共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
太阳磁场历来被视为太阳物理一个重要量。在1988年12月15日至12月25日,全国对日面活动区88184(怀柔)进行了联测,这是一个S型黑子。我们利用太阳磁场望远镜取得了纵向磁场图,视向速度场和一系列照片。从Fig.1我们可以看到黑子群的三个暗核(用F1、F2、F3表示)。17日另一个小黑子F4出现并于19日消失,F2向左移动并离开F1。由图2可以看出其磁场非常复杂,三个主要核是S极并被N极围住,在B和C附近有一个孤岛结构,19日它与B联结。 在观测中我们还看到在耀斑期间暗条的破裂和耀斑后暗条重建的过程。 相似文献
3.
4.
AR8 2 1 0活动区的黑子磁场结构是反极性排列 ,开始是负极性的主黑子上半部被正极性所包围 ,随后又在主黑子下方浮现正极磁场 ,引起主黑子作顺时针方向旋转约 90°,当正极性磁场强度减弱后 ,主黑子又呈弱的逆时针方向旋转。该区域产生的高能耀斑爆发与黑子磁场变化密切联系。 相似文献
5.
Boulder88161(AR5060)黑子群是1988年所有黑子群中最大的一群,后随部分有一δ型黑子F3。图1为7月2日的白光照片。 1、光学耀斑:(1)S级小耀斑数在28日最大,之后几天逐步下降,但仍保持在每天3~5个。(2)X-射线强度与S级耀斑个数基本一致。M级事件与1,2,3级耀斑相对应。(3)射电流量曲线与耀斑的1,2,3级个数相对应。 2、黑子群的纵向磁场演化:纵向场结构变化十分明显。浮现磁通逐渐变强,梯度最大为0.4~0.5G/Km,在耀斑处为<0.35G/Km。对耀斑处磁通量逐日上升。在耀斑前几天上升很快。黑子群横向场:在3B级耀斑处横向场很弱,尤其在耀斑的位置上。而在黑子后随部分有很强的横向场存在。 3、耀斑的发生过程:7月2日的3B级耀斑约从0030UT开始,0056UT极大,约一个多小时后才消失。此处中性线扭曲,形成一种湾形结构。一条横躺的S形暗条勾出了中性线形状。另有一束很粗的暗条从这一区域出发与黑子后随部分相连。耀斑初始是由S形暗条西端开始发亮的。约5分钟后后随部分有增亮,8分钟后消失。在S形暗条处耀斑增亮达到极大,形状是沿着中性线和暗条走向的。达到最大面积时,发亮区域覆盖了S极性区。 分析:88161是一个非常活跃的新生黑子群。后随部分磁场复杂多变,而大的耀斑并没有发生在那里。其原因:(1)大耀斑不同于小耀斑, 相似文献
6.
紫台观测编号为1988年第115号黑子群(Boulder编号为5060)是1988年6月26日由日面东边缘转出来,于7月9日转到日面西边缘背后,在7月18日过日面中心经圈,历时共13天。这个黑子群的日面坐标是S20和L5。 该黑子群比较大而复杂。在它通过日面期间,最大时的较正面积达2834(以半球面积的百万分之一为单位),这是从第20周至88年以来所观测到的面积最大的黑子群。此黑子群的型别(按麦氏分类)属最复杂的类型,基本上一直保持为FKC型。在6月26日从日面东边缘转出来时,黑子群呈现为一种异常排列,即其前导黑子位于高纬度,后随黑子处于低纬度,而且呈现明显的旋转运动,其转动方向是反时针的。它在过日面期间还不断的有自身的分裂和移动等特性。另外,该黑子群的磁性结构也异常复杂,在经过日面期间始终为δ结构。基于以上这些形态特征,促使这黑子群在通过日面这段时间内,先后产生了一系列的耀斑活动(其中有44个C级和13个M级的X射线耀斑),并大都伴随着显著的射电爆发,而且引起了多次相应的电离层突然骚动(SID)(有60个耀斑伴随着相应的电离层突然骚扰)。 相似文献
7.
8.
9.
这群黑子于1988年4月13日出现在日面的东边缘。怀柔编号:88037; Boulder编号4990。日面位置N22,L314。其磁场极性较为复杂,17日在后随主黑子的右上方爆发一次较大的耀斑,尔后在18日、20日和21日在前导与后随之间又不断有些小的耀斑爆发.在此期间,怀柔太阳磁场望远镜取得了光球纵向磁场、光球5324A的单色象、H_β的耀斑单色像和H_β视向磁场的大量资料。 16日后随主黑子右上方有一分立的小黑子(S极),17日,耀斑就产生在它们之间(图1中的圆圈表示耀斑发生的位置)。从图2a、b可以看到,这里的极性复杂,异极性磁区互相挤压。耀斑发生在B_(11)=0的磁场中性线一侧,同样是避开了黑子的本影。这与已有的结论是相一致的。对比16日(图2a)和17日(图2b)的纵场磁图,可以看到在标有1和2的地方分别有一N极在向S极挤压。17日N极把S极分割开来。在2处,N极本来是互相连接的,但其临近的S极亦不断向其挤压渗透,耀斑前,S极把N极给断开了。在这些地方,17日UT0423时,爆发了耀斑,UT0430时,耀斑达到极大,可以看出,耀斑的亮核位于异极区挤压的前峰。耀斑发生的位置的纵场梯度为0.18G/Km。后随黑子的右上方,耀斑爆发前(图2a)其最大磁场强度为640G,爆发后(图2c)最大磁场强度为160G。这表明爆发的过程也是能量释放的过程。 虽然耀斑的单 相似文献
10.
本文介绍了76年3月——5月太阳上出现的活动区,是一群回转的电子群,它具有质子耀斑的一些特征。这个活动区发生在太阳活动的宁静时期,它活动所引起的若干地球物理效应在太阳极小期是反常的。 相似文献
11.
12.
通常太阳活动水平紧密相关于日面活动区的结构及其演化特征。活动区愈复杂,活动水平愈强,太阳耀斑事件的频率愈高。当然也有一些例外,一是太阳耀斑事件与黑子活动区有时并不那么密切,甚至无关,如无黑子耀斑等;二是太阳光学事件与射电微波事件之间,也没有完全的一一对应关系,有时甚至相反,如有射电事件而没有光学事件等。88年2月20日事件正是属于后一种情况,也就是显著的微波事件对立于一般水平的光学事件。利用光学资料与射电资料,发现2695与2700MHz上的每日缓变流量与4951活动区的黑子数N和改正面积A呈好的相关。特别是与改正面积同步变化(见图3),由此可见,在二波段上的缓交流量变化可归之于仅仅是4951活动区演化的贡献,而日面上其它活动区则相对稳定,从而对此事件的4951活动区进行了初步分析,提出:对日面西边缘新生发展迅速的活动区,具有极性反转、分布紧密又呈异常排列的黑子群,它们的缓变分量迅猛增长,流量谱呈A1型等特征,可作为某些耀斑事件的预测因子。 相似文献
13.
14.
15.
地球变化磁场呈现复杂时空特点,这是由引起该磁场的磁层一电离层电流以及地球内部感应电流的特性决定的。为了研究变化磁场的物理成因及其在日地物理事件中的特性。首先必须将组成变化磁场的各种成分分离开来,然后逐一加以研究。 我们采用自然正交分量法对我国八个地磁台站的时均值序列进行了分析,这些台站展布在27°12′48″到49°36′的中低纬度带内,正是Sq电流体系焦点所在的纬度带。分析结果表明,由发电机过程产生的Sq电流体系是这一纬度带主要的电流体系,与磁暴环电流有关的扰动电流体系也是十分重要的电流体系,在冬季月份,它往往超过Sq程度。此外与UT有关的磁扰变化也被明显地分离出来,它的成因可能与地球磁场的偏心结构有关。这些成份的相对大小随季节变化,而且有确定的纬度分布。 我们提出了一套单台分析和多台分析的方法。考虑到自然正交分量法收效快,稳定性好,所需资料列序列短的特点,这种方法可以推广到台站使用。自然正交分量法可以从成因上分离不同成因,使它在理论研究中具有优于一般付氏分析、时序迭加等方法,可为中低纬电流系成因研究提供有用的结果。 相似文献
16.
17.
18.
本文根据云台78126活动区的五天的磁场等高斯图资料得出:(1)倒置的磁极性排列和纵场中性线变得迂迥曲折与高能质子耀斑爆发紧密相关。在耀斑爆发以后,磁极性排列和纵场中性线都趋于相对稳定的状态。(2)本活动区的耀斑亮点大多数离中性线区域较远,而出现在中性线附近的亮结点可大致分为两种情形,一种是在中性线两侧的磁场梯度很大且具有相反电流密度的区域,另一种是出现在磁场的“中性点”附近。 相似文献
19.
本文介绍用“三波段太阳射电高时间分辨率同步观测系统”所观测到的1988年12月16日三波段(1420MHz、2840MHz、4000MHz)太阳射电大爆发中毫秒级精细结构的观测特征,指出太阳射电快速活动在射电爆发的不同阶段具有不同的特征,首先在爆发的上升沿出现2840MHz的毫秒尖峰辐射群,继而在1420MHz上出现毫秒级尖峰辐射群,并且还在以后的几个爆发次峰上陆续出现,在长达两小时的大爆发过程中,在4000MHz上始终未产生毫秒级尖峰辐射,这也反应了射电尖峰辐射现象存在着一定的带宽。特别引起注意的是毫秒级尖峰辐射群均出现在射电爆发的峰值附近,在其它时间的记录中尚未发现毫秒尖峰辐射。 三波段的秒级射电爆发曲线如图1所示。毫秒级精细结构如图2所示。由图2可见,单个尖峰辐射的持续随频率的减小而增加,2840MHz多为10—20ms,1420MHz多为30—170ms;所产生的尖峰辐射群强度不大,而且很少有孤立的尖峰;2840MHz尖峰辐射的强度一般为450—900sfu,1420MHz一般为500—1770sfu(1sfu=10~(-22)WM~(-2)Hz~(-1));还特别引起注意的是在2840MHz上当所出现的尖峰辐射群结束时,往往出现持续时间为100ms的流量下降现象,(此种现象在以往的观测中未曾见过),详见图2b和2c;关于事件尖峰辐射的丰度,仅对几个尖峰辐射群作了统计如下: 在1420M 相似文献
20.
本文分析了云台78126活动区的五天的磁场等高斯图资料后得出,倒置的磁极性排列和纵场中性线变得迂回曲折与高能质子耀斑爆发紧密相关。在耀斑爆发后,无论是磁极性排列和纵场中性线都趋于相对稳定状态。我们发现,活动区的净磁通量φ在4月28—30日期间有急剧的变化,而在这期间发生了二个重大耀斑。我们猜想,可能是磁通量的迅速变化引起的强大电动势造成了电子和质子加速的条件。分析了耀斑结点在磁图中的分布后得出;本活动区的耀斑亮点大多数离中性线区域较远,而出现在中性线附近的亮结点,可以大致分为两种情形,一种是在中性线两侧的磁场梯度很大且具有相反电流密度的区域;另一种是出现在磁场的“中性点”附近。 相似文献