首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron occurs in rain as particulateand dissolved Fe and includes both Fe(II) and Fe(III)species. Model calculations and correlation analysisindicate Fe(II)(aq) occurs almost exclusively as thefree ion whereas Fe(III)(aq) occurs as both ironoxalate and Fe(OH)2 +(aq) with largevariations over the pH range from 4.0 to 5.0. Complexation with humic-like compounds may also beimportant for Fe(III)(aq); however, the concentrationand structural characteristics of these compounds haveyet to be determined. 112 rain samples were collectedfor iron analysis in Wilmington, North Carolina,between 1 July 1997, and 30 June 1999. Total iron,particulate iron and Fe(III)(aq) were higher inconcentration in summer and spring rain relative towinter and autumn rain. Fe(II)(aq) concentrations, incontrast, did not vary seasonally. Particulate iron,which was approximately half the total rainwater iron,was highest between noon and 6 p.m. (EST), probably dueto more intense regional convection including land-seabreezes during that time. The ratio ofFe(II)(aq)/Fe(III)(aq) was also highest in rainreceived between noon and 6 p.m., which most likelyreflects photochemical reduction of Fe(III)(aq)complexes to form Fe(II)(aq). A conceptual modeldepicting the interplay between iron species, lightintensity and organic ligands in rainwater ispresented.  相似文献   

2.
利用华中区域代表性站点金沙国家大气本底站2007—2018年的PM2.5、PM10颗粒物质量浓度数据,2019年3月—2019年6月反应性气体数据,对华中区域空气质量进行整体评价,并分析了颗粒物浓度的变化特征及其影响因素.结果表明,反应性气体CO、SO2、NO、NO2质量浓度其日平均最大值、平均值均达到一级标准,O3日...  相似文献   

3.
基于2015、2016年河南省环境监测中心站获取的郑州市9个监测点颗粒物浓度和逐日气象数据,对气象因素和颗粒物浓度相关性进行了研究。结果表明:郑州市大气颗粒物浓度受季节影响较强,总体呈现冬季高、夏季低的趋势。降水量与大气颗粒物浓度呈现明显的负相关。相对湿度的增高不利于PM_(2. 5)浓度的降低,而PM_(10)的浓度则随着相对湿度的增高有所降低。春夏秋三季的主要风向为东北偏东,当春季风为东南风和西风时,颗粒物浓度最低;当夏季风为东北偏东风时,颗粒物浓度最低;秋季吹东北风时,颗粒物浓度最低。冬季吹西北风(郑州冬季盛行风向)时,大气颗粒物质量浓度最低。  相似文献   

4.
能见度可以直观反映空气污染程度,通过卫星反演获取能见度可以实现大面积同步观测,弥补地面观测在此方面的不足。基于安徽省池州市2015年Terra/MODIS的气溶胶产品(AOD)和池州市一区三县4个国家观测站的能见度观测资料,分析研究MODIS气溶胶产品与能见度的关系。通过拟合池州市四季气溶胶标高,建立不同季节能见度回归模型,并利用标高数据和AOD的季节分布,反演出池州能见度的季节变化,研究了近地层大气气溶胶与地面能见度的关系,最终获取了池州市2015年四季能见度时空分布并对其特征进行分析。结果表明:池州市夏季气溶胶标高最高,冬季的最低;能见度模型估算值与观测值整体较为一致,季节平均值相对误差为18. 15%;池州市2015年四季平均能见度为13. 8 km,整体呈从东南向西北逐渐减小的趋势,空间分布不均;季节平均能见度夏季最高,为19. 3 km,冬季最低,为9. 9 km,其中石台县各季能见度均明显好于其他地区的,且四季变化小而平稳;月平均能见度7月的最好,2月、5月和9月的较差;经济社会发展状况、生态环境和气候状况是影响池州市能见度分布时空变化的主要因素。  相似文献   

5.
通过在野外观测基地和能见度计量检测实验室开展的前散式和透射式能见度仪对比观测试验,获取了能见度和其他气象与环境要素的同步观测数据,分析了不同大气环境条件下能见度测量值差异及其产生原因。结果表明:在能见度环境模拟舱内,两种能见度仪的测量值具有较好的一致性,但在自然环境中,两种能见度仪的测量值差异随能见度上升而快速增大。在不同天气现象出现时,前向散射仪与大气透射仪的测量值比值(VISFS/VIST)规律性变化明显,总体呈现随能见度上升而增大的趋势。无降水时,低湿情况下大气颗粒物吸收作用明显,透射能见度仪测量值远小于前散能见度仪测量值,两者均随PM2.5质量浓度的增加而下降,且其差异也随之减小;高湿情况下大气颗粒物的散射作用在大气消光中占绝对优势,两种能见度仪测量值趋近。  相似文献   

6.
李星敏  陈闯  董自鹏  董妍  杜川利  彭艳 《气象》2018,44(7):929-935
利用西安泾河和长安的气象观测资料、陕西秦岭大气科学试验基地气溶胶粒子谱观测资料及西安市环境保护局颗粒物质量浓度观测资料,分析了气象条件对关中颗粒物粒径谱的影响,结果表明:关中特殊的地形影响和严重的颗粒物污染是霾易发的主要原因;混合层高度与PM_(2.5)质量浓度具有较明显的负相关关系,秋、冬季混合层高度高有利于颗粒物污染的扩散。不同方向上风速变化对颗粒物浓度的影响体现了西北气流对关中颗粒物污染的扩散作用和偏东气流对颗粒物污染的输送。高相对湿度有利于稳定层结的维持和污染物集聚,当相对湿度≤80%时,粒径在150nm~1.0μm的粒子的数浓度,随着相对湿度的增大明显增加,对降低能见度、形成雾-霾有重要作用。不同粒径段粒子的数浓度随相对湿度的变化不同,对能见度的影响也不同;相对湿度越大,湿度对降低能见度的贡献越大。  相似文献   

7.
Total suspended particulates(TSP)samples were collected using low pressure impactors(Andersen Series 20-800,USA)on typical clear,hazy and foggy days in Beijing in order to investigate the characteristics of size distributions and elemental compositions of particulate matter(PM)in different weather conditions. The concentrations of sixteen elements,including Na,Mg,Al,K,Ca,Mn,Fe,Ni,Cu,Zn,As,Se,Cd,Ba,Tl and Pb were detected using inductively coupled plasma mass spectrometry(ICP-MS).The results showed that Ca,Al,Fe,Mg and Ba on foggy days were 2.0-2.6 times higher than on clear days,and 2.3-2.9 times higher than on hazy days.Concentrations of Cu,Zn,As,Se and Pb on foggy days were 163.5,1186.7,65.9,32.0 and 708.2 ng m-3,respectively,in fine particles,and 68.1,289.5,19.8,1.6 and 103.8 ng m-3,respectively,in coarse particles.This was 1.0-8.4 times higher and 1.4-7.4 times higher than on clear and hazy days,respectively.It is then shown that Mg,Al,Fe,Ca and Ba were mainly associated with coarse particles,peaking at 4.7-5.8μm;that Cd,Se,Zn,As,Tl and Pb were most dominant in fine particles,peaking at 0.43-1.1μm;and that Na,K,Ni,Cu and Mn had a multi-mode distribution,with peaks at 0.43-1.1μm and 4.7-5.8μm.The enrichment factors indicated that coal combustion along with vehicle and industry emissions may be the main sources of pollution elements.  相似文献   

8.
西安市夏季空气颗粒物污染特征及来源分析   总被引:15,自引:4,他引:15  
大气颗粒物一直是西安市的主要污染物,多年监测的TSP日均浓度值均超过国家二级标准限值150 μg/m3。1996年夏季在西安市南郊陕西省委党校设立监测点,使用步进式时间序列自动采样仪对当地空气颗粒物进行了4天24小时连续采样,使用PIXE对采到的32个样品进行元素分析,每个样品分析出14~16种元素。各种元素浓度随时间变化趋势基本一致,主要受气象条件的影响,降雨对空气颗粒物各元素浓度有明显抑制作用。富集因子分析表明,西安市空气颗粒物不仅受地壳物质的影响,还受到一定程度人为污染的影响。元素浓度的因子分析表明,西安市夏季颗粒物主要有4种来源:地壳物质、有色治炼、燃煤排放源和化工制药业。  相似文献   

9.
利用GRIMM180气溶胶粒谱分析仪采集乌鲁木齐市PM10、PM2.5和PM1.0数据,研究表明:乌鲁木齐市气溶胶颗粒物质量浓度在进入采暖季后急剧增加,冬季颗粒物中细粒子含量最高,PM2.5/PM10可达77.6%,PM2.5/PM10,PM1.0/PM10,PM1.0/PM2.5三比值体现了颗粒物的分布特征,四季污染程度越高,细粒子含量越高。四季无降水日PM10、PM2.5、PM1.0的质量浓度和分布的日变化基本呈三峰三谷型,出现早—午—晚峰值,上午—下午—午夜后谷值,各季节峰谷值具体出现时间略有差别,由于冬季逆温层顶盖等因素的影响,冬季质量浓度和分布的日变化在此基础上多了两次波动。降水的发生对冬、春季质量浓度的影响大于夏、秋季,对不同粒径段粒子的分布影响有一定差别。  相似文献   

10.
杭州地区气候环境要素对霾天气影响特征分析   总被引:5,自引:3,他引:5  
齐冰  刘寿东  杜荣光  毛则剑  王成刚 《气象》2012,38(10):1225-1231
利用1998—2010年杭州常规地面气象观测资料、高空探测资料和环境污染物观测资料,对主要天气形势、典型气象要素以及环境污染状况下霾天气特征及形成机制进行了综合分析研究。结果表明:杭州地区高压类型天气形势对霾的产生有重要影响,在气旋和东风带天气形势下较少出现霾天气。霾天气下的大气稳定度主要表现为中性类,出现频率高达54.3%。08时逆温条件下霾出现次数要高于20时;霾出现时平均逆温强度高于非霾时,而平均逆温层厚度、平均最大逆温强度和平均最大逆温层厚度均低于非霾时。污染物PMmSO2和NO2浓度在非霾日比霾日分别下降了33.3%、20.0%和18.2%,随着霾等级的增加,不同污染物浓度也随之增加,颗粒物是造成能见度下降的主要原因之一。此外,杭州待殊的地形环境对霾的发生有一定促进作用。这些结果对于了解杭州霾天气的出现规律以及预警预报工作的开展具有重要意义。  相似文献   

11.
南京四季大气粗细粒子中PAHs的污染特征及来源   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了南京2009—2010年大气粗、细粒子中PAHs(多环芳烃,Polycyclic Aromatic Hydrocarbons)在四季不同的组成特征及来源。结果表明,南京细粒子中PAHs的浓度范围是19.11~131.31 ng/m~3,而粗粒子是17.77~134.85 ng/m~3。局地排放与区域传输的综合作用,使得南京不同采样点的PAHs浓度相关度较高,具有相同的污染源及污染过程。除了秋季PAHs主要分布于粗粒径段,南京大气中PAHs以细粒子为主。春、冬季分别受到了来自ENE-S和NNW-NE方向污染气团的远距离输送影响,夏季局地排放的污染物受到了西南清洁气团的稀释作用,秋季不同于其他季节,仅以局地贡献为主。源解析结果显示,不同季节PAHs来源存在差异,最主要的排放源是机动车源,其次是燃煤/焦化,秋季受较多的生物质燃烧贡献。秋季特殊的排放源贡献,以及局地贡献为主的污染形式,可能是其浓度分布不同于其他季节的根本原因。  相似文献   

12.
吴炜  丛春华  郑怡 《山东气象》2021,41(1):58-67
基于卫星的气溶胶光学厚度(aerosol optical thickness,AOT)是研究大气污染程度及时空变化的重要参考,由于大气污染物排放特征、地理和气候背景不同,不同区域AOT的时空分布及其与地面大气污染物质量浓度的相关性存在一定的差异。选取了2017年7月—2020年7月山东89个国家环境空气质量监测站数据、日本宇宙航空研究开发机构(Japan Aerospace Exploration Agency,JAXA)发布的葵花8号和9号气象卫星(Himawari-8/9)AOT产品、欧洲中期天气预报中心(European Center for Medium-Range Weather Forecasts,ECMWF)的ERA5再分析数据产品,研究了山东地区卫星AOT时空分布特征,AOT与地面污染物质量浓度的相关性,并得出了以下结论:1)山东存在两个主要的AOT低值区,分别位于鲁中山区一带,半岛丘陵并延伸到东部沿海一带,低值区的分布没有明显的季节变化;山东AOT年平均的高值区主要分布在山东西部、南部与外省接壤附近地区,以及渤海南部至莱州湾沿岸一带,在分析气溶胶跨省传输时值得关注。不同季节AOT的高值区分布存在差异。2)山东AOT白天变化呈现双峰结构,08时由峰值逐渐下降,11时转为上升,14时达全天最大值0.608;AOT的日变化趋势与细颗粒物(PM2.5)、O3等大气污染物质量浓度变化明显不同,是影响其相关性的重要因素。AOT月际变化中,存在两个显著的峰值6月(0.648)和10月(0.622),2月AOT最低。AOT的季节变化与地面污染物质量浓度的季节变化呈现一定的反位相特征。3)总体上AOT与PM2.5、O3等主要大气污染物质量浓度的相关性不高,一年之中,6月AOT与污染物的相关程度最低,1月的相关性最高;15—17时是AOT与污染物相关性最强的时间段,而10时相关性最差。单凭AOT难以定量反映污染物的分布特征,使用卫星开展地面大气污染监测分析还需纳入更多的因子进行分析。  相似文献   

13.
利用郑州市环境监测站自动站点和自选监测站点的大气污染物监测数据,结合气象因子,对郑州市2012-2014年春节期间燃放烟花爆竹对大气气溶胶几种污染物的影响变化进行了分析。结果表明:2012-2013年春节的SO2、NO2、CO、PM2.5和PM10污染高峰出现在初一01-02时和初六00时之后;O3污染高峰则出现在初四和初五。经对2013年2月9日12时(除夕)到2月11日23时(初二)60 h观察,PM10和PM2.5污染高峰出现在初一01时和10时,NO2和SO2的高峰出现在初一01时,CO则出现在次日01时,O3的浓度变化规律则与上述污染物浓度变化呈反向增减的关系。郑州市城区春节期间各种污染物浓度的水平分布总体呈现西、北部污染浓度高,东、南部较低的趋势。各项气象因素对PM2.5和PM10浓度有着直接的影响。无特殊情况下,气温、风速与两种污染物浓度呈反向增减的关系,湿度和气压与两种污染物浓度呈同向增减的关系。  相似文献   

14.
对近年来有关生物质燃烧排放的颗粒物中有机化合物和有机示踪物的研究进展进行了综述,分析了各国学者根据有机示踪物研究城市大气颗粒物中生物质燃烧和其他排放源对空气污染的贡献,对以后的相关研究具有借鉴意义.  相似文献   

15.
边界层内大气排放物形成重污染背景解析   总被引:39,自引:0,他引:39  
我国大气中的粒子浓度普遍较高,特别是可吸入颗粒物PM10.在区域特定的大气环境过程的影响下,能形成大范围的严重污染情景.利用大气环境过程的概念,分析引起大气重污染的中尺度天气系统、近地层小尺度局地系统和稳定的大气边界层结构,发现大范围均压场条件下易出现近地层小尺度局地环流群体,大范围均压场持续演变和移动常形成大气污染汇聚带,从而形成局地严重污染的重要大气条件.  相似文献   

16.
Local ozone production and loss rates for the arctic free troposphere (58–85° N, 1–6 km, February–May) during the TroposphericOzone Production about the Spring Equinox (TOPSE) campaign were calculated using a constrained photochemical box model. Estimates were made to assess the importance of local photochemical ozone production relative to transport in accounting for the springtime maximum in arctic free tropospheric ozone. Ozone production and loss rates from our diel steady-state box model constrained by median observations were first compared to two point box models, one run to instantaneous steady-state and the other run to diel steady-state. A consistent picture of local ozone photochemistry was derived by all three box models suggesting that differences between the approaches were not critical. Our model-derived ozone production rates increased by a factor of 28 in the 1–3 km layer and a factor of 7 in the 3–6 kmlayer between February and May. The arctic ozone budget required net import of ozone into the arctic free troposphere throughout the campaign; however, the transport term exceeded the photochemical production only in the lower free troposphere (1–3 km) between February and March. Gross ozone production rates were calculated to increase linearly with NOx mixing ratiosup to 300 pptv in February and for NOx mixing ratios up to 500 pptv in May. These NOx limits are an order of magnitude higher thanmedian NOx levels observed, illustrating the strong dependence ofgross ozone production rates on NOx mixing ratios for the majority of theobservations. The threshold NOx mixing ratio needed for netpositive ozone production was also calculated to increase from NOx 10pptv in February to 25 pptv in May, suggesting that the NOx levels needed to sustain net ozone production are lower in winter than spring. This lower NOx threshold explains how wintertime photochemical ozone production can impact the build-up of ozone over winter and early spring. There is also an altitude dependence as the threshold NOx neededto produce net ozone shifts to higher values at lower altitudes. This partly explains the calculation of net ozone destruction for the 1–3 km layerand net ozone production for the 3–6 km layer throughout the campaign.  相似文献   

17.
The reaction coefficients of nitrogen dioxide and nitrous acid with monodisperse sodium chloride and ammonium sulphate aerosols have been measured in a flow reactor at atmospheric pressure. These experiments were performed at relative humidities above and below the deliquescence points of both aerosols (r.h. 50 and 85%) at 279 K. The results for NO2 afford a reaction coefficient in the range (2.8–10) × 10-4 and for HONO, (2.8–4.6) × 10-3. For both species, there appears to be an enhancement of the reaction coefficient on sodium chloride aerosol at 50% r.h. The results are compared with reaction coefficients determined by other experimental methods. A good agreement is found for both gases between this method and the coated denuder method previously developed in our research laboratories (Msibi et al., 1993) and with the majority of other published data for NO2. In the case of HONO, our estimate of reaction coefficient is smaller than, or at the lower limits of the ranges reported by other published studies.  相似文献   

18.
Surface solar radiation (SSR) can affect climate, the hydrological cycle, plant photosynthesis, and solar power. The values of solar radiation at the surface reflect the influence of human activity on radiative climate and environmental effects, so it is a key parameter in the evaluation of climate change and air pollution due to anthropogenic disturbances. This study presents the characteristics of the SSR variation in Nanjing, China, from March 2016 to June 2017, using a combined set of pyranometer and pyrheliometer observations. The SSR seasonal variation and statistical properties are investigated and characterized under different air pollution levels and visibilities. We discuss seasonal variations in visibility, air quality index (AQI), particulate matter (PM10 and PM2.5), and their correlations with SSR. The scattering of solar radiation by particulate matter varies significantly with particle size. Compared with the particulate matter with aerodynamic diameter between 2.5 μm and 10 μm (PM2.5?10), we found that the PM2.5 dominates the variation of scattered radiation due to the differences of single-scattering albedo and phase function. Because of the correlation between PM2.5 and SSR, it is an effective and direct method to estimate PM2.5 by the value of SSR, or vice versa to obtain the SSR by the value of PM2.5. Under clear-sky conditions (clearness index ≥0.5), the visibility is negatively correlated with the diffuse fraction, AQI, PM10, and PM2.5, and their correlation coefficients are ?0.50, ?0.60, ?0.76, and ?0.92, respectively. The results indicate the linkage between scattered radiation and air quality through the value of visibility.  相似文献   

19.
Atmospheric aerosol samples were collected in the Ivory Coast, primarily at Lamto (6°N, 5°W) between 1979 and 1981. The samples were analysed for total particulate carbon concentration and isotopic composition (13C/12C) by mass spectrometry. Observed concentrations were found high compared to values reported for temperate regions. Fine particulate carbon in the submicrometersize range accounted for 50 to 80% of the reported concentrations. At Lamto, both particulate carbon concentrations and isotopic ratios exhibit a large temporal variability which is shown to reflect the diversity of sources and their seasonal evolution. Natural emissions from the equatorial forest during the wet season, and biomass burning during the dry season, appear to be the major sources. The latter, though active during only a third of the year, is, on an annual basis, the most important source. Based on the data obtained at Lamto, an attempt has been made to estimate the flux of fine particulate carbon emitted from the tropical regions into the global troposphere. This flux, which is of the order of 20×1012 g C/yr, appears to be equivalent to the flux of fine particulate carbon emitted from industrial sources. These results suggest that the tropospheric burden of fine particulate carbon in lowlatitude regions is dominated by the long-range transport of carbonaceous aerosols originating from the Tropics.  相似文献   

20.
A study was conducted to examine the OH-initiated degradation products of the four title compounds in the presence of sub-part-per-million levels of NOx. The oxidation was conducted in a dynamic reactor to minimize the conversion of the aromatic compounds. The experiments were designed to represent reaction pathways that occur in the atmosphere at ambient NO2 concentrations. A wide range of ring-retaining and ring-cleavage products having widely varying yields were measured during the study. For m-xylene, the major primary products observed (with molar yields) were methyl glyoxal (0.40), 4-oxo-2-pentenal (0.12), glyoxal (0.079), and m-tolualdehyde (0.049). For p-xylene, the major primary products were p-tolualdehyde (0.103), 2,5-dimethylphenol (0.13), cis-3-hexene-2,5-dione (0.176), trans-3-hexene-2,5-dione (0.045), 2-methyl-butenedial (0.071), glyoxal (0.394), and methylglyoxal (0.217). Several other reaction products were measured at yields less than 3%. The primary products for OH + 1,2,4-trimethylbenzene were found as follows: methylglyoxal (0.44), glyoxal (0.066), cis-3-hexene-2,5-dione (0.13), trans-3-hexene-2,5-dione (0.031), biacetyl (0.114), 3-methyl-3-hexene-2,5-dione (0.079), and 2-methyl-butenedial (0.045). Six other (ring retaining) products were measured at yields less than 3%. The primary products for OH + 1,3,5-trimethylbenzene were methylglyoxal (0.90), 3-methyl-5-methylidene-5(2H)-furanone (0.1), 3,5-dimethyl-3(2H)-2-furanone (0.1), 3,5-dimethyl-5(2H)-2-furanone biacetyl (0.08), and 2-methyl-4-oxo-2- pentenal (0.05). Three other products were detected at molar yields less than 5%. In some cases, the yields for the ring fragmentation products could only be based on calibrations from surrogate compounds. Yields for several of the unsaturated dicarbonyl compounds have not been reported previously while yields for methylglyoxal, glyoxal, and biacetyl are largely consistent with previous reports. Some of the primary furanone products are the identical to those reported as secondary products in aromatic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号