首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally believed that Cenozoic potassic and ultrapotassic volcanic rocks of the Tibetan Plateau were generated by partial melting of an enriched mantle region or lower crustal materials. The Miocene Bugasi volcanic rocks (BVR) in the western part of the Lhasa block are composed mainly of trachyandesites and trachytes, both of which belong to the shoshonite series. The trachytes show somewhat transitional compositions between the mantle-derived trachyandesites of the BVR and the crust-derived potassic rocks of Konglongxiang, most evident in their Sr, Ba, and Ni concentrations, Nb/Ta, Rb/Sr, Th/Nb, Zr/Nb, and Ba/Rb trace element ratios, and Sr and Nd isotopic compositions. These features, coupled with the relatively high Cr and Ni concentrations and Mg#, suggest that the trachytes are the product of mixing between mantle-derived and lower crust-derived melts.  相似文献   

2.
《Geodinamica Acta》2001,14(1-3):159-167
Pliocene–Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the Kızılırmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of Şarkışla (Sivas–central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region.  相似文献   

3.
Many objections have been raised as to the ability of subcontinental lithospheric mantle to produce voluminous amounts of basalt, because this upper part of the mantle is thought to be refractory, and the geotherm is rarely above the peridotite solidus at these depths under continents. However, in the Pacific Northwest of the USA during the Neogene, the subcontinental lithospehric mantle has been proposed as a key source for basalts erupted within the northern Basin and Range, and for the Columbia River flood basalts erupted on the Columbia Plateau. An alternative explanation to melting in the subcontinental lithospheric mantle, which equally well explains the chemical compositions thought to originate there, is that these magmas were contaminated by crust of varying ages. Calc-alkaline lavas, which occupy the Blue Mountains in the center of this region, hold clues to the latter process. Their elevated trace element ratios (e.g., Ba/Zr, K2O/P2O5), coupled with differentiation indicators such as Mg? [molar Mg/(Mg?+?Fe)], and Sr, Nd, and Pb isotopic compositions, can most reasonably be explained by crustal contamination. Appraisal of continental peridotite xenolith data indicates that high trace element ratios such as Ba/Zr in continental basalts cannot result from melting in the subcontinental lithospheric mantle. Instead, as with the calc-alkaline lavas, these high ratios in the tholeiites most likely indicate crustal contamination. Furthermore, the peridotite xenoliths do not have a relative depletion in Nb and Ta that is observed in most of the lavas within the region. Relatively minor volumes of tholeiites erupted in late Neogene times in the northern Basin and Range (Hi-Mg olivine tholeiites) and Columbia Plateau (Saddle Mountains basalts), are the only lavas which have trace element and isotopic compositions consistent with being derived from, or largely interacting with a subcontinental lithospheric mantle in the Pacific Northwest. In contrast to the prior studies, we suggest that the mantle sources for most of the basalts in this region were ultimately beneath the lithospheric mantle.  相似文献   

4.
薛怀民  马芳  曹光跃 《地质学报》2015,89(8):1380-1401
长江中下游晚中生代橄榄玄粗岩系列火山岩发育在宁芜、庐枞、溧水和怀宁四个火山岩盆地内,该系列的火山岩地球化学性质上以相对富碱、高K、明显富集Rb、Th、U、K等强不相容元素和轻稀土元素,亏损高场强元素Nb、Ta和Ti为特征。Ba和Sr的特征在不同盆地内随岩性的不同表现各异,表明斜长石的分离结晶可能在这些盆地内岩浆演化过程中起着一定的作用。这些盆地内的橄榄玄粗岩系列火山岩的部分地球化学性质(如Ce/Yb比值)与大多数大陆环境下的橄榄玄粗岩系列岩石不同,而类似于大洋岛弧内的,可能意味着区内由于岩石圈的减薄,软流圈地幔上涌到了相对较浅的部位,控制源区部分熔融的主要是尖晶石相地幔岩。这些火山岩的Sr、Nd同位素组成总体处于扬子克拉通岩石圈地幔附近,指示这些橄榄玄粗质母岩浆主要是由富集的岩石圈地幔部分熔融形成的。但盆地所处的构造位置对岩浆的性质也有显著的影响,指示地壳基底物质的混染也不同程度存在。区内榄玄粗岩系列火山活动持续的时间很短,主要集中在约128134 Ma左右,峰值约130 Ma,其成因的动力学机制可能与晚中生代发生在中国东部的岩石圈减薄事件有关。  相似文献   

5.
Abstract

Pliocene-Pleistocene volcanism accompanied strike-slip-related transtensional deformation along the K?z?l?rmak fault segment of the Central Anatolian fault zone (CAFZ) in the west of ?ark??la (Sivas-central Turkey). These volcanic rocks are represented by alkali olivine basalts. They can be divided into four different sub-groups on the basis of their Zr, Nb, TiO2 contents. A primitive mantle-normalized incompatible trace element diagram for four subgroups shows close similarity to typical OIB pattern. Some of the incompatible trace element ratios (Ce/Y, Zr/Nb, La/Ba, La/Nb) are also akin to OIB values. Highly fractionated REE patterns (La/YbN=24.7–9.2) with no Eu anomaly are the main features of the alkali basalts and are comparable to alkaline volcanism in continental rift zones. On the basis of Al2O3/TiO2, Nb/Y, Zr/Y Zr/Nb ratios, the geochemical differences among four sub-groups can be explained by variable degrees of partial melting of compositionally similar mantle source. Th/Nb, Th/Y, Nb/Y ratios and the primitive mantle-normalized trace element diagram suggests significant amount of crustal involvement for most of the alkali olivine basalts erupted along the CAFZ. Rupture of the continental lithosphere by strike-slip-related transtensional deformation might have caused decompressional partial melting of the asthenospheric mantle and generating alkali olivine basalts in this region. © 2001 Éditions scientifiques et médicales Elsevier SAS.  相似文献   

6.
《Chemical Geology》1999,153(1-4):11-35
Anhydrous mantle peridotite xenoliths from a single volcanic vent in the French Massif Central are compositionally varied, ranging from relatively fertile lherzolites to refractory harzburgites. Fertile lherzolites closely resemble previous estimates of undepleted mantle compositions but the average of the Ray Pic xenoliths is much less enriched in LILE and LREE than McDonough's (1990) average mantle [McDonough, W.F., 1990. Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett., 101, 1–18]. The wide geochemical variation in the bulk rocks reflects significant heterogeneities that can be attributed to two major processes within the shallow lithospheric mantle. The first process is depletion, related to variable degrees of partial melting and melt extraction from an originally near-chondritic mantle. This process has largely controlled the major elements and much of the trace element variation between fertile lherzolites and refractory peridotites. LREE-depleted compositions are also produced by this process. During partial melting, HREE behaved coherently with the major oxides and the moderately incompatible trace elements (Y, V and Sc). A subsequent process of enrichment is indicated by high concentrations of incompatible trace elements in many of the xenoliths. Sr, Ba, K, Th, U, Nb and LREE abundance are independent of major oxide variations and reflect enrichment related to infiltration by alkaline silicate melts/fluids. Both fertile and refractory mantle were enriched but harzburgites were particularly affected. Modal metasomatism occurred only rarely and is indicated by Cr-diopside-rich veins and patches in a few samples. Their chemistry suggests that they were also formed by migration of similar magmas/fluids from the asthenospheric mantle, although the presence of wehrlitic patches may indicate interaction with carbonate melts. In both depleted and enriched xenoliths, trace element patterns for separated clinopyroxenes closely reflect those of the bulk rock, except for Rb, Ba and Nb, which are probably hosted by other phases.  相似文献   

7.
湘东南汝城地区发育一套由基性玄武岩和中酸性安山质-英安质岩石组成的火山岩建造,属于低钾拉斑系列,该火山岩系中两个玄武岩的K-Ar年龄分别为124.5±2.5Ma和127.6±1.9Ma,属晚侏罗—早白垩世产物。在主、微量元素上两者成分存在明显差异。其中安山质-英安质岩石具有高MgO特征,属高MgO岩石,LILE富集、Nb-Ta、Sr-P亏损强烈,(La/Yb)N=6.7~7.9,Eu*/Eu=0.74~0.85,具岛弧型微量元素配分型式,87Sr/86Sr(t)=0.71079~0.71118,εNd(t)=-7.64~-8.16,与adakites高Mg岩石有着明显的差别,可能是富集岩石圈地幔熔融后直接分异的产物;玄武岩LILE富集,Nb-Ta富集,(La/Yb)cn=4.0~4.3,Eu*/Eu=1.00~1.16,具OIB型微量元素配分型式,87Sr/86Sr(t)=0.70812~0.70832,εNd(t)=0.48~1.03,其源区具二元混合趋势,其源区可能是富集型岩石圈地幔端员与亏损的软流圈地幔端员的混合产物。汝城地区晚中生代玄武岩和高Mg安山质-英安质岩石源区属性的限定及其相互的空间依存关系表明该区晚中生代时有着较薄的岩石圈厚度,处于岩石圈伸展减薄的大地构造背景。  相似文献   

8.
Geochemical compositions of lower crustal and lithospheric mantle xenoliths found in alkali basaltic lavas from the Harrat Ash Shamah volcanic field in southern Syria place constraints on the formation of the Arabian–Nubian Shield in northern Arabia. Compositions of lower crustal granulites are compatible with a cumulate formation from mafic melts and indicate that they are not genetically related to their host rocks. Instead, their depletion in Nb relative to other incompatible elements points to an origin in a Neoproterozoic subduction zone as recorded by an average depleted mantle Sm–Nd model age of 630 Ma.Lithospheric spinel peridotites typically represent relatively low degree (< 10%) partial melting residues of spinel lherzolite with primitive mantle compositions as indicated by major and trace element modelling of clinopyroxene and spinel. The primary compositions of the xenoliths were subsequently altered by metasomatic reactions with low degree silicate melts and possibly carbonatites. Because host lavas lack these signatures any recent reaction of the lherzolites with their host magma can be ruled out. Sm–Nd data of clinopyroxene from Arabian lithospheric mantle lherzolites yield an average age of 640 Ma suggesting that the lithosphere was not replaced since its formation and supporting a common origin of the Arabian lower crustal and lithospheric mantle sections.The new data along with published Arabian mantle xenolith compositions are consistent with a model in which the lithospheric precursor was depleted oceanic lithosphere that was overprinted by metasomatic processes related to subduction and arc accretion during the generation of the Arabian–Nubian Shield. The less refractory nature of the northern Arabian lithosphere as indicated by higher Al, Na and lower Si and Mg contents of clinopyroxenes compared to the more depleted nature of the south Arabian lithospheric mantle, and the comparable low extent of melt extraction suggest that the northern Arabian lithosphere formed in a continental arc system, whereas the lithosphere in the southern part of Arabia appears to be of oceanic arc origin.  相似文献   

9.
The alkali-basalt and basaltic trachy-andesites volcanic rocks of south Marzanabad were erupted during Cretaceous in central Alborz, which is regarded as the northern part of the Alpine-Himalayan orogenic belt. Based on petrography and geochemistry, en route fractional crystallization of ascending magma was an important process in the evolution of the volcanic rocks. Geochemical characteristics imply that the south Marzanabad alkaline basaltic magma was originated from the asthenospheric mantle source,whereas the high ratios of(La/Yb)Nand(Dy/Yb)Nare related to the low degree of partial melting from the garnet bearing mantle source. Enrichment pattern of Nb and depletion of Rb, K and Y, are similar to the OIB pattern and intraplate alkaline magmatic rocks. The K/Nb and Zr/Nb ratios of volcanic rocks range from 62 to 588 and from 4.27 to 9 respectively, that are some higher in more evolved samples which may reflect minor crustal contamination. The isotopic ratios of Sr and Nd respectively vary from 0.70370 to0.704387 and from 0.51266 to 0.51281 that suggest the depleted mantle as a magma source. The development of south Marzanabad volcanic rocks could be related to the presence of extensional phase,upwelling and decompressional melting of asthenospheric mantle in the rift basin which made the alkaline magmatism in Cretaceous, in northern central Alborz of Iran.  相似文献   

10.
An intra-arc rift (IAR) is developed behind the volcanic front in the Izu arc, Japan. Bimodal volcanism, represented by basalt and rhyolite lavas and hydrothermal activity, is active in the IAR. The constituent minerals in the rhyolite lavas are mainly plagioclase and quartz, whereas mafic minerals are rare and are mainly orthopyroxene without any hydrous minerals such as amphibole and biotite. Both the phenocryst and groundmass minerals have felsic affinities with a narrow compositional range. The petrological and bulk chemical characteristics are similar to those of melts from some partial melting experiments that also yield dry rhyolite melts. The hydrous mineral-free narrow mineral compositions and low-Al2O3 affinities of the IAR rhyolites are produced from basaltic middle crust under anhydrous low-temperature melting conditions. The IAR basalt lavas display prominent across-arc variation, with depleted elemental compositions in the volcanic front side and enriched compositions in the rear-arc side. The across-arc variation reflects gradual change in the slab-derived components, as demonstrated by decreasing Ba/Zr and Th/Zr values to the rear-arc side. Rhyolite lavas exhibit different across-arc variations in either the fluid-mobile elements or the immobile elements, such as Nb/Zr, La/Yb, and chondrite-normalized rare earth element patterns, reflecting that the felsic magmas had different source. The preexisting arc crust formed during an earlier stage of arc evolution, most probably during the Oligocene prior to spreading of the Shikoku back-arc basin. The lack of systematic across-arc variation in the IAR rhyolites and their dry/shallow crustal melting origin combines to suggest re-melting of preexisting Oligocene middle crust by heat from the young basaltic magmatism.  相似文献   

11.
The Naga Hills Ophiolite(NHO) belt in the Indo-Myanmar range(IMR) represents a segment of Tethyan oceanic crust and upper mantle that was involved in an eastward convergence and collision of the Indian Plate with the Burmese Plate during the Late Cretaceous-Eocene.Here, we present a detailed petrological and geochemical account for the mantle and crustal sections of NHO, northeastern India to address(i) the mantle processes and tectonic regimes involved in their genesis and(ii) their coherence in terms of the thermo-tectonic evolution of Tethyan oceanic crust and upper mantle.The NHO suite comprises well preserved crustal and mantle sections discretely exposed at Moki, Ziphu, Molen, Washelo and Lacham areas.The ultramafic-mafic lithologies of NHO are mineralogically composed of variable proportions of olivine, orthopyroxene, clinopyroxene and plagioclase.The primary igneous textures for the mantle peridotites have been overprinted by extensive serpentinisation whereas the crustal section rocks reflect crystal cumulation in a magma chamber.Chondrite normalised REE profiles for the cumulate peridotite-olivine gabbro-gabbro assemblage constituting the crustal section of NHO show flat to depleted LREE patterns consistent with their generation from depleted MORB-type precursor melt in an extensional tectonic setting, while the mantle peridotites depict U-shaped REE patterns marked by relative enrichment of LREE and HREE over MREE.These features collectively imply a dual role of depleted MORB-type and enriched arc-type mantle components for their genesis with imprints of melt-rock and fluid-rock interactions.Tectonically, studied lithologies from NHO correspond to a boninitic to slab-proximal Island Arc Tholeiite affinity thereby conforming to an intraoceanic supra subduction zone(SSZ) fore-arc regime coherent with the subduction initiation process.The geochemical attributes for the crustal and mantle sections of NHO as mirrored by Zr/Hf, Zr/Sm, Nb/Ta, Zr/Nb, Nb/U, Ba/Nb, Ba/Th, Ba/La and Nd/Hf ratios propound a two-stage petrogenetic process:(i) a depleted fore arc basalt(FAB) type tholeiitic melt parental to the crustal lithologies was extracted from the upwelling asthenospheric mantle at SSZ fore-arc extensional regime thereby rendering a refractory residual upper mantle;(ii) the crust and upper mantle of the SSZ fore arc were progressively refertilised by boninitic melts generated in response to subduction initiation and slab-dehydration.The vestiges of Tethyan oceanic lithosphere preserved in NHO represent an accreted intra-oceanic fore arc crust and upper mantle section which records a transitional geodynamic evolution in a SSZ regime marked by subduction initiation, fore arc extension and arc-continent accretion.  相似文献   

12.
Lavas erupted behind the volcanic front in southeastern Guatemala have many important distinctions from lavas erupted on the volcanic front. These include: generally higher MgO, Nb, Sr, TiO2, and rare earth element concentrations; higher La/Yb and Nb/Y ratios; and lower Ba/La, La/Nb, Ba/Zr and Zr/Nb ratios. These major and trace element distinctions are caused by reduced fractionation during ascent and storage in the crust, lower degrees of melting in the source, and greatly reduced contributions from the subducted Cocos plate in the source. In addition, because all of these important distinctions are even borne in lavas erupted within 20 km of the front, there is little apparent petrogenetic continuity between front and behind-the-front magmas. What little geochemical continuity exists is in radiogenic isotopes: 143Nd/144Nd falls across the arc, Pb isotopic ratios (except 206Pb/204Pb) rise across the arc, and 87Sr/86Sr rise across the arc after an initial discontinuity within 20 km of the front. These continuous across-arc changes in radiogenic isotopes are caused by increased contamination with older, more isotopically disparate rocks, away from the front. Once the effects of crustal contamination are removed, the remaining isotopic variability behind the front is non-systematic and reflects the inherent isotopic heterogeneity of the source, the mantle wedge. Geochemical disconnection in southeastern Guatemala suggests that behind-the-front magmas are produced by decompression melting near the top of the wedge, not by flux-dominated melting near the base of the wedge.  相似文献   

13.
Following the amalgamation of the Siberian and North China Cratons, NE China, as part of the Central Asian Orogenic Belt (CAOB), underwent Late Mesozoic lithospheric extension that was associated with volcanic activity. The Songliao Basin is the most important rift structure formed during these processes and contains voluminous volcanic rocks interlayered with sedimentary infill. Mafic-to-intermediate lavas are associated with felsic ones. This study focusses on the geochemical compositions of the less-widespread Early Cretaceous mafic-to-intermediate lavas in the Songliao Basin and compares them with the more abundant felsic rocks. Two mafic-to-intermediate magma series, one with alkaline and the other with sub-alkaline affinity, were identified. High MgO and Cr contents, low Th/Nb and La/Nb ratios, and variable but depleted Nd isotope compositions indicate that both magma suites were most likely formed by the melting of enriched upper mantle sources. Sub-alkaline mafic-to-intermediate rocks and I-type rhyolites define a co-genetic magma series. This rock suite was produced by the melting of subduction-modified lithospheric mantle and subsequent magma evolution as well as crustal melting during lithospheric extension. Alkaline mafic-to-intermediate rocks and A-type rhyolites form another co-genetic magma suite that was produced under within-plate conditions from an OIB-type mantle source, supposed to be the heterogeneous shallow asthenosphere and/or the lower lithosphere. Decompression partial melting of this mantle source requires a relatively thin lithosphere. The development of alkaline mafic rocks and A-type rhyolites as typical bimodal volcanic assemblage reflects that lithospheric thinning below the Songliao Basin reached its maximum, whereas basin rifting terminated afterwards.  相似文献   

14.
通过对分布于勉略构造带中段三岔子西侧中堂沟地区的火山岩进行详实的野外地质剖面调查,发现其为一套绿片岩相浅变质火山岩,岩石组合以变安山岩为主,含有少量的变玄武岩和变英安岩,主体为钙碱性系列。岩石地球化学研究表明3类岩石均具有轻稀土富集型稀土配分曲线,并显示弱的Eu负异常;微量元素方面,岩石普遍富集大离子亲石元素Cs、Rb、Ba,亏损高场强元素Nb、Ta,相对亏损P、Ti,不活动微量元素Zr、Hf、Tb、Y等既无明显的相对亏损也无显著的相对富集。在La-La/Nb、Nb-Nb/Th和La/Yb-Sc/Ni等环境判别图解中,变玄武岩和变安山岩样品点均落在岛弧火山岩范围内,并结合其岩石组合特征指示该套火山岩应形成于大陆边缘弧(活动陆缘)环境。其中变玄武岩和变安山岩岩浆起源于楔形地幔的部分熔融,且有陆壳物质的参与;变英安岩的形成则与壳源物质的部分熔融有关。  相似文献   

15.
The study area is located on the middle sector of the Malatya-Ovacık Fault Zone (MOFZ) in the eastern Anatolia. Four basaltic flows from bottom to top, which are tholeiitic in character and intercalated with Pliocene sedimentary rocks, were erupted along this fault zone. Chemical compositions of these flows reveal some differences between the first flow and others in terms of high-field strength elements (HFSEs) (e.g. Ti, Zr, Nb). Limited variations in compositions within the first flow and upper flows suggest a limited fractionation range. Trace-element patterns exhibit that all the flows have similar and OIB-like patterns without positive peak at Pb and a trough at Nb—Ta, indicating minimal or no crustal contribution. Rare-earth element (REE) patterns indicate that the first flow has flat patterns with negative Eu anomaly, whereas the upper flows have variable enrichments in LREE and depletions in HREE. La/SmN, Dy/YbN and Zr/Y ratios exhibit that the degree of partial melting decreases from the first flow to upper flows. Higher values of La/YbN ratio for the upper flows and depletions at Y and Yb on the trace-element patterns suggest the presence of garnet as a residual phase, which imply that the depth of partial melting took place solely in the garnet-stability field. OIB-like trace-element patterns and trace-element ratios (e.g. La/Nb, Ce/Y and Zr/Nb) emphasize that the melts forming the Arguvan basalt were originated from the asthenospheric mantle rather than the lithospheric mantle.  相似文献   

16.
The Valley of Mexico and surrounding regions of Mexico and Morelos states in central Mexico contain more than 250 Quaternary eruptive vents in addition to the large, composite volcanoes of Popocatépetl, Iztaccíhuatl, and Nevado de Toluca. The eruptive vents include cinder and lava cones, shield volcanoes, and isolated andesitic and dacitic lava flows, and are most numerous in the Sierra Chichináutzin that forms the southern terminus of the Valley of Mexico. The Chichináutzin volcanic field (CVF) is part of the E-W-trending Mexican Volcanic Belt (MVB), a subduction-related volcanic arc that extends across Mexico. The crustal thickness beneath the CVF (∼50 km) is the greatest of any region in the MVB and one of the greatest found in any arc worldwide. Lavas and scoriae erupted from vents in the CVF include alkaline basalts and calc-alkaline basaltic andesites, andesites, and dacites. Both alkaline and calc-alkaline groups contain primitive varieties that have whole rock Mg#, MgO, and Ni contents, and liquidus olivine compositions (≤Fo90) that are close to those expected of partial melts from mantle peridotite. Primitive varieties also show a wide range of incompatible trace element abundances (e.g. Ba 210–1080 ppm; Ce 25–100 ppm; Zr 130–280 ppm). Data for primitive calc-alkaline rocks from both the CVF and other regions of the MVB to the west are consistent with magma generation in an underlying mantle wedge that is depleted in Ti, Zr, and Nb and enriched in large ion lithophile (K, Ba, Rb) and light rare earth (La, Ce) elements. Extents of partial melting estimated from Ti and Zr data are lower for primitive calc-alkaline magmas in the CVF than for those from the regions of the MVB to the west where the crust is thinner. The distinctive major element compositions (low CaO and Al2O3, high SiO2) of the primitive calc-alkaline magmas in the CVF indicate a more refractory mantle source beneath this region of thick crust. In contrast, primitive alkaline magmas from the CVF and other regions of the MVB show compositional similarities to intraplate-type alkali basalts erupted behind the arc in the Mexican Basin and Range province. These similarities are consistent with the hypothesis that slab-induced convection in the mantle wedge beneath the MVB causes advection of asthenospheric mantle from behind the arc to the region of magma generation. Trace element systematics of primitive magmas in the MVB reveal substantial variability in both the extent of mantle wedge enrichment by subduction processes and in the composition of mantle heterogeneities that are related to previous extraction of alkaline to sub-alkaline basaltic melts. Received: 23 June 1998 / Accepted: 23 December 1998  相似文献   

17.
Lower Miocene Boyalik volcanic rocks, situated approximately 80 km south of Ankara, exhibit both alkaline and calc‐alkaline characteristics. Alkaline products are trachybasaltic and trachyandesitic, whereas calc‐alkaline products are dacitic. The phenocrysts in the dacites consist primarily of plagioclase and hornblende, with lesser amounts of biotite. The groundmass contains plagioclase and quartz microcrysts. Trachyandesites are mainly composed of plagioclase and biotite phenocrysts with a groundmass of alkali feldspar microlites and minor clinopyroxene microcrysts. Trachybasalts are mainly composed of olivine and plagioclase phenocrysts, with minor clinopyroxene phenocrysts associated with alkali feldspar, plagioclase and clinopyroxene microlites and microcrysts in the groundmass. Oxides are common accessory phases in all products. Boyalik volcanic rocks have essentially homogeneous incompatible trace element patterns with variable Nb and Th anomalies, enrichment in Rb, Ba, K, La, Ce and Nd, and positive Sr anomalies. Some trace element ratios (e.g. Ba/Ta, Ba/Nb, Th/U and Ce/Pb) are variable among the series. For instance, dacites and trachyandesites have higher Ba/Ta (724–2509), Ba/Nb (45–173) and Th/U (3.5–8.7) and lower Ce/Pb (7.1–3.9) values than the trachybasalts. Trace element data indicate that the series are chemically distinct but probably were derived from a common lithospheric mantle source via variable degrees of partial melting. The magmas then underwent a process of evolution involving assimilation and fractional crystallization (AFC) during ascent to the surface. Although trachyandesites and dacites were generated from a lithospheric mantle source via ~1% and ~1.5% to ~5% degrees of partial melting, respectively, trachybasalts were derived from the same source via higher degrees of partial melting (~20%) with neglegible crustal contamination. Boyalik volcanism is linked to an intracontinental transpressional setting. However, the overall geochemical features are consistent with derivation from a mantle source that records earlier Eocene subduction between the Sakarya continental fragment and the K?r?ehir block during time.  相似文献   

18.
Strontium, Nd, Pb, Hf, Os, and O isotope compositions for 30 Quaternary lava flows from the Mount Adams stratovolcano and its basaltic periphery in the Cascade arc, southern Washington, USA indicate a major component from intraplate mantle sources, a relatively small subduction component, and interaction with young mafic crust at depth. Major- and trace-element patterns for Mount Adams lavas are distinct from the rear-arc Simcoe volcanic field and other nearby volcanic centers in the Cascade arc such as Mount St. Helens. Radiogenic isotope (Sr, Nd, Pb, and Hf) compositions do not correlate with geochemical indicators of slab-fluids such as (Sr/P) n and Ba/Nb. Mass-balance modeling calculations, coupled with trace-element and isotopic data, indicate that although the mantle source for the calc-alkaline Adams basalts has been modified with a fluid derived from subducted sediment, the extent of modification is significantly less than what is documented in the southern Cascades. The isotopic and trace-element compositions of most Mount Adams lavas require the presence of enriched and depleted mantle sources, and based on volume-weighted chemical and isotopic compositions for Mount Adams lavas through time, an intraplate mantle source contributed the major magmatic mass of the system. Generation of basaltic andesites to dacites at Mount Adams occurred by assimilation and fractional crystallization in the lower crust, but wholesale crustal melting did not occur. Most lavas have Tb/Yb ratios that are significantly higher than those of MORB, which is consistent with partial melting of the mantle in the presence of residual garnet. δ 18O values for olivine phenocrysts in Mount Adams lavas are within the range of typical upper mantle peridotites, precluding involvement of upper crustal sedimentary material or accreted terrane during magma ascent. The restricted Nd and Hf isotope compositions of Mount Adams lavas indicate that these isotope systems are insensitive to crustal interaction in this juvenile arc, in stark contrast to Os isotopes, which are highly sensitive to interaction with young, mafic material in the lower crust.  相似文献   

19.
牛毛泉基性杂岩体位于准噶尔古板块博格达-哈尔里克晚古生代岛弧东段,赋存磁铁矿。研究表明,该岩体具有明显成层性和韵律构造特征,主要岩石类型有橄榄辉长岩、含橄榄辉长岩、辉长岩和角闪辉长岩。岩石地球化学特征表明,该套岩石属拉斑玄武岩系列,m/f值介于0.65~1.44之间,属铁质基性-超基性岩。岩石稀土元素总量相对较低,稀土元素配分曲线为轻稀土元素略富集的右倾型;岩石富集大离子亲石元素(Rb、Ba、Sr、U),相对亏损高场强元素(Zr、Hf),具有明显的Nb、Ta负异常和弱的Ti正异常。岩石εNd(t)=-3.4~-0.50,εSr(t)=-3.4~8.5,具有向EMⅠ方向演化的趋势,表明岩浆源区可能为受俯冲流体交代改造的富集岩石圈地幔,是新疆北部早二叠世时期后碰撞伸展阶段的产物,由拆沉的富集岩石圈地幔被软流圈加热后发生部分熔融并上侵形成。  相似文献   

20.
The Late Cenozoic volcanics of the Lesser Caucasus have similar trace-element and REE patterns with negative anomalies of Nb, Ta, Hf, and Zr. They are highly enriched in Rb, Ba, Th, and La and depleted in Ti, Yb, and Y with respect to N-MORB, which indicates their formation from the subduction-metasomatized lithospheric mantle. Partial melting of the subcontinental mantle lithosphere and crustal assimilation and fractional crystallization controlled the magma evolution in the collisional magmatic belts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号