共查询到19条相似文献,搜索用时 46 毫秒
1.
欧氏聚类算法是多元统计中的一种重要分类方法,可以将其应用于测绘领域中点云数据的分割。本文首先计算点云数据中两点之间的欧氏距离,将距离小于指定阈值作为分为一类的判定准则;然后迭代计算,直至所有的类间距大于指定阈值,完成欧氏聚类分割。具体步骤为:①利用Octree法建立点云数据拓扑组织结构;②对每个点进行k近邻搜索,计算该点与k个邻近点之间的欧氏距离,最小归为一类;③设置一定的阈值,对步骤②迭代计算,直至所有类与类之间的距离大于指定阈值。试验证明,欧氏聚类算法对不同测量技术手段获取的点云数据均具有适用性,可以成功对点云数据进行分割,分割效果良好。 相似文献
2.
点云数据分割是点云数据处理的主要工作,也是实现地物自动识别的前提和关键环节,由于各种原因,目前点云数据分割自动化程度不高,尚需进一步的深入研究。本文以机载云数据为研究对象,提出了基于密度聚类方法的激光点云数据分割方法,该方法具有速度快、分割效果好、适应性强等优势,为后续的地物自动识别奠定了基础。 相似文献
3.
针对原始结构光钢轨轮廓点云数据量大、强噪声和离群杂点多的问题,本文提出了一种欧式聚类融合多种传统滤波方式的钢轨点云自适应精简的方法。采用点云欧式距离为特征量的聚类分割方法用于无效杂散点数据的识别和精简,采用统计滤波结合均匀体素下采样滤波方法实现点云初步去噪。在此基础上,通过欧式聚类分割噪点,采用自动获取滤波范围的自适应直通滤波去除轨底粘连数据,以保证点云配准的效率与准确性。本文提出的方法可有效精简无效数据和去噪,点云精简比约为94%,同时保留了原始点云的有效轮廓特征,为点云配准与磨耗点的高精度识别奠定了基础。 相似文献
4.
针对现有电力线激光雷达点云分割方法中存在的问题,该文提出了一种采用特征空间K-means聚类的单档电力线激光雷达点云分割方法:利用电力线LiDAR点云的水平坐标信息进行直线拟合,并对LiDAR点沿直线方向进行分段;将每一段LiDAR点云投影到相应的电力线切平面(该平面垂直于拟合直线);最后使用K-means聚类方法进行投影点的聚类,且相邻的段和段之间通过投影中心点进行类别的传递和规则化。实验表明,该方法可以较好地进行单档电力线LiDAR点云分割,且对电力线根数、电力线类型、电力线空间配置结构、档距长度、点云不规则断裂等因素不敏感。 相似文献
5.
为解决遥感影像分割中存在的不确定性问题和传统层次聚类算法中存在的时间复杂度高、缺乏可再分性等缺陷,基于云模型和期望最大聚类提出了一种新的遥感影像分割算法。该算法首先使用峰值法云变换从影像中抽取底层概念,然后通过EM算法对底层概念进行聚类,最后通过极大判别法完成遥感影像分割。实验证明,EM算法进行概念聚类能够快速地将概念分类为指定个数,并估计出高阶云概念的数学特征,相比于传统的基于云模型的遥感影像分割算法具有更好的分割效果。 相似文献
6.
7.
针对常规的密度峰值聚类算法在确定数据聚类中存在聚类中心的重复性、聚类不稳定、不适用于三维点云分割等问题,提出了中心均匀化聚类群融合算法.该算法对局部密度和距离函数进行归一化处理,较好地解决了这两种函数尺度不一的问题;基于局部密度和距离函数乘积的变化率来确定聚类中心,并对重复或距离很近的聚类中心进行了消除,避免了聚类中心非均匀分布对聚类的影响;利用数据点到聚类中心距离逐个确定每个数据的聚类归属,依据邻近聚类数据群之间的距离来判断邻近聚类之间的融合,实现对点云数据的有效分割.基于二维离散数据聚类及不同分辨率点云数据分割的实验结果表明:所提算法不仅适用于二维离散数据的聚类,也适用于三维点云数据的分割,且分割精度和稳定度要优于常规的CFDP、K-means、DBSCAN、DPC聚类算法和深度学习方法. 相似文献
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
鉴于影像灰度控制点匹配算法运算量大、识别精度低以及约束条件多等不足,本文对该算法做了改进。主要思路是: 在进行模板运算时,对目标影像采用动态模板进行不等距搜索; 利用灰度相关系数双阈值和等角变换,对目标控制点进行判别; 结合控制点间的空间位置关系,对未识别出的控制点进行定位。文中给出了具体的实施流程,并采用ASTER和TM两种成像差异显著的图像数据,对优化前后的匹配算法进行对比试验。结果表明,改进算法在运算效率、识别精度以及适应性方面,都比传统算法有明显优势。 相似文献
19.
介绍了一种基于智能遗传算法和Otsu法的多目标图像分割方法,实现了对多目标影像相对传统算法更快速、稳定的分割。 相似文献