首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is one of the major national projects under construction in China. Active optics is one of the most important technologies for new large telescopes. It is used for correcting telescope errors generated by gravitational and thermal changes. Here, however, we use this technology to realize the configuration of LAMOST, -a task that cannot be done in the traditional way. A comprehensive and intensive research on the active optics used in LAMOST is also reported, including an open-loop control method and an auxiliary closed-loop control method. Another important development is in our pre-calibration method of open-loop control, which is with some new features: simultaneous calculation of the forces and displacements of force actuators and displacement actuators; the profile of mirror can be arbitrary; the mirror surface shape is not expressed by a fitting polynomial, but is derived from the mirror surface shape formula which is highly accurat  相似文献   

2.
We present a study of the relationship between integral area and corresponding total magnetic flux for solar active regions. It is shown that some of these relationships are satisfied to simple power laws. Fractal examination showed that some of these power laws can not be justified inside the simple models of stationary magnetic flux tube aggregation. All magnetic fluxes and corresponding areas were calculated using the data measured with the Solar Magnetic Field Telescope of the Huairou Solar Observing Station in Beijing.  相似文献   

3.
We present the evolution of magnetic field and its relationship with mag- netic(current)helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station,longitudinal magne- tograms by MDI of SOHO and white light images of TRACE.The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere,even if the mean current helicity density brings the general chiral property in a layer of solar active regions.As new magnetic flux emerges in active regions,changes of photospheric cur- rent helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected,including changes in sign caused by the injection of magnetic helicity of opposite sign.Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere, the injected magnetic helicity is probably not proportional to the current helicity den- sity remaining in the photosphere.The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions(such as,delta active regions).They represent different aspects of mag- netic chirality.A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.  相似文献   

4.
Large Sky Area Multi-Object Fibre Spectroscopic Telescope (L AMOST) is one of the major on-going national large scientific projects in China. Active optics is a key technology for the LAMOST with which the thin-mirror active optics and segmented-mirror active optics are tied in. A pre-calibration method considering all active forces and displacements specially for LAMOST has been developed in early 2004. We give a detailed mathematical derivation and calculation including numerical simulation and computer program realization of the pre-calibration method of LAMOST open-loop control for the third-order as-pherical aberration. We have also carried out calculations on the application of the pre-calibration method and the parameters of actuator design in LAMOST active optics in observation mode, including estimations of the actuator ranges, the interval of active optics correction and the ranges and trends of load changes on all the actuators during LAMOST tracking a given star.  相似文献   

5.
We present new interferometric observations of the molecular gas distribution and kinematics in the nuclei of different active galaxies at high angular resolution and high sensitivity carried out with the IRAM Plateau de Bure interferometer (PdBI). The observations cover galaxies in a redshift range of 0.03–1.4. We have so far observed five different active galaxies: NGC3718, NGC1068, HE1029–1831, 3C48 and Q0957+561. The first two objects belong to the NUGA (NUclei of GAlaxies) project – an international collaboration mainly between Spain, France and Germany – containing about 30 Seyfert and LINER galaxies. Both are at the same distance of 14Mpc and show a warped gas and dust disk. The new mosaic map of NGC3718 corrected for short-spacing effects with IRAM 30 m observations well demonstrates the existence of the warped gas disk with several secondary maxima in the projected gas distribution caused by orbit crowding effects. Based on these new data we have improved recent simulations of the warped disk in NGC3718. HE1029–1831 and 3C48 are nearby QSOs. HE1029–1831 is taken out of the Cologne nearby QSO sample. The maps of the integrated CO(1–0) and CO(2–1) emission clearly show that the molecular gas is mostly related to the central bulge with a non-negligible fraction distributed along the bar known from optical observations. Our new CO data of 3C48 unveil new information about the kinematics of its molecular gas complementing and improving further studies based on previous infrared observations and detailed multi-particle simulations. Finally, new measurements of the CO(1–0) line in Q0957+561 – a highly-red-shifted, gravitationally lensed quasar – will be presented as a link to earlier evolutionary stages of active galaxies and their hosts.  相似文献   

6.
We have selected 104 active regions with a δ magnetic configuration from 1996 to 2002 to study how important a role the kink instability plays in such active regions. In this study, we employ the systematic tilt angle of each active region as a proxy for the writhe of a flux tube and the force-free parameter, αbest, as a proxy for the magnetic field twist in the flux tube. It is found that 65–67% of the active regions have the same sign of twist and writhe. About 34% (32%) of the active regions violate (follow) the Hale-Nicholson and Joy's Laws (HNJL) but follow (violate) the hemispheric helicity rule (HHR). Sixty-one (61) of the 104 active regions studied each produced more than five large flares. Active regions violating HNJL, but following HHR, have a much stronger tendency to produce X-class flares and/or strong proton events. Comparing with previous studies for active regions with well-defined (simpler) bipolar magnetic configuration, it is found that the numbers following both HNJL and HHR are significantly lower in the δ-configuration case, while numbers violating one of the laws and the rule significantly increase with the increase of the magnetic complexity of the active regions. These results support the prediction for the presence of a kink instability, that the twist and writhe of the magnetic fields exhibit the same sign for δ active regions (Linton et al., Astrophys. J. 507, 40, 1998, Astrophys. J. 522, 1205, 1999; Fan et al., Astrophys. J. 521, 460, 1999). Finally, we analyze possible origins of the twist and writhe of the magnetic fields for the active regions studied.  相似文献   

7.
Outflows of plasma at the edges of active regions surrounded by quiet Sun are now a common observation with the Hinode satellite. While there is observational evidence to suggest that the outflows are originating in the magnetic field surrounding the active regions, there is no conclusive evidence that reveals how they are driven. Motivated by observations of outflows at the periphery of a mature active region embedded in a coronal hole, we have used a three-dimensional simulation to emulate the active region’s development in order to investigate the origin and driver of these outflows. We find that outflows are accelerated from a site in the coronal hole magnetic field immediately surrounding the active region and are channelled along the coronal hole field as they rise through the atmosphere. The plasma is accelerated simply as a result of the active region expanding horizontally as it develops. Many of the characteristics of the outflows generated in the simulation are consistent with those of observed outflows: velocities up to 45 km s−1, properties akin to the coronal hole, proximity to the active region’s draining loops, expansion with height, and projection over monopolar photospheric magnetic concentrations. Although the horizontal expansion occurs as a consequence of the active region’s development in the simulation, expansion is also a general feature of established active regions. Hence, it is entirely possible and plausible that the expansion acceleration mechanism displayed in the simulation is occurring in active regions on the Sun and, in addition to reconnection, is driving the outflows observed at their edges.  相似文献   

8.
A new coordinate system – heliomagnetic reference frame – has been proposed in which the great circle passes through the solar pole and the north pole of the magnetic dipole is considered as the central meridian. It is shown that, in the new coordinate system, the active longitudes are defined much more clearly, are more stable in time, and are interlaced every 11 years.  相似文献   

9.
Helioseismic techniques such as ring-diagram analysis have often been used to determine the subsurface structural differences between solar active and quiet regions. Results obtained by inverting the frequency differences between the regions are usually interpreted as the sound-speed differences between them. These in turn are used as a measure of temperature and magnetic-field strength differences between the two regions. In this paper we first show that the “sound-speed” difference obtained from inversions is actually a combination of sound-speed difference and a magnetic component. Hence, the inversion result is not directly related to the thermal structure. Next, using solar models that include magnetic fields, we develop a formulation to use the inversion results to infer the differences in the magnetic and thermal structures between active and quiet regions. We then apply our technique to existing structure inversion results for different pairs of active and quiet regions. We find that the effect of magnetic fields is strongest in a shallow region above 0.985R and that the strengths of magnetic-field effects at the surface and in the deeper (r<0.98R ) layers are inversely related (i.e., the stronger the surface magnetic field the smaller the magnetic effects in the deeper layers, and vice versa). We also find that the magnetic effects in the deeper layers are the strongest in the quiet regions, consistent with the fact that these are basically regions with weakest magnetic fields at the surface. Because the quiet regions were selected to precede or follow their companion active regions, the results could have implications about the evolution of magnetic fields under active regions.  相似文献   

10.
1 IntroductionInthemorethan 5 0yearsfromthatthesolarradioastronomywasborn ,peoplehavecarriedoutagreatdealofobservationsandstudiesonradioemissionphenomena ,butitwasdonefewinradioabsorptionphenomena .Infactinthesolaratmosphericplasma ,theradiationandabsorpti…  相似文献   

11.
We compiled a sample of 98 radio-quiet active galactic nuclei observed by ASCA, Chandra, XMM-Newton, INTEGRAL and Swift with the aim of testing the formation of hot corona and the magnetic shear stress operating in a disk-corona system. We found a strong correlation between the hard X-ray luminosity, bolometric luminosity L Bol and Eddington luminosity LEdd, in the sense that the fraction f of hard X-ray to the bolometric luminosity is inversely proportional to the Eddington ratio. This correlation favors the shear stress tensor being of the form of trφ∝ Pgas, with which the disk-corona structure is stable.  相似文献   

12.
We present an astrometric study of the candidates of T Tauri stars (TTS)and non-TTS X-ray sources around Tau-Aur, based on the Hipparcos Catalogue andthe ACT Reference Catalogue. The ROSAT selected X-ray sources are found to bea mixed population. A few of them are associated with the Tau-Aur or Orion StarForming Regions (SFR). Some, with distances similar to that of Tau-Aur but withdiscrepant proper motions, are probable or sure Pleiades super-cluster members orother late type young active stars with unresolved nature, more likely to originatein rapidly moving cloudlets, or else having originated from different sites other thanTau-Aur and moved to the present locations. A good many of the non-TTS X-raysources are considered as Hyades cluster members. Some TTS candidates could beforeground pre-main sequence stars or actually young dwarfs not yet depleted oftheir Lithium. Under the hypothesis that the sources we studied are representativeof the ROSAT selected TTS candidates discovered in the outskirts of  相似文献   

13.
On the basis of our multiwavelength observations made with the one-dimensional RATAN-600 radio telescope, we study the inversion of the circular polarization in the solar microwave emission at different frequencies. The inversion is detected in the emission of flare-producing active regions (FPARs) at various stages of their development, starting from the pre-flare stage. During the latest 23rd solar cycle maximum, numerous FPARs revealed spectral inhomogeneities in their polarized microwave radiation (Bogod and Tokhchukova, 2003, Astron. Lett. 29, 263). Here, we discuss a particular case of such inhomogeneities, the frequency-dependent double inversion of the sign of circular polarization, which probably reflects some essential processes in FPARs. We consider several mechanisms for the double inversion: linear interaction of waves in the region of a quasitransverse magnetic field, the propagation of waves through a region of zero magnetic field, the scattering of radio waves on waves of high-frequency plasma turbulence, the influence of the current fibrils on the propagation of the radio emission, and the magnetic “dips,” in which the direction of magnetic field lines changes the sign relative to the observer. All of them have shortcomings, but the last mechanism explains the observations the best.  相似文献   

14.
Active galactic nuclei (AGN) are energetic astrophysical sources powered by accretion onto supermassive black holes in galaxies, and present unique observational signatures that cover the full electromagnetic spectrum over more than twenty orders of magnitude in frequency. The rich phenomenology of AGN has resulted in a large number of different “flavours” in the literature that now comprise a complex and confusing AGN “zoo”. It is increasingly clear that these classifications are only partially related to intrinsic differences between AGN and primarily reflect variations in a relatively small number of astrophysical parameters as well the method by which each class of AGN is selected. Taken together, observations in different electromagnetic bands as well as variations over time provide complementary windows on the physics of different sub-structures in the AGN. In this review, we present an overview of AGN multi-wavelength properties with the aim of painting their “big picture” through observations in each electromagnetic band from radio to \(\gamma \)-rays as well as AGN variability. We address what we can learn from each observational method, the impact of selection effects, the physics behind the emission at each wavelength, and the potential for future studies. To conclude, we use these observations to piece together the basic architecture of AGN, discuss our current understanding of unification models, and highlight some open questions that present opportunities for future observational and theoretical progress.  相似文献   

15.
We investigate the emergence of Active Region NOAA 10790 by means of time?–?distance helioseismology. Shallow regions of increased sound speed at the location of increased magnetic activity are observed, with regions becoming deeper at the locations of sunspot pores. We also see a long-lasting region of decreased sound speed located underneath the region of the flux emergence, possibly relating to a temperature perturbation due to magnetic quenching of eddy diffusivity, or to a dense flux tube. We detect and track an object in the subsurface layers of the Sun characterised by increased sound speed which could be related to emerging magnetic-flux and thus obtain a provisional estimate of the speed of emergence of around 1 km?s?1.  相似文献   

16.
Chou  Dean-Yi 《Solar physics》2000,192(1-2):241-259
Acoustic imaging is a new method to construct the acoustic signal at a point on the solar surface or in the solar interior with the signals measured at the solar surface. The constructed signals contain both intensity information and phase information. The intensity is computed by summing the squared amplitude of the constructed signal over time. The phase of constructed signals can be studied by the cross-correlation function between the time series constructed with ingoing waves and outgoing waves. The location of the envelope peak of the cross-correlation function and the phase of the cross-correlation function contain different information on the physical conditions of the plasma along the wave path. From the constructed signals, one can form the two-dimensional outgoing intensity map, absorption map, phase-shift map, and envelope-shift map of a target region at different focal depths. The perturbed physical conditions caused by the magnetic fields of active regions manifest in these maps. The outgoing intensity is lower in magnetic regions than the quiet Sun. The group travel time and phase travel time are smaller in magnetic regions than in the quiet Sun. In this paper, we review the studies of active regions, including emerging flux regions, with acoustic imaging.  相似文献   

17.
We compare the contrast of faculae, in visible light and in the near infrared (NIR), that were associated with the active region NOAA 8518 which crossed the solar disk from April 19 to 27, 1999. We obtained NIR continuum images at 1.6 μm at the Big Bear Solar Observatory (BBSO) with an Indium Gallium Arsenide (In Ga As) NIR digital camera. We also obtained high-resolution longitudinal magnetograms and visible light filtergrams at 610.3 nm with the newly developed Digital Vector Magnetograph (DVMG). Our data show that the contrast of faculae has the same sign in both the visible and the NIR. We did not find any so-called “dark faculae”, faculae that are bright in the visible and simultaneously dark in the NIR.We determined a threshold magnetic flux density that separates pores from faculae.  相似文献   

18.
Three Super Active Regions in the Descending Phase of Solar Cycle 23   总被引:2,自引:0,他引:2  
We analyze the magnetic configurations of three super active regions, NOAA 10484, 10486 and 10488, observed by the Huairou Multi-Channel Solar Telescope (MCST) from 2003 October 18 to November 4. Many energetic phenomena, such as flares (including a X-28 flare) and coronal mass ejections (CMEs), occurred during this period. We think that strong shear and fast emergence of magnetic flux are the main causes of these events. The question is also of great interest why these dramatic eruptions occurred so close together in the descending phase of the solar cycle.  相似文献   

19.
Radio observations of some active regions (ARs) obtained with the Nobeyama radioheliograph at λ=1.76cm are used for estimating the magnetic field strength in the upper chromosphere, based on thermal bremsstrahlung. The results are compared with the magnetic field strength in the photosphere from observations with the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station of Beijing Astronomical Observatory. The difference in the magnetic field strength between the two layers seems reasonable. The solar radio maps of active regions obtained with the Nobeyama radioheliograph, both in total intensity (I-map) and in circular polarizations (V-map), are compared with the optical magnetograms obtained with the SMFT. The comparison between the radio map in circular polarization and the longitudinal photospheric magnetogram of a plage region suggest that the radio map in circular polarization is a kind of magnetogram of the upper chromosphere. The comparison of the radio map in total intensity with the photospheric vector magnetogram of an AR shows that the radio map in total intensity gives indications of magnetic loops in the corona, thus we have a method of defining the coronal magnetic structure from the radio I-maps at λ=1.76 cm. Analysing the I-maps, we identified three components: (a) a compact bright source; (b) a narrow elongated structure connecting two main magnetic islands of opposite polarities (observed in both the optical and radio magnetograms); (c) a wide, diffuse, weak component that corresponds to a wide structure in the solar active region which shows in most cases an S or a reversed S contour, which is probably due to the differential rotation of the Sun. The last two components suggest coronal loops on different spatial scales above the neutral line of the longitudinal photospheric magnetic field.  相似文献   

20.
We analyze the process of formation of delta configuration in some well-known super active regions based on photospheric vector magnetogram observations. It is found that the magnetic field in the initial developing stage of some delta active regions shows a potential-like configuration in the solar atmosphere, the magnetic shear develops mainly near the magnetic neutral line with magnetic islands of opposite polarities, and the large-scale photospheric twisted field forming gradually later. Some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, supposed to be generated in the subatmosphere, is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and not entirely consistent with the relationship with magnetic shear in some delta active regions. (3) T  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号