首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
红外窗区大气透过率的测量   总被引:3,自引:1,他引:3       下载免费PDF全文
文章主要介绍了红外窗区太阳光谱测量的实验装置,观测方法和数据处理方法。处理了2390—3470 cm-1和750—1300 cm-1区域内的太阳光谱资料,得到了它们的大气透过率数据,并对处理结果进行了初步分析。我们认为这些大气透过率对气象卫星遥感仪器红外窗区通道选择和卫星气象资料反演等都是有用的。  相似文献   

2.
文章总结了1990-1995年对红外窗区大气透过率的观测结果,以实测整层大气透过率与理论模拟计算透过率作了对比,并对大气中的水汽,微量气体和大气污染物对透过率的影响作了初步分析。  相似文献   

3.
大气对NOAA通道辐射透过率的影响研究   总被引:2,自引:2,他引:2       下载免费PDF全文
本文利用LOWTRAN7大气辐射计算模式,对NOAA三个通道分别选取不同的模式大气进行计算,得到了各种模式大气的大气透过率。详细计算了探测路径上卷云、不同气溶胶模式、大气温度、水汽含量变化等气象要素及大气成分的变化对大气透过率的影响,得出一些有意义的结论。  相似文献   

4.
云希俊  张红  张广顺  王松皋 《气象》1989,15(7):42-44
本文简介卫星气象中心大气辐射传输模拟实验装置,并给出CO、CO_2透过率测量的初步结果。  相似文献   

5.
一种快速高效的逐线积分大气吸收计算方法   总被引:19,自引:4,他引:15  
张华  石广玉 《大气科学》2000,24(1):111-121
本文发展了一种新的计算大气气体吸收系数以及冷却率的快速数值方法, 并对影响逐线 积分精度和计算时间的各种因子进行了详细研究。以大气主要吸收气体CO-215 μm带的 500~800 cm-1波段为例,将新方法计算的吸收系数、大气透过率和冷却率结果与经 典的逐线积分方法进行了比较。对从地面到100 km范围的整层大气,大气透过率的 误差不超过0.0004;对70 km以下的大气,大气冷却率的误差不超过0.004 K/d,而计算时 间却节省1~2个数量级左右。  相似文献   

6.
LOWTRAN6在微机上的初步应用   总被引:2,自引:0,他引:2  
LOWTRAN 6是计算大气透过率及本底辐射的 Fortran 语言程序。本文简要介绍了该程序的基本假设、功能和结构,重点讨论了移植到386档微机(32位字长)上应用的初步情况。  相似文献   

7.
黑河地区大气沙尘对地面辐射能收支的影响   总被引:29,自引:16,他引:13  
利用1991年2月下旬至5月中旬HEIFE张掖绿洲和沙漠站大气浑浊度观测和地面辐射平衡各个分量观测资料,分析和估算了大气沙尘对地面辐射能收支的影响,晴天大气透过率和达地面的短波辐射与大气浑浊度系数有产好的负相关,大气军浊系数增大时透过率和地面总辐射减少,大气浑浊度系数增大0.1,地面总辐射减少1.3%~1.9%,4月大气浑浊度由0.1增大到0.6,正午时刻地面总辐射减少67.6~85.8W/m^2  相似文献   

8.
线翼截断方式对大气辐射计算的影响   总被引:2,自引:0,他引:2  
张华  石广玉  刘毅 《气象学报》2007,65(6):968-975
在大气辐射传输计算方法中,有3种基本方法,即,逐线积分方法,k-分布方法和带模式方法。其中,逐线积分方法是最精确的计算大气透过率的方法,本文根据透过率计算方式的不同,将逐线积分方法分为追线积分法和追点积分法。由于逐线积分计算需要耗费大量的计算时间,在大气遥感和大气探测业务中使用时,必须减少计算成本,提高计算速度。本文在追线积分法的基础上,给出了简化的逐线积分的基本方法,在保证同样计算精度的同时,大大提高了计算速度。对在精确的和简化的逐线积分下,不同线翼截断方式(CUTOFF)对吸收系数、大气透过率和冷却率的影响进行了更详细的探讨。通过数值试验发现,对谱线线翼的截断方式是影响辐射计算精度和计算速度的重要因子。在不同压力下,用CUTOFF=2计算的吸收系数误差最大;对CUTOFF=1,在大多数取样点上误差都小于2%;对CUTOFF=3或4,对绝大多数取样点上计算的吸收系数误差都在5%以内,但所用的计算时间却明显减少。大气低层的透过率对不同的计算方法和不同的线翼截断方式不敏感;对大气高层,无论是对精确的还是简化的逐线积分方法,当CUTOFF=2时的透过率结果与其他线翼截断方式的结果差别较大。通过比较,本文给出线翼截断的优选方案。  相似文献   

9.
利用大气辐射传输模型MODTRAN对激光制导波段的大气透过特性进行了仿真计算,分析了大气分子、气溶胶、雾、降雨、水平能见度以及不同探测路径对激光制导波段透过率的影响,结果表明:1.06μm激光在大气传输中大气分子吸收衰减作用非常小,基本可忽略不计;气溶胶的影响较大,且透过率随着能见度的降低而减小;雾和降雨对激光的衰减作...  相似文献   

10.
干旱地区大气与地表特征对辐射加热场的影响   总被引:1,自引:0,他引:1  
杨文  季国良 《高原气象》1994,13(3):266-273
本文利用美国犹他大学气象系的辐射和云参数化模式,对HEIFE期间张掖地区1991年春、夏、秋、冬四季资料进行了计算,讨论了晴天条件下的大气状况态地表反射率与地表比辐射率等因子对地气系统的太阳辐射收支以及短波加热率与长波冷却率分布的影响;揭示了不同季节的整层大气反射、透过与吸收特征,分析了大气中各主要吸收成分对加热率与冷却率的贡献,同时就辐射模式的垂直分辨率对加热率与冷却率的影响亦作了讨论。  相似文献   

11.
浑善达克沙地沙尘气溶胶的辐射强迫   总被引:5,自引:7,他引:5  
利用2001年春季浑善达克沙地外场观测的辐射资料及大气辐射模式,对沙尘气溶胶的局地辐射强迫进行了分析和模拟估算。计算结果表明,浑善达克沙地大气透过率日变化显著,晴天可达0.80以上,沙尘天气最低在0.01以下;白天沙尘的辐射强迫对地表有冷却作用,夜间起保温作用。观测期间,平均大气透过率为0.6,白天沙尘对地面向下长波辐射的平均强迫增加量为16.76 W.m-2,对地面净辐射能收支的平均强迫减少量为62.76 W.m-2;夜间地表长波辐射净损失量因沙尘作用减少,平均为67.84 W.m-2。  相似文献   

12.
张杰  张强  李俊 《气象学报》2010,68(2):207-216
采用MODIS资料和美国发展的MODIS大气温、湿度廓线统计反演算法,估算大气温度、湿度廓线作为初始场,应用101层快速透过率模式(PFAAST)估算了大气透过率,并采用Newton非线性迭代算法反演中国西北荒漠戈壁地区大气温度廓线。结果表明:该方法对边界层高度及以上部分的大气温度反演得比较好,误差基本都在2 K范围内,边界层范围内的温度反演误差较大,反演误差与气溶胶光学厚度增量和地表温度估算误差呈显著正相关关系,与大气水汽混合比的关系较差。文中从敏感性试验和理论分析角度阐述了地表温度和气溶胶光学厚度估算误差对大气温度反演误差的影响,发现不同光谱波段的地表温度权重均随地表温度的增加有不同程度增加,地表温度反演误差增加将增加地表温度权重,提高地表温度估算误差有助于提高地表温度权重的精度;荒漠戈壁地区大气边界层中气溶胶浓度较高,光学厚度较大,使边界层大气透过率降低,进而降低卫星红外遥感波段的地表温度权重和空气温度权重。由于该模式没有很好地考虑边界层中沙尘气溶胶的影响,使卫星反演的大气透过率偏高,以至于高估地表温度权重和大气温度权重,使得反演的表面温度和空气温度偏低。该研究结合太阳光度计获得的光学厚度资料,采用统计方法对气溶胶效应引起的大气透过率误差和表面温度估算误差进行校正,并对物理算法进行本地化改进,实现了边界层温度廓线的反演。  相似文献   

13.
CO2大气透过率的统计算法   总被引:1,自引:2,他引:1  
红外CO2吸收带大气透过率算法的改进,是将物理反演法用于业务反演系统所必须突破的最大障碍之一,本文基于McMillin和Fleming的工作而进行的回归变量调整和谱通道宽度的非确定性修正两个算法试验,结果表明:利用前两个算法计算的透过率精度明显地优于后者。  相似文献   

14.
为了考察同步物理反演法(Simultaneous physical retrieval method,简称SPRM)的性能,本文着重在反演方法、红外大气透过率算法效应以及SPRM对不同初估值的依赖性三方面,进行了内部比较研究。结果表明:使用透过率调整算法,可以在一定程度上改善物理反演法精度:SPRM的反演精度对初估值的依赖性比统计回归反演法(Statistical regression retrievalmethod,简称SRRM)弱;本阶段SPRM温度反演试验,就大范围纬向平均而论,尚不及改进的SRRM的精度,但在探空资料稀少地区同步物理反演的气象场结构略优于SRRM。  相似文献   

15.
中国区域典型大气廓线样本库的一种选择方法   总被引:1,自引:0,他引:1       下载免费PDF全文
在模拟大气辐射传输过程、发展大气透过率模式及反演大气参数等许多应用中,大气状态廓线是重要的输入参数,为方便使用,建立具有一定代表性的样本数据库十分必要。目前,国际上有几十种各具特色的大气样本库,但包含中国区域的样本极少。为了弥补国际大气样本库中缺少中国区域大气廓线的不足,以中国区域2002年气象探空资料为基础,利用拓扑学方法建立了包含30条大气温度和湿度廓线的中国区域大气廓线样本库2。通过对所选样本的覆盖区域、观测时间、海拔高度、廓线垂直分布等特征分析,结果表明:该样本库具有样本时空分布均匀、样本独立性和气候代表性好等特点,符合大气样本库建立的基本原则,可为辐射传输研究和业务应用提供大气样本支持。  相似文献   

16.
地球大气透过率及辐射率计算   总被引:13,自引:3,他引:10       下载免费PDF全文
吴晓 《应用气象学报》1998,9(1):124-128
文章介绍了一种比较简单实用的地球大气的光谱透过率和到达大气层顶的红外辐射率的计算模型,光谱波长从4 μm到∞ μm,吸收气体H2O、CO2、O3的吸收计算采用Elsasser带模式及其经验参数,H2O的连续吸收公式是美国LOWTRAN-6计算程序的水汽连续吸收经验公式。透过率的计算结果与LOWTRAN计算结果相一致。以这种透过率简化模型为基础,建立了辐射传递正演计算模型,开发了相应软件,并用于卫星遥感射出长波辐射的资料处理中,取得了良好结果。  相似文献   

17.
大气透过率的计算是红外辐射传输计算的核心,RTTOV(Radiative Transfer for TOVS)通过建立大气廓线中温度、水汽、臭氧和其他气体浓度等参数与卫星通道透过率的统计关系,可实现卫星通道透过率和大气顶辐射率的快速准确计算。但在一些复杂吸收波段,如水汽波段,RTTOV的计算误差较大。为提高RTTOV在水汽敏感波段的计算精度,利用机器学习中的梯度提升树(Gradient Boosting Tree,GBT)方法,选取从ECMWF(European Centre for Medium-Range Weather Forecasts)的IFS-137(The Integrated Forecast System,137-level-profile)廓线集中挑选的1406条廓线和由此计算的透过率真值作为样本,选取风云三号气象卫星上搭载的红外分光计(InfraRed Atmospheric Sounder,IRAS)通道12(7.33 μm)进行个例研究,分别建立陆地和海洋晴空大气等压面至大气层顶透过率的快速计算模型(GBT模型)。通过和透过率、亮温真值的比较,验证了GBT模型。比较结果显示,GBT模型预测的透过率平均绝对误差(Mean Absolute Error,MAE)为:陆地0.0012,海洋0.0009;均方对数误差(Mean Squared Logarithmic Error,MSLE)为:陆地0.0215,海洋0.0095,均小于RTTOV直接计算的透过率的误差(陆地、海洋的MAE分别比RTTOV小0.0008和0.0010,MSLE分别比RTTOV小0.0135和0.0227);由GBT模型计算的亮温MAE分别为:陆地0.0949 K,海洋0.0634 K,均方根误差(Root Mean Square Error,RMSE)分别为:陆地0.1352 K,海洋0.0831 K,也都小于RTTOV直接模拟的晴空亮温误差(陆地、海洋的MAE分别比RTTOV小0.1685 K和0.1466 K,RMSE分别比RTTOV小0.1794 K和0.1685 K)。本研究的结果表明,在IRAS红外水汽波段,GBT预测的透过率和亮温误差比RTTOV小。机器学习有提高水汽波段正演精度的潜力,或可为辐射传输的快速计算提供可行的替代方法。   相似文献   

18.
和统计法相比,物理反演法不需要常规探空资料,但是需要大气透过率方面的计算,而且对仪器、谱参数等各种影响因素要求较高,所以用它反演温度难度较大,我们在国家高性能计算中心(成都)的并行机上,尝试用物理反演法对垂直探测器资料进行了温度反演。  相似文献   

19.
和统计法相比,物理反演法不需要常规探空资料,但是需要大气透过率方面的计算,而且对仪器、谱参数等各种影响因素要求较高,所以用它反演温度难度较大,我们在国家高性能计算中心(成都)的并行机上,尝试用物理反演法对垂直探测器资料进行了温度反演.  相似文献   

20.
空气污染与大气能见度及环流特征的研究   总被引:13,自引:4,他引:9  
赵庆云  张武  王式功 《高原气象》2003,22(4):393-396
利用2000年7月—2001年5月兰州逐日污染物浓度及污染综合指数资料,分析了其与能见度的相关性,同时利用1980—2000年冬季兰州能见度的资料,对大气能见度及环流特征量进行了分析,并初步建立了能见度趋势预报方程。结果表明:大气能见度具有明显的日变化;年际变化呈增大趋势,20世纪90年代能见度要明显好于80年代。污染指数与能见度基本呈现负相关。印度副高脊线偏北,东亚大槽明显,即亚洲地区环流经向度大时,大气能见度增加,空气污染程度较轻。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号