首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
Two prediction models for calculating vibration from underground railways are developed: the pipe-in-pipe model and the coupled periodic finite element–boundary element (FE–BE) model.The pipe-in-pipe model is a semi-analytical three-dimensional model that accounts for the dynamic interaction between the track, the tunnel and the soil. The continuum theory of elasticity in cylindrical coordinates is used to model two concentric pipes: an inner pipe to represent the tunnel wall and an outer pipe to represent the surrounding soil. The tunnel and soil are coupled accounting for equilibrium of stresses and compatibility of displacements at the tunnel–soil interface. This method assumes that the tunnel is invariant in the longitudinal direction and the problem is formulated in the frequency–wavenumber domain using a Fourier transformation. A track, formulated as an Euler–Bernoulli beam, is then coupled to this model. Results are transformed to the space domain using the inverse Fourier transform.The coupled periodic FE–BE model is based on a subdomain formulation, where a boundary element method is used for the soil and a finite element method for the tunnel. The Craig–Bampton substructuring technique is used to efficiently incorporate the track in the tunnel. The periodicity of the tunnel is exploited using the Floquet transformation to formulate the track–tunnel–soil interaction problem in the frequency–wavenumber domain and to compute the wave field radiated into the soil.An invariant concrete tunnel, embedded in a homogeneous full space is analyzed using both approaches. The pipe-in-pipe model offers an exact solution to this problem, which is used to validate the coupled periodic FE–BE model. The free field response due to a harmonic load in the tunnel is predicted and results obtained with both models are compared. The advantages and limitations of both models are highlighted. The coupled periodic FE–BE model has a greater potential as it can account for the complex periodic geometry of the tunnel and the layering in a soil medium. The effect of coupling a floating slab to the tunnel–soil system is also studied with both models by calculating the insertion gain.  相似文献   

2.
Evaluation of stochastic reservoir operation optimization models   总被引:5,自引:0,他引:5  
This paper investigates the performance of seven stochastic models used to define optimal reservoir operating policies. The models are based on implicit (ISO) and explicit stochastic optimization (ESO) as well as on the parameterization–simulation–optimization (PSO) approach. The ISO models include multiple regression, two-dimensional surface modeling and a neuro-fuzzy strategy. The ESO model is the well-known and widely used stochastic dynamic programming (SDP) technique. The PSO models comprise a variant of the standard operating policy (SOP), reservoir zoning, and a two-dimensional hedging rule. The models are applied to the operation of a single reservoir damming an intermittent river in northeastern Brazil. The standard operating policy is also included in the comparison and operational results provided by deterministic optimization based on perfect forecasts are used as a benchmark. In general, the ISO and PSO models performed better than SDP and the SOP. In addition, the proposed ISO-based surface modeling procedure and the PSO-based two-dimensional hedging rule showed superior overall performance as compared with the neuro-fuzzy approach.  相似文献   

3.
Based on the generalized Gauss–Newton method, a new algorithm to minimize the objective function of the penalty method in (Bentley LR. Adv Wat Res 1993;14:137–48) for inverse problems of steady-state aquifer models is proposed. Through detailed analysis of the “built-in” but irregular weighting effects of the coefficient matrix on the residuals on the discrete governing equations, a so-called scaling matrix is introduced to improve the great irregular weighting effects of these residuals adaptively in every Gauss–Newton iteration. Numerical results demonstrate that if the scaling matrix equals the identity matrix (i.e., the irregular weighting effects of the coefficient matrix are not balanced), our algorithm does not perform well, e.g., the computation cost is higher than that of the traditional method, and what is worse is the calculations fail to converge for some initial values of the unknown parameters. This poor situation takes a favourable turn dramatically if the scaling matrix is slightly improved and a simple preconditioning technique is adopted: For naturally chosen simple diagonal forms of the scaling matrix and the preconditioner, the method performs well and gives accurate results with low computational cost just like the traditional methods, and improvements are obtained on: (1) widening the range of the initial values of the unknown parameters within which the minimizing iterations can converge, (2) reducing the computational cost in every Gauss–Newton iteration, (3) improving the irregular weighting effects of the coefficient matrix of the discrete governing equations. Consequently, the example inverse problem in Bentley (loc. cit.) is solved with the same accuracy, less computational effort and without the regularization term containing prior information on the unknown parameters. Moreover, numerical example shows that this method can solve the inverse problem of the quasilinear Boussinesq equation almost as fast as the linear one.In every Gauss–Newton iteration of our algorithm, one needs to solve a linear least-squares system about the corrections of both the parameters and the groundwater heads on all the discrete nodes only once. In comparison, every Gauss–Newton iteration of the traditional method has to solve the discrete governing equations as many times as one plus the number of unknown parameters or head observation wells (Yeh WW-G. Wat Resour Res 1986;22:95–108).All these facts demonstrate the potential of the algorithm to solve inverse problems of more complicated non-linear aquifer models naturally and quickly on the basis of finding suitable forms of the scaling matrix and the preconditioner.  相似文献   

4.
Uniform models for the Earth–ionosphere cavity are considered with particular attention to the physical properties of the ionosphere for the extremely low frequency (ELF) range. Two consistent features have long been recognized for the range: the presence of two distinct altitude layers of maximum energy dissipation within the lower ionosphere, and a “knee”-like change in the vertical conductivity profile representing a transition in dominance from ion-dominated to electron-dominated conductivity. A simplified two-exponential version of the Greifinger and Greifinger (1978) technique widely used in ELF work identifies two slopes in the conductivity profile and, providing accurate results in the ELF communication band (45–75 Hz), simulates too flat a frequency dependence of the quality factor within the Schumann resonance frequency range (5–40 Hz). The problem is traced to the upward migration, with frequency increasing, of the lower dissipation layer through the “knee” region resulting in a pronounced decrease of the effective scale height for conductivity. To overcome this shortcoming of the two-exponential approximation and still retain valuable model analyticity, a more general approach (but still based on the Greifinger and Greifinger formalism) is presented in the form of a “knee” model whose predictions for the modal frequencies, the wave phase velocities and the quality factors reasonably represent observations in the Schumann resonance frequency range.  相似文献   

5.
Models for water transfer in the crop–soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop–soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop–soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration.  相似文献   

6.
In this paper, a study on the transient response of an elastic structure embedded in a homogeneous, isotropic and linearly elastic half-plane is presented. Transient dynamic and seismic forces are considered in the analysis. The numerical method employed is the coupled Finite-Element–Boundary-Element technique (FE–BE). The finite element method (FEM) is used for discretization of the near field and the boundary element method (BEM) is employed to model the semi-infinite far field. These two methods are coupled through equilibrium and compatibility conditions at the soil–structure interface. Effects of non-zero initial conditions due to the pre-dynamic loads and/or self-weight of the structure are included in the transient boundary element formulation. Hence, it is possible to analyse practical cases (such as dam–foundation systems) involving initial conditions due to the pre-seismic loads such as water pressure and self-weight of the dam. As an application of the proposed formulation, a gravity dam has been analysed and the results for different foundation stiffness are presented. The results of the analysis indicate the importance of including the foundation stiffness and thus the dam–foundation interaction.  相似文献   

7.
Computer models must be tested to ensure that the mathematical statements and solution schemes accurately represent the physical processes of interest. Because the availability of benchmark problems for testing density-dependent groundwater models is limited, one should be careful in using these problems appropriately. Details of a Galerkin finite-element model for the simulation of density-dependent, variably saturated flow processes are presented here. The model is tested using the Henry salt-water intrusion problem and Elder salt convection problem. The quality of these benchmark problems is then evaluated by solving the problems in the standard density-coupled mode and in a new density-uncoupled mode. The differences between the solutions indicate that the Henry salt-water intrusion problem has limited usefulness in benchmarking density-dependent flow models because the internal flow dynamics are largely determined by the boundary forcing. Alternatively, the Elder salt-convection problem is more suited to the model testing process because the flow patterns are completely determined by the internal balance of pressure and gravity forces.  相似文献   

8.
Tidal water table fluctuations in a coastal aquifer are driven by tides on a moving boundary that varies with the beach slope. One-dimensional models based on the Boussinesq equation are often used to analyse tidal signals in coastal aquifers. The moving boundary condition hinders analytical solutions to even the linearised Boussinesq equation. This paper presents a new perturbation approach to the problem that maintains the simplicity of the linearised one-dimensional Boussinesq model. Our method involves transforming the Boussinesq equation to an ADE (advection–diffusion equation) with an oscillating velocity. The perturbation method is applied to the propagation of spring–neap tides (a bichromatic tidal system with the fundamental frequencies ω1andω2) in the aquifer. The results demonstrate analytically, for the first time, that the moving boundary induces interactions between the two primary tidal oscillations, generating a slowly damped water table fluctuation of frequency ω1−ω2, i.e., the spring–neap tidal water table fluctuation. The analytical predictions are found to be consistent with recently published field observations.  相似文献   

9.
A study of soil–structure–fluid interaction (SSFI) of a lock system subjected to harmonic seismic excitation is presented. The water contained lock is embedded in layered soils supported by a half-space bedrock. The ground excitation is prescribed at the soil–bedrock interface. The response is numerically obtained through a hybrid boundary element (BEM) finite element method (FEM) formulation. The semi-infinite soil and the fluid are modeled by the BEM and the lock is modeled by the FEM. The equilibrium equation for the lock system is obtained by enforcing compatibility and equilibrium conditions at the fluid–structure, soil–structure and soil–layer interfaces under conditions of plane strain. To the authors’ knowledge this is the first study of a lock system that considers the effects of dynamic soil–fluid–structure interaction through a BEM–FEM methodology. A numerical example and parametric studies are presented to examine the effects of the presence of water, lock stiffness, and lock embedment on the response.  相似文献   

10.
Two cirrus cloud systems observed during the winter of 2001 at the Southern Great Plains site of the Atmospheric Radiation Measurements program in Oklahoma, USA are studied because of the distinct neutrally stratified layers formed within the clouds. Observations are obtained with 35 GHz millimeter-wave radar and backscattering cross-section η(t) signals within radar-reflectivity restricted sublayers of the clouds are analyzed. The neutrally stratified layers of cirrus clouds are known to be associated with the existence of generating cells. The statistics of radiative properties within the neutrally stratified layers is obtained to be non-Gaussian and time-dependent. The purpose of this research is to derive a model of the cloud-generating cells layer in cirrus based on the statistics of observations. The Fokker–Planck equation approach provides suitable framework to treat non-Gaussian, time-dependent probability density functions (pdfs) such as those found for the η(t) signals. It is shown that the deviations from Gaussianity of radiative properties of the neutrally stratified generating cells layer in cirrus can be modeled by linear stochastically perturbed dynamics with multiplicative noise statistics. Because the multiplicative noise is often identified with state-dependent variations of stochastic feedbacks from unresolved system components it is expected that derived stochastic model will be useful for parameterization of cirrus in global circulation models (GCMs).  相似文献   

11.
This paper provides an insight into the numerical simulation of soil–structure interaction (SSI) phenomena studied in a shaking table facility. The shaking table test is purposely designed to confirm the ability of the numerical substructure technique to simulate the SSI phenomenon. A model foundation–structure system with strong SSI potential is embedded in a dry bed of sand deposited within a purpose designed shaking-table soil container. The experimental system is subjected to a strong ground motion. The numerical simulation of the complete soil–foundation–structure system is conducted in the linear viscoelastic domain using the substructure approach. The matching of the experimental and numerical responses in both frequency and in time domain is satisfying. Many important aspects of SSI that are apparent in the experiment are captured by the numerical simulation. Furthermore, the numerical modelling is shown to be adequate for practical engineering design purposes.  相似文献   

12.
A geochronological study of the Filicudi, Salina, Lipari and Vulcano Islands (Aeolian Archipelago) using the unspiked potassium–argon technique provides new age data which, combined with stratigraphic correlation, better constrain the temporal evolution of volcanism. The unspiked K–Ar age of the oldest exposed lavas on Filicudi, 219±5 ka, is significantly younger than the previous estimation of 1.02 Ma. In the general context of Aeolian volcanism, this new date suggests that the volcanism of the western sector of the Aeolian Archipelago is younger than previously thought. Geochronological data point out on the rapid transition from calc–alkaline to potassic volcanism. The distribution of the K–Ar ages within the Salina–Lipari–Vulcano group shows that the volcanism started on Lipari and propagated over time northward on Salina and southward on Vulcano. Geochronological and geophysical data suggest that the onset of volcanism in the central sector of the Aeolian Arc may be due to a mantle upwelling structure located below Lipari. A change in the style of the eruptions occurred in the Salina–Lipari–Vulcano system at about 100 ka from the present. Low-energy magmatic eruptions occurred between 188 and about 100 ka. From about 100 ka to the present, higher-energy eruptions and low-energy events due to magma–water interaction also occurred. This change in the style of activity, together with the appearance of evolved products (i.e. rhyolites) during the last 50 ka, is consistent with the formation of magmatic reservoirs located at shallower depth with respect to those of the 188–100-ka period. The new geochronological data and available petrological models reveal that a change in the deep source of the primary magmas occurred in a relatively short time interval.  相似文献   

13.
The results of numerical models or of new observational programs are checked by comparing them with past observations. Also, it is desirable that the eddy diffusion coefficients used in two-dimensional models be derived from the same data set as the circulation statistics which the model outputs are checked against, so that all results refer to the same atmospheric conditions. For the first time, the three components of the eddy diffusion matrix, from 30–60 km, 80°N–10°S are computed, together with the means, variances and covariances of the wind and temperature through the same region using the same data set for 1960–76 and the same handling and analysis methods for all variables. Horizontal diffusivities,K yy , are obtained from the variance and integral time scale of the meridional wind speed. The present values are generally smaller than past estimates, presumably because temporal variations longer than a month have been removed in this work. Estimates ofK yz are based on the tentative assumption that the diffusivity is proportional to the slope of isentropic surfaces, and estimates ofK zz are based on the assumption that small-scale gravity waves are primarily responsible for vertical mixing.  相似文献   

14.
We performed U–Th radioactive disequilibrium analyses of carbonate nodules and sediment samples recovered from methane seep sites off Joetsu, of the eastern margin of Japan Sea, to decipher the active period of the methane seep. The carbonates contain 230Th, part of which is located in detritus such as silicate and organics, at the time of precipitation. The initial 230Th renders accurate dating with U–Th radioactive disequilibrium method difficult. We assessed the feasibility of correction using radioactive disequilibrium data of ambient sediment to overcome this difficulty. A (230Th/232Th)–(234U/232Th) isochron drawn by three chips divided from a carbonate nodule (PC05-04-50) passed through data points of local sediments. We conclude that the problem of initial 230Th can be resolved by measurements of local sediments. Results show that carbonate nodules include local sediment as impurities. Furthermore, the results of trace element analyses such as Rb, Zr, Nb, REE, Pb, and Th also support the idea.In all, 18 carbonate samples were dated with correction of initial 230Th using the mean value of local sediment in this study. The U–Th correction ages show 12–35ka with an isochron age of 26 ± 3ka. Results indicate that during the time interval of U–Th ages, from 12ka to 35ka, environmental conditions must have been favorable for enhanced methane flux through sediment. The extensive methane flow period at 20ka accords with the lowest-stand sea level during the last glacial age. Results of this study also suggest that U–Th ages of carbonate are useful as a reliable chronometer with regard to methane seep activation. In order to acquire U–Th ages of carbonate at methane seep sites, however, it is important to evaluate the amount of initial 230Th accurately using the value of sediment.  相似文献   

15.
The origin of Arenal basaltic andesite can be explained in terms of fractional crystallization of a parental high-alumina basalt (HAB), which assimilates crustal rocks during its storage, ascent and evolution. Contamination of this melt by Tertiary calc-alkalic intrusives (quartz–diorite and granite, with 87Sr/86Sr ratios ranging 0.70381–0.70397, nearly identical with those of the Arenal lavas) occurs at upper crustal levels, following the interaction of ascending basaltic magma masses with gabbroic–anorthositic layers. Fragments of these layers are found as inclusions within Arenal lavas and tephra and may show reaction rims (1–5 mm thick, consisting of augite, hypersthene, bytownitic–anorthitic plagioclase, and granular titanomagnetite) at the gabbro–lava interface. These reaction rims indicate that complete `assimilation' was prevented since the temperature of the host basaltic magma was not high enough to melt the gabbroic materials (whose mineral phases are nearly identical to the early formed liquidus phases in the differentiating HAB). Olivine gabbros crystallized at pressure of about 5–6 kbar and equilibrated with the parental HAB at pressures of 3–6 kbar (both under anhydrous and hydrous conditions), and temperatures ranging 1000–1100°C. In particular, `deeper' interactions between the mafic inclusions and the hydrous basaltic melt (i.e., with about 3.5 wt.% H2O) are likely to occur at 5.4 (±0.4) kbar and temperatures approaching 1100°C. The olivine gabbros are thus interpreted as cumulates which represent crystallized portions of earlier Arenal-type basalts. Some of the gabbros have been `mildly' tectonized and recrystallized to give mafic granulites that may exhibit a distinct foliation. Below Arenal volcano a zoned magma chamber evolved prior the last eruptive cycle: three distinct andesitic magma layers were produced by simple AFC of a high-alumina basalt (HAB) with assimilation of Tertiary quartz–dioritic and granitic rocks. Early erupted 1968 tephra and 1969 lavas (which represent the first two layers of the upper part of a zoned magma chamber) were produced by simple AFC, with fractionation of plagioclase, pyroxene and magnetite and concomitant assimilation of quartz–dioritic rocks. Assimilation rates were constant (r1=0.33) for a relative mass of magma remaining of 0.77–0.80, respectively. Lavas erupted around 1974 are less differentiated and represent the `primitive andesitic magma type' residing within the middle–lower part of the chamber. These lavas were also produced by simple AFC: assimilation rates and the relative mass of magma remaining increased of about 10%, respectively (r1=0.36, and F=0.89). Ba enrichment of the above lavas is related to selective assimilation of Ba from Tertiary granitic rocks. Lava eruption occurred as a dynamic response to the intrusion of a new magma into the old reservoir. This process caused the instability of the zoned magma column inducing syneruptive mixing between portions of two contiguous magma layers (both within the column itself and at lower levels where the new basalt was intruded into the reservoir). Syneruptive mixing (mingling) within the middle–upper part of the chamber involved fractions of earlier gabbroic cumulitic materials (lavas erupted around 1970). On the contrary, within the lower part of the chamber, mixing between the intruded HAB and the residing andesitic melt was followed by simple fractional crystallization (FC) of the hybrid magma layer (lavas erupted in 1978–1980). By that time the original magma chamber was completely evacuated. Lavas erupted in 1982/1984 were thus modelled by means of `open system' AFCRE (i.e., AFC with continuous recharge of a fractionating magma batch during eruption): in this case assimilation rates were r1=0.33 and F=0.86. Recharge rates are slightly higher than extrusion rates and may reflect differences in density (between extruded and injected magmas), together with dynamic fluctuations of these parameters during eruption. Ba and LREE (La, Ce) enrichments of these lavas can be related to selective assimilation of Tertiary granitic and quartz–dioritic rocks. Calculated contents for Zr, Y and other REE are in acceptable agreement with the observed values. It is concluded that simple AFC occurs between two distinct eruption cycles and is typical of a period of repose or mild and decreasing volcanic activity. On the contrary, magma mixing, eventually followed by fractional crystallization (FC) of the hybrid magma layer, occurs during an ongoing eruption. Open-system AFCRE is only operative when the original magma chamber has been totally replenished by the new basaltic magma, and seems a prelude to the progressive ceasing of a major eruptive cycle.  相似文献   

16.
In this paper, the adaptive chirplet decomposition combined with the Wigner-Ville transform and the empirical mode decomposition combined with the Hilbert transform are employed to process various non-stationary signals (strong ground motions and structural responses). The efficacy of these two adaptive techniques for capturing the temporal evolution of the frequency content of specific seismic signals is assessed. In this respect, two near-field and two far-field seismic accelerograms are analyzed. Further, a similar analysis is performed for records pertaining to the response of a 20-story steel frame benchmark building excited by one of the four accelerograms scaled by appropriate factors to simulate undamaged and severely damaged conditions for the structure. It is shown that the derived joint time–frequency representations of the response time histories capture quite effectively the influence of non-linearity on the variation of the effective natural frequencies of a structural system during the evolution of a seismic event; in this context, tracing the mean instantaneous frequency of records of critical structural responses is adopted.The study suggests, overall, that the aforementioned techniques are quite viable tools for detecting and monitoring damage to constructed facilities exposed to seismic excitations.  相似文献   

17.
The structure and volcanic stratigraphy of the Pico Teide–Pico Viejo (PT–PV) formation, deriving from the basanite–phonolite stratovolcanoes PT and PV, and numerous flank vent systems, are documented in detail based on new field and photogeologic mapping, geomorphologic analysis, borehole data, and petrological and geochemical findings. Results provide insight into the structure and evolution of the PT–PV magma system, and the long-term, cyclic evolution of Tenerife's post-shield volcanic complex. The PT–PV formation comprises products of central volcanism, mainly emplaced into the Las Cañadas caldera (LCC), and contemporaneous products from adjacent rifts. PT–PV central volcanic products become more differentiated up-section with felsic lavas dominating the recent output of the system. This is attributed to the evolution of a shallow magma reservoir beneath PT that was emplaced early in the PT–PV cycle on the intra-caldera segment of Tenerife's post-shield rift system. The rift axis has been the focus of PT–PV intrusive and eruptive activity, and has controlled the location of the stratocones. The current geometry of the rifts reflects a major structural reorganisation defining the start of the PT–PV cycle at 0.18 Ma, namely the truncation of the north side of the LCC/LCE by the giant Icod landslide. The internal stratigraphy of the PT–PV formation suggests that PT developed early, with PV developing as a satellite vent. Activity has since alternated between PT and PV due to episodes of vent blockage or chamber sealing. These processes have allowed significant volumes of phonolitic magmas to develop and accumulate within the PT chamber, which have vented through radial dike systems during tumescence episodes and from the rift system, which has permitted lateral magma transport. The PT–PV magma system is a potentially hazardous source of future, felsic eruptive activity on Tenerife.  相似文献   

18.
The parallel physically-based surface–subsurface model PARFLOW was used to investigate the spatial patterns and temporal dynamics of river–aquifer exchange in a heterogeneous alluvial river–aquifer system with deep water table. Aquifer heterogeneity at two scales was incorporated into the model. The architecture of the alluvial hydrofacies was represented based on conditioned geostatistical indicator simulations. Subscale variability of hydraulic conductivities (K) within hydrofacies bodies was created with a parallel Gaussian simulation. The effects of subscale heterogeneity were investigated in a Monte Carlo framework. Dynamics and patterns of river–aquifer exchange were simulated for a 30-day flow event. Simulation results show the rapid formation of saturated connections between the river channel and the deep water table at preferential flow zones that are characterized by high conductivity hydrofacies. Where the river intersects low conductivity hydrofacies shallow perched saturated zones immediately below the river form, but seepage to the deep water table remains unsaturated and seepage rates are low. Preferential flow zones, although only taking up around 50% of the river channel, account for more than 98% of total seepage. Groundwater recharge is most efficiently realized through these zones. Subscale variability of Ksat slightly increased seepage volumes, but did not change the general seepage patterns (preferential flow zones versus perched zones). Overall it is concluded that typical alluvial heterogeneity (hydrofacies architecture) is an important control of river–aquifer exchange in rivers overlying deep water tables. Simulated patterns and dynamics are in line with field observations and results from previous modeling studies using simpler models. Alluvial heterogeneity results in distinct patterns and dynamics of river–aquifer exchange with implications for groundwater recharge and the management of riparian zones (e.g. river channel-floodplain connectivity via saturated zones).  相似文献   

19.
Main purpose of this study is to evaluate the dynamic behavior of fluid–rectangular tank–soil/foundation system with a simple and fast seismic analysis procedure. In this procedure, interaction effects are presented by Housner's two mass approximations for fluid and the cone model for soil/foundation system. This approach can determine; displacement at the height of the impulsive mass, the sloshing displacement and base forces for the soil/foundation system conditions including embedment and incompressible soil cases. Models and equations for proposed method were briefly explained for different tank–soil/foundation system combinations. By means of changing soil/foundation conditions, some comparisons are made on base forces and sloshing responses for the cases of embedment and no embedment. The results showed that the displacements and base shear forces generally decreased, with decreasing soil stiffness. However, embedment, wall flexibility, and soil–structure interaction (SSI) did not considerably affect the sloshing displacement.  相似文献   

20.
A search for Pc3–4 wave activity was performed using data from a trans-Antarctic profile of search-coil magnetometers extending from the auroral zone through cusp latitudes and deep into the polar cap. Pc3–4 pulsations were found to be a ubiquitous element of ULF wave activity in all these regions. The diurnal variations of Pc3 and Pc4 pulsations at different latitudes have been statistically examined using discrimination between wave packets (pulsations) and noise. Daily variations of the Pc3–4 wave power differ for the stations at the polar cap, cusp, and auroral latitudes, which suggests the occurrence of several channels of propagation of upstream wave energy to the ground: via the equatorial magnetosphere, cusp, and lobe/mantle. An additional maximum of Pc3 pulsations during early-morning hours in the polar cap has been detected. This maximum, possibly, is due to the proximity of the geomagnetic field lines at these hours to the exterior cusp. The statistical relation between the occurrence of Pc3–4 pulsations and interplanetary parameters has been examined by analyzing normalized distributions of wave occurrence probability. The dependences of the occurrence probability of Pc3–4 pulsations on the IMF and solar wind parameters are nearly the same at all latitudes, but remarkably different for the Pc3 and Pc4 bands. We conclude that the mechanisms of high-latitude Pc3 and Pc4 pulsations are different: Pc3 waves are generated in the foreshock upstream of the quasi-parallel bow shock, whereas the source of the Pc4 activity is related to magnetospheric activity. Hourly Pc3 power has been found to be strongly dependent on the season: the power ratio between the polar summer and winter seasons is 8. The effect of substantial suppression of the Pc3 amplitudes during the polar night is reasonably well explained by the features of Alfven wave transmission through the ionosphere. Spectral analysis of the daily energy of Pc3 and Pc4 pulsations in the polar cap revealed the occurrence of several periodicities. Periodic modulations with periods 26, 13 and 8–9 days are caused by similar periodicities in the solar wind and IMF parameters, whereas the 18-day periodicity, observed during the polar winter only, is caused, probably, by modulation of the ionospheric conductance by atmospheric planetary waves. The occurrence of the narrow-band Pc3 waves in the polar cap is a challenge to modelers, because so far no band-pass filtering mechanism on open field lines has been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号