于华北克拉通东部岩石圈大规模减薄的背景下,并以滚动枢纽模式发展演化。  相似文献   

7.
基于对辽南变质核杂岩主拆离断层及下伏韧性剪切带的几何学分析以及拆离断层带构造岩的显微构造研究,结合变质核杂岩构造—岩浆活动及其形成过程和力学机制,重点讨论了主拆离断层的波瓦状构造的特点及其形成条件。结果表明:波瓦状构造的发育与下盘晚期阶段花岗质岩体的侵位具有同时性。伸展构造发育初期就位的深成岩体加热和软化了上部地壳,此时岩石力学属性控制的钝角锯齿状断裂构成了波瓦状构造的雏形,晚期阶段花岗质深成侵入岩的不均匀侵位制约了波瓦状构造的发育。  相似文献   

8.
京北云蒙山变质核杂岩南东侧剥离断层带的构造热演化   总被引:4,自引:0,他引:4  
以云蒙山变质核杂岩东侧的河防口低角度正断层为研究对象,通过矿物(黑云母)的变形特征和形成环境分析,获得了该断层带上的构造热演化环境:温度为780-860℃,压力约为7.3×108-8.6×108Pa。提出云蒙山变质核杂岩的成因机制是,在区域伸展背景下,处于半固结状态的云蒙山花岗岩在东南侧卷入河防口-水峪伸展型韧性剪切带,使花岗岩发生中高温条件的韧性变形;之后,该韧性剪切带在隆升过程中不断向浅层次过渡,形成了一些浅层次的脆性伸展变形构造。  相似文献   

9.
The Thor-Odin dome region of the Shuswap metamorphic core complex, British Columbia, contains migmatitic rocks exhumed from the deep mid-crust of the Cordilleran orogen. Extensive partial melting occurred during decompression of the structurally deepest rocks, and this decompression path is particularly well recorded by mafic boudins of silica-undersaturated, aluminous rocks. These mafic boudins contain the high-temperature assemblages gedrite+cordierite+spinel+corundum+kyanite/sillimanite±sapphirine±högbomite and gedrite+cordierite+spinel+corundum+kyanite/sillimanite+garnet±staurolite (relict)±anorthite. The boudins are interlayered with migmatitic metapelitic gneiss and orthogneiss in this region.

The mineral assemblages and reaction textures in these rocks record decompression from the kyanite zone (P>8–10 kbar) to the sillimanite–cordierite zone (P<5 kbar) at T750 °C, with maximum recorded temperatures of 800 °C. Evidence for high-temperature decompression includes the partial replacement of garnet by cordierite, the partial to complete replacement of kyanite by corundum+cordierite+spinel (hercynite)±sapphirine±högbomite symplectite, and the replacement of some kyanite grains by sillimanite. Kyanite partially replaced by sillimanite, and sillimanite with coronas of cordierite±spinel are also observed in the associated metapelitic rocks.

Partial melt from the surrounding migmatitic gneisses has invaded the mafic boudins. Cordierite reaction rims occur where minerals in the boudins interacted with leucocratic melt. When combined with existing structural and geochronologic data from migmatites and leucogranites in the region, these petrologic constraints suggest that high-temperature decompression was coeval with partial melting in the Thor-Odin dome. These data are used to evaluate the relationship between partial melting of the mid-crust and localized exhumation of deep, hot rocks by extensional and diapiric processes.  相似文献   


10.
Orogenic collapse involves extension and thinning of thick and hot (partially molten) crust, leading to the formation of metamorphic core complexes (MCC) that are commonly cored by migmatite domes. Two-dimensional thermo-mechanical Ellipsis models evaluate the parameters that likely control the formation and evolution of MCC: the nature and geometry of the heterogeneity that localizes MCC, the presence/absence of a partially molten layer in the lower crust, and the rate of extension. When the localizing heterogeneity is a normal fault in the upper crust, the migmatite core remains in the footwall of the fault, resulting in an asymmetric MCC; if the localizing heterogeneity is point like region within the upper crust, the MCC remains symmetric throughout its development. Therefore, asymmetrically located migmatite domes likely reflect the dip of the original normal fault system that generated the MCC. Modeling of a severe viscosity drop owing to the presence of a partially molten layer, compared to a crust with no melt, demonstrates that the presence of melt slightly enhances upward advection of material and heat. Our experiments show that, when associated with boundary-driven extension, far-field horizontal extension provides space for the domes. Therefore, the buoyancy of migmatite cores contributes little to the outer envelope of metamorphic core complexes, although it may play a significant role in the internal dynamics of the partially molten layer. The presence of melt also favors heterogeneous bulk pure shear of the dome as opposed to the bulk simple shear, which dominates in melt-absent experiments. Melt presence affects the shape of P-T-t paths only slightly for material located near the top of the low-viscosity layer but leads to more complex flow paths for material inside the layer. The effect of extension rate is significant: at high extension rate (cm yr− 1 in the core complex region), partially molten crust crystallizes and cools along a high geothermal gradient (35 to 65 °C km− 1); material remains partially molten in the dome during ascent. At low strain rate (mm yr 1 in the core complex region), the partially molten crust crystallizes at high pressure; this material is subsequently deformed in the solid-state along a cooler geothermal gradient (20 to 35 °C km− 1) during ascent. Therefore, the models predict distinct crystallization versus exhumation histories of migmatite cores as a function of extensional strain rates. The Shuswap metamorphic core complex (British Columbia, Canada) exemplifies a metamorphic core complex in which an asymmetric, detachment-controlled migmatite dome records rapid exhumation and cooling likely related to faster rates of extension. In contrast the Ruby Mountain-East Humboldt Ranges (Nevada, U.S.A.) exhibits characteristics associated with slower metamorphic core complexes.  相似文献   

11.
甘肃北山勒巴泉变质核杂岩   总被引:1,自引:0,他引:1  
在多期伸展体制下形成的勒巴泉变质核杂岩构造,具有3层结构的特征,即结晶基底、中间韧性盖层、上部脆性盖层,其间分别被基底剥离断层和盖层剥离断层分割。本文重点论述了变质核杂岩的组成、空间展布、结构构造和典型的构造样式,并分析了变质核杂岩构造的形成时代和大地构造背景。  相似文献   

12.
庐山变质核杂岩具有典型的3层结构。拆离带是核部隆升过程中盖层滑脱、剪切变形而形成的,该拆离面是在北东向褶皱基础上叠加杂岩核部隆升作用而形成的波状起伏面。拆离带在核部以西发育倾向西向、南西向、北西向的面理和矿物生长线理,显示向西滑脱形成剪切拉伸变形的特征。拆离带岩石以糜棱岩和构造片岩为主,辅以碎裂岩和构造角砾岩。岩石变形特征表明其既具有韧性变形,也具有脆-韧性变形及脆性变形的特点。核部隆升引起的拆离变形作用,不仅形成了拆离带,还影响了拆离带以上盖层岩石,形成一个由拆离带向上由强变弱的变形域。这种规律性递变现象使庐山变质核杂岩具有垂向变形分层、水平变形分带的特点。拆离带中角闪石-斜长石矿物对计算得出的变质温度为653 ℃~694 ℃,压力为0.56~0.67 GPa。  相似文献   

13.
内蒙古喀喇沁变质核杂岩及其隆升机制探讨   总被引:17,自引:11,他引:17  
内蒙古喀喇沁地区的变质核杂岩是由韧性变形的太古宙、元古宙变质岩素组成的核;由脆-韧性变形和经受了低压变质的中侏罗统地层组成的中间层;由少量脆性变形和未变质的上侏罗-下白垩统地层和岩体组成盖层。变质核杂岩的组成与结构显示了它对称伸展和不对称隆升的特征,130-100Ma是其快速隆升的时期。从该区长期的热演化历史以及同构造的岩浆活动来看,可以认为喀喇沁变质核杂岩是地幔热隆及岩浆侵入引起地壳伸展的典型实例。喀喇沁地区可以作为研究华北岩石圈结构和演化的窗口地区。  相似文献   

14.
The Mesozoic Liaonan metamorphic core complex (mcc) of the southeastern Liaoning province, North China, is an asymmetric Cordilleran-style complex with a west-rooting master detachment fault, the Jinzhou fault. A thick sequence of lower plate, fault-related mylonitic and gneissic rocks derived from Archean and Early Cretaceous crystalline protoliths has been transported ESE-ward from mid-crustal depths. U–Pb ages of lower plate syntectonic plutons (ca. 130–120 Ma), 40Ar–39Ar cooling ages in the mylonitic and gneissic sequence (ca. 120–110 Ma), and a Cretaceous supradetachment basin attest to the Early Cretaceous age of this extensional complex. The recent discovery of the coeval and similarly west-rooting Waziyu mcc in western Liaoning [Darby, B.J., Davis, G.A., Zhang, X., Wu, F., Wilde, S., Yang, J., 2004. The newly discovered Waziyu metamorphic core complex, Yiwulushan, western Liaoning Province, North China. Earth Science Frontiers 11, 145–155] indicates that the Gulf of Liaoning, which lies between the two complexes, was the center of a region of major crustal extension.Clockwise crustal rotation of a large region including eastern Liaoning province and the Korean Peninsula with respect to a non-rotated North China block has been conclusively documented by paleomagnetic studies over the past decade. The timing of this rotation and the reasons for it are controversial. Lin et al. [Lin, W., Chen, Y., Faure, M., Wang, Q., 2003. Tectonic implication of new Late Cretaceous paleomagnetic constraints from Eastern Liaoning Peninsula, NE China. Journal of Geophysical Research 108 (B-6) (EPM 5-1 to 5-17)] proposed that a clockwise rotation of 22.5° ± 10.2° was largely post-Early Cretaceous in age, and was the consequence of extension within a crustal domain that tapers southwards towards the Bohai Sea (of which the Gulf of Liaoning is the northernmost part). Paleomagnetic studies of Early Cretaceous strata (ca 134–120 Ma) in the Yixian–Fuxin supradetachment basin of the Waziyu mcc indicate the non-rotation of North China and the basin [Zhu, R.X., Shao, J.A., Pan, Y.X., Shi, R.P., Shi, G.H., Li, D.M., 2002. Paleomagnetic data from Early Cretaceous volcanic rocks of West Liaoning: evidence for intracontinental rotation. Chinese Science Bulletin 47, 1832–1837]. Such upper-plate non-rotation supports our conclusion that the lower plates of the Waziyu and Liaonan metamorphic core complexes were displaced ESE-ward in an absolute sense away from the stable North China block, thus contributing to the rotation of Korea and contiguous areas. Rotation is inferred to have affected only the upper crust above mid-crustal levels into which we believe the Jinzhou and Waziyu detachment fault zones flattened. If this is the case, the regional Tan Lu fault that lies between the two core complexes was truncated at mid-crustal depth, since in areas to the south it forms the boundary between the North and South China lithospheric blocks. It is noteworthy that the two extensional complexes lie not far north of the Bohai Bay, the area proposed by Lin et al. [Lin, W., Chen, Y., Faure, M., Wang, Q., 2003. Tectonic implication of new Late Cretaceous paleomagnetic constraints from Eastern Liaoning Peninsula, NE China. Journal of Geophysical Research 108 (B-6) (EPM 5-1 to 5-17)] as the site of the pole of rotation for Korea's clockwise displacement.Lin et al. [Lin, W., Chen, Y., Faure, M., Wang, Q., 2003. Tectonic implication of new Late Cretaceous paleomagnetic constraints from Eastern Liaoning Peninsula, NE China. Journal of Geophysical Research 108 (B-6) (EPM 5-1 to 5-17)] were unaware of the Liaonan and Waziyu mcc's and argued that most of the regional block rotation was post-Early Cretaceous and, in part, early Cenozoic. However, the ca. 130–120 Ma ages of the two Liaoning mcc's and a Songliao basin mcc (Xujiaweizi), the latter discovered only by recent drilling through its younger stratigraphic cover, support our and some Korean coworkers' conclusions that most of the clockwise rotation was Early Cretaceous.  相似文献   

15.
The Rhodope Massif in southern Bulgaria and northern Greece hosts a range of Pb–Zn–Ag, Cu–Mo and Au–Ag deposits in high-grade metamorphic, continental sedimentary and igneous rocks. Following a protracted thrusting history as part of the Alpine–Himalayan collision, major late orogenic extension led to the formation of metamorphic core complexes, block faulting, sedimentary basin formation, acid to basic magmatism and hydrothermal activity within a relatively short period of time during the Early Tertiary. Large vein and carbonate replacement Pb–Zn deposits hosted by high-grade metamorphic rocks in the Central Rhodopean Dome (e.g., the Madan ore field) are spatially associated with low-angle detachment faults as well as local silicic dyke swarms and/or ignimbrites. Ore formation is essentially synchronous with post-extensional dome uplift and magmatism, which has a dominant crustal magma component according to Pb and Sr isotope data. Intermediate- and high-sulphidation Pb–Zn–Ag–Au deposits and minor porphyry Cu–Mo mineralization in the Eastern Rhodopes are predominantly hosted by veins in shoshonitic to high-K calc-alkaline volcanic rocks of closely similar age. Base-metal-poor, high-grade gold deposits of low sulphidation character occurring in continental sedimentary rocks of synextensional basins (e.g., Ada Tepe) show a close spatial and temporal relation to detachment faulting prior and during metamorphic core complex formation. Their formation predates local magmatism but may involve fluids from deep mantle magmas.The change in geochemical signatures of Palaeogene magmatic rocks, from predominantly silicic types in the Central Rhodopes to strongly fractionated shoshonitic (Bulgaria) to calc-alkaline and high-K calc-alkaline (Greece) magmas in the Eastern Rhodopes, coincides with the enrichment in Cu and Au relative to Pb and Zn of the associated ore deposits. This trend also correlates with a decrease in the radiogenic Pb and Sr isotope components of the magmatic rocks from west to east, reflecting a reduced crustal contamination of mantle magmas, which in turn correlates with a decreasing crustal thickness that can be observed today. Hydrogen and oxygen isotopic compositions of the related hydrothermal systems show a concomitant increase of magmatic relative to meteoric fluids, from the Pb–Zn–Ag deposits of the Central Rhodopes to the magmatic rock-hosted polymetallic gold deposits of the Eastern Rhodopes.  相似文献   

16.
根据宏观与微观构造测量,揭示出在辽宁南部新房地区存在一个变质核杂岩构造,即新房变质核杂岩。该核杂岩具有典型的3层结构:上盘为新元古代—古生代弱变形沉积岩层,下盘是新太古代糜棱岩、片麻杂岩和中生代花岗质侵入岩体,中间是拆离断层带由不同层次构造岩构成。拆离断层带形态为向北西开口的反“C”型,产状较缓,倾向分别向西、向南、向东倾斜,线理产状240°~290°∠12°~30°。运动方向为上盘相对下盘由北东东向南西西运动,结合区域岩浆活动性及其测年资料等综合分析,新房变质核杂岩形成于早白垩世,与辽南金州变质核杂岩在几何学、运动学极性和形成时间等方面具有很多相似性,形成于同一动力学背景。该变质核杂岩的厘定不仅为阐明华北克拉通中生代岩石圈减薄过程及岩石圈的力学和流变学属性提供依据,而且为下一步新房金矿的勘查指明了找矿方向。  相似文献   

17.
在区域地质调查资料基础上,根据宏观与微观构造测量,通过分析区域岩浆活动性及其测年资料等,揭示了在辽南庄河栗子房地区存在另一个变质核杂岩构造,即栗子房变质核杂岩。该核杂岩具有3层结构和5个部分,即由新太古代变质深成岩及中生代花岗岩侵入体构成的下盘、由不同层次的构造岩组成的中部拆离断层带以及由前寒武纪沉积盖层和白垩纪伸展盆地构成的上盘。栗子房变质核杂岩形成于早白垩世,运动方向为上盘相对下盘由NWW向SEE方向运动,与辽南金州变质核杂岩和万福变质核杂岩在几何学、运动学极性和形成时间等方面具有很多相似性,形成于同一动力学背景。该变质核杂岩的厘定可为阐明华北克拉通东部晚中生代岩石圈减薄过程及岩石圈的力学和流变学属性提供依据。同时,变质核杂岩与金矿床成矿关系密切,栗子房变质核杂岩的拆离断层带附近可作为下一步金矿勘查的重点工作区,成矿潜力较大。  相似文献   

18.
On the basis of the previous regional geological survey, based on the macroscopic and microscopic structural survey, combined with the comprehensive analysis of the regional magmatic activity and dating data, the authors in this paper revealed that there is another metamorphic core complex structure in Lizifang area of Southern Liaoning, namely Lizifang metamorphic core complex. A typical three-layer structure and five parts exist in the core complex, which are the footwall composed of Neo-archean metamorphic plutonic rocks and mesozoic granite intrusive rocks, the detachment fault zone composed of different levels of tectonic rocks, and the upper plate composed of Precambrian sedimentary cap and Cretaceous extensional basin. Lizifang metamorphic core complex formed in the Early Cretaceous Epoch, and the upper plate moved from NWW to SEE relaive to the footwall, which was similar with Jinzhou metamorphic core complex and Wanfu metamorphic core complex in geometry, kinematics polarity and formation time, indicating the same dynamic background. The determination of the metamorphic core complex may provide a basis for the late Mesozoic lithospheric thinning process and the mechanical and rheological properties of the lithosphere in the east of North China Craton. At the same time, the metamorphic core complex is closely related to the mineralization of gold deposits. So the detachment fault zone of Lizifang metamorphic core complex can serve as the key work area for further gold exploration, which may possess large mineralization potential.  相似文献   

19.
作为变质核杂岩构造的重要组成部分,拆离断层带内广泛发育的褶皱构造与其寄主岩石一样记录了中下地壳拆离作用过程。选取辽南变质核杂岩金州拆离断层带内褶皱构造作为研究对象,基于叶理与褶皱构造关系分析,划分了褶皱期次与阶段性;通过形态组构分析、结晶学组构分析及石英古温度计等技术方法的应用,初步分析了拆离断层内褶皱的形成机制,为辽南地区拆离作用过程提供约束。根据褶皱形成与拆离作用的时间关系,将拆离带内褶皱分为拆离前褶皱、拆离同期褶皱和拆离后褶皱;拆离作用同期的褶皱按时间早晚分为早期(a1)阶段、中期(a2)阶段、晚期(a3)阶段。不同阶段褶皱的野外形态、叶理与褶皱关系等方面的差异,以及形态组构与结晶学组构的特征,为判断和恢复褶皱的形成机制提供了佐证,揭示出拆离断层带褶皱是在纵弯压扁和顺层流变的共同作用下递进剪切变形的产物。在拆离作用过程中, a1阶段和a2阶段褶皱以纵弯、压扁褶皱作用为主,a3阶段褶皱以弯滑作用为主。褶皱作用记录了拆离断层一定温度范围内(主要集中在380~500 ℃)的变形特征,拆离作用从早期到晚期的演化整体处于相对稳定的应变状态下。对金州拆离断层带而言,在区域NW-SE向伸展过程中,还伴随着NE-SW向微弱的收缩。  相似文献   

20.
辽宁南部万福变质核杂岩的发现及其区域构造意义   总被引:9,自引:1,他引:9  
根据宏观与微观构造测量,结合白垩纪沉积盆地组成与结构、区域岩浆活动性及其测年资料等的综合分析,揭示出在辽宁南部辽南变质核杂岩东侧存在另一个变质核杂岩构造,即万福变质核杂岩。该核杂岩具有典型的三层结构:拆离断层带由不同层次构造岩构成,上盘为元古宇岩石,下盘是太古宇岩石和就位于其中的同构造花岗质侵入体。万福变质核杂岩形成于早白垩世,与辽南变质核杂岩构成一个变质核杂岩对,两者在很多方面具有相似性。该变质核杂岩对的厘定可能为阐明华北晚中生代岩石圈的力学和流变学属性以及岩石圈减薄过程提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号