首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 393 毫秒
1.
复杂近地表条件会降低地震数据的质量,通常采用基于地表一致性的时移静校正消除其影响.但静校正与速度是密不可分的,而确定复杂近地表速度是非常困难的.基于CFP技术处理复杂近地表问题时避免了对速度的直接操作,使得静校正和速度的确定相互独立.首先根据叠前数据估算出波场的传播算子,然后依据等时原理在DTS模板中进行算子更新,再用这些更新的算子重建基准面和实现近地表单程时间成像.获得正确的算子振幅也是重建基准面的关键.  相似文献   

2.
Wave‐equation redatuming can be a very efficient method of overcoming the overburden imprint on the target area. Owing to the growing amount of 3D data, it is increasingly important to develop a feasible method for the redatuming of 3D prestack data. Common 3D acquisition designs produce relatively sparse data sets, which cannot be redatumed successfully by applying conventional wave‐equation redatuming. We propose a redatuming approach that can be used to perform wave‐equation redatuming of sparse 3D data. In this new approach, additional information about the medium velocity below the new datum is included, i.e. redatumed root‐mean‐square (RMS) velocities, which can be extracted from the input data set by conventional velocity analysis, are used. Inclusion of this additional information has the following implications: (i) it becomes possible to simplify the 4D redatuming integral into a 2D integral such that the number of traces needed to calculate one output time sample and the computational effort are both reduced; (ii) the information about the subsurface enables an infill of traces which are needed for the integral calculation but which are missing in the sparse input data set. Two tests applying this new approach to fully sampled 2D data show satisfactory results, implying that this method can certainly be used for the redatuming of sparse 3D data sets.  相似文献   

3.
地形基准面校正算子(Topographic Datuming Operator,以下简称TDO)是一种基于直射线近似得到的基准面延拓算子.TDO可以视为是两步法波动方程基准面校正与常规静校正之间的一种过渡算法,该方法的最大特点在于它可以基于共炮点道集将炮点和检波点同时延拓到给定的水平基准面,因此相对于常规的两步法叠前波动方程基准面校正,TDO方法可以认为是一种更为高效的一步法基准面延拓方法.本文基于理论与实际数据论证了上述观点.  相似文献   

4.
起伏地表采集数据的三维直接叠前时间偏移方法   总被引:4,自引:1,他引:3       下载免费PDF全文
张浩  张剑锋 《地球物理学报》2012,55(4):1335-1344
提出一种可对起伏地表采集的三维地震资料直接进行偏移成像的叠前时间偏移方法和流程.它用两个等效速度描述近地表和上覆层对地震波传播的影响,可对炮、检点不在同一水平面的三维地震资料直接进行叠前时间偏移处理.该方法不对近地表地震波传播做垂直出、入射假定,因此可适应高速层出露等不存在明显低、降速带情况.描述近地表和上覆层的两个等效速度参数可依据偏移道集的同相轴是否平直来确定,避免了确定近地表速度的困难;而对已知近地表速度的情况,则可进一步修正近地表速度,获得更好的成像效果.用三维起伏地表的理论数据和中国东部某工区实际数据验证了所发展方法和处理流程的有效性和实用性.  相似文献   

5.
结合基准面重建的叠前时间偏移方法   总被引:1,自引:1,他引:0       下载免费PDF全文
董春晖  张剑锋 《地球物理学报》2010,53(10):2435-2441
提出了一种结合虚拟界面、瑞利积分和相移法的混合的基准面重建方法.通过与叠前时间偏移方法结合,形成了针对起伏地表采集数据的叠前时间偏移方法和新流程.该方法能正确考虑波在近地表传播的实际路径,克服了高速层出露时静校正方法的误差;它也能自己确定虚拟层速度,避免了现行基于波场延拓的基准面重建方法需要准确近地表速度的困难.文中分别用近地表存在明显低速层和近地表有高速层出露这两类模型的理论数据,验证了所发展方法和流程的有效性.  相似文献   

6.
Land seismic data quality can be severely affected by near‐surface anomalies. The imprint of a complex near‐surface can be removed by redatuming the data to a level below the surface, from where the subsurface structures are assumed to be relatively smooth. However, to derive a velocity‐depth model that explains the propagation effects of the near‐surface is a non‐trivial task. Therefore, an alternative approach has been proposed, where the redatuming operators are obtained in a data‐driven manner from the reflection event related to the datum. In the current implementation, the estimation of these redatuming operators is done in terms of traveltimes only, based on a high‐frequency approximation. The accompanying amplitudes are usually derived from a local homogeneous medium, which is obviously a simplification of reality. Such parametrization has produced encouraging results in the past but cannot completely remove the near‐surface complexities, leaving artefacts in the redatumed results. In this paper we propose a method that estimates the redatuming operators directly from the data, i.e., without using a velocity model, in a full waveform manner, such that detailed amplitude and phase variations are included. The method directly outputs the inverse propagation operators that are needed for true‐amplitude redatuming. Based on 2D synthetic data it is demonstrated that the resulting redatuming quality is improved and artefacts are reduced.  相似文献   

7.
In this case study we consider the seismic processing of a challenging land data set from the Arabian Peninsula. It suffers from rough top‐surface topography, a strongly varying weathering layer, and complex near‐surface geology. We aim at establishing a new seismic imaging workflow, well‐suited to these specific problems of land data processing. This workflow is based on the common‐reflection‐surface stack for topography, a generalized high‐density velocity analysis and stacking process. It is applied in a non‐interactive manner and provides an entire set of physically interpretable stacking parameters that include and complement the conventional stacking velocity. The implementation introduced combines two different approaches to topography handling to minimize the computational effort: after initial values of the stacking parameters are determined for a smoothly curved floating datum using conventional elevation statics, the final stack and also the related residual static correction are applied to the original prestack data, considering the true source and receiver elevations without the assumption of nearly vertical rays. Finally, we extrapolate all results to a chosen planar reference level using the stacking parameters. This redatuming procedure removes the influence of the rough measurement surface and provides standardized input for interpretation, tomographic velocity model determination, and post‐stack depth migration. The methodology of the residual static correction employed and the details of its application to this data example are discussed in a separate paper in this issue. In view of the complex near‐surface conditions, the imaging workflow that is conducted, i.e. stack – residual static correction – redatuming – tomographic inversion – prestack and post‐stack depth migration, leads to a significant improvement in resolution, signal‐to‐noise ratio and reflector continuity.  相似文献   

8.
A single‐layer model of the near surface throughout the Kingdom of Saudi Arabia is available. While this simple model suffices for most areas and large subsurface structures, it fails in situations where the surface topography is complex, the base of weathering is below the datum, or where the time structural closure is less than the uncertainty in the static correction. In such cases, multiple‐layered models that incorporate velocities derived from analysis of first arrivals picked from seismic shot records have proved to be successful in defining the lateral heterogeneity of the near surface. The additional velocity information obtained from this first‐arrival analysis (direct as well as refracted arrivals) vastly improves the velocity–depth model of the near surface, regardless of the topography. Static corrections computed from these detailed near‐surface velocity models have significantly enhanced subsurface image focusing, thereby reducing the uncertainty in the closure of target structures. Other non‐seismic methods have been used either to confirm qualitatively or to enhance the layer models previously mentioned. Gravity data may be particularly useful in sandy areas to confirm general structure, while geostatistical modelling of vibrator base‐plate attributes has yielded information that enhances the velocity field. In the global context, exploration targets of the oil and gas industry are seeking smaller and lower relief‐time structures. Thus, near‐surface models will need to enhance and integrate these methods, particularly in areas where the assumption of flat‐lying near‐surface layers cannot be met.  相似文献   

9.
We describe an integrated method for solving the complex near‐surface problem in land seismic imaging. This solution is based on an imaging approach and is obtained without deriving a complex near‐surface velocity model. We start by obtaining from the data the kinematics of the one‐way focusing operators (i.e. time‐reversed Green's functions) that describe propagation between the acquisition surface and a chosen datum reflector using the common‐focus‐point technology. The conventional statics solutions obtained from prior information about the near surface are integrated in the initial estimates of the focusing operators. The focusing operators are updated iteratively until the imaging principle of equal traveltime is fulfilled for each subsurface gridpoint of the datum reflector. Therefore, the seismic data is left intact without any application of time shifts, which makes this method an uncommitted statics solution. The focusing operators can be used directly for wave‐equation redatuming to the respective reflector or for prestack imaging if determined for multiple reflecting boundaries. The underlying velocity model is determined by tomographic inversion of the focusing operators while also integrating any hard prior information (e.g. well information). This velocity model can be used to perform prestack depth imaging or to calculate the depth of the new datum level. We demonstrate this approach on 2D seismic data acquired in Saudi Arabia in an area characterized by rugged topography and complex near‐surface geology.  相似文献   

10.
起伏地表下的直接叠前时间偏移   总被引:13,自引:9,他引:4       下载免费PDF全文
提出了一种新的叠前时间偏移方法和流程,可不必应用野外静校正,直接对起伏地表采集的地震数据进行叠前时间偏移.本文采用输入道成像方式,通过基于稳相点原理给出单道数据的走时和振幅计算方法,发展了一个表驱动的叠前时间偏移算法.偏移方法可依据同相轴是否被拉平确定叠加速度和修正近地表速度模型,也可依据拟成像的构造倾角,自适应地确定偏移孔径;后者既减少了偏移计算量,也压制了偏移噪声.文中用二维起伏地表的断陷盆地模型的理论数据验证了所发展方法的成像效果.  相似文献   

11.
Imaging pre‐salt reflections for data acquired from the coastal region of the Red Sea is a task that requires prestack migration velocity analysis. Conventional post‐stack time processing lacks the lateral inhomogeneity capability, necessary for such a problem. Prestack migration velocity analysis in the vertical time domain reduces the velocity–depth ambiguity that usually hampers the performance of prestack depth‐migration velocity analysis. In prestack τ‐migration velocity analysis, the interval velocity model and the output images are defined in τ (i.e. vertical time). As a result, we avoid placing reflectors at erroneous depths during the velocity analysis process and thus avoid inaccurately altering the shape of the velocity model, which in turn speeds up the convergence to the true model. Using a 1D velocity update scheme, the prestack τ‐migration velocity analysis produces good images of data from the Midyan region of the Red Sea. For the first seismic line from this region, only three prestack τ‐migration velocity analysis iterations were required to focus pre‐salt reflections in τ. However, the second line, which crosses the first line, is slightly more complicated and thus required five iterations to reach the final, reasonably focused, τ‐image. After mapping the images for the two crossing lines to depth, using the final velocity models, the placements of reflectors in the two 2D lines were consistent at their crossing point. Some errors occurred due to the influence of out‐of‐plane reflections on 2D imaging. However, such errors are identifiable and are generally small.  相似文献   

12.
This study examines the spatial distributions of third‐order moments of velocity fluctuations, the turbulent kinetic energy (TKE) fluxes, and the conditional statistics of Reynolds shear stress across the equilibrium crescentic scour structures generated upstream of short horizontal static cylinders. Detailed velocity data were collected using three‐dimensional (3D) micro‐acoustic Doppler velocimeter (ADV) across and within the equilibrium scour marks. The analysis reveals that the positive and negative values of third‐order moments associated with the level bed surface and the scour holes are directly related to coherent structures. The components of TKE flux are discussed for the near‐bed region of the level bed surface and scour holes in relation to sweep–ejection events. A cumulant‐discard method is applied to the Gram‐Charlier probability distribution of two variables to describe the statistical properties of the term u′w′. The conditional statistics of the Reynolds shear stress show a good agreement with the experimental data. The distribution of the joint probability density function in the near‐bed region changes cyclically along the scour hole depending on the bottom fluid velocity, which implies a change from upward to downward flux of momentum and vice versa. Both the ejection and sweep events at near‐bed points on the level surface are more important than within the scour region; and in contrast, both events are stronger for the scour marks than the level bed surface at the outer layer. Sweeps dominate over ejections for the scour hole induced by smaller diameter and ejections dominate for larger diameter. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
三维地震与地面微地震联合校正方法   总被引:2,自引:1,他引:1       下载免费PDF全文

由于地面微地震监测台站布设在地表,会受到地表起伏、低降速带厚度和速度变化的影响,降低了微地震事件的识别准确度和定位精度,限制了地面微地震监测技术在复杂地表地区的应用.因此,将三维地震勘探技术的思路引入到地面微地震监测中,提出了三维地震与地面微地震联合校正方法,将油气勘探和开发技术更加紧密地结合在一起.根据三维地震数据和低降速带测量数据,通过约束层析反演方法建立精确的近地表速度模型,将地面微地震台站从起伏地表校正到高速层中的平滑基准面上,有效消除复杂近地表的影响.其次,根据射孔数据和声波测井速度信息,通过非线性反演方法建立最优速度模型,由于已经消除复杂近地表的影响,在进行速度模型优化时不需要考虑近地表的影响,因而建立的速度模型更加准确.最后,在精确速度模型的基础上,通过互相关方法求取剩余静校正量,进一步消除了复杂近地表和速度模型近似误差的影响.三维地震与地面微地震联合校正方法采用逐步校正的思路,能够有效消除复杂近地表的影响,提高微地震数据的品质和速度模型的精确度,保证了微地震事件的定位精度,具有良好的应用前景.

  相似文献   

14.
Static shifts from near‐surface inhomogeneities very often represent the key problem in the processing of seismic data from arid regions. In this case study, the deep bottom fill of a wadi strongly degrades the image quality of a 2D seismic data set. The resulting static and dynamic problems are solved by both conventional and common‐reflection‐surface (CRS) processing. A straightforward approach derives conventional refraction statics from picked first breaks and then goes through several iterations of manual velocity picking and residual statics calculation. The surface‐induced static and dynamic inhomogeneities, however, are not completely solved by these conventional methods. In CRS processing, the local adaptation of the CRS stacking parameters results in very detailed dynamic corrections. They resolve the local inhomogeneities that were not detected by manual picking of stacking velocities and largely compensate for the surface‐induced deterioration in the stack. The subsequent CRS residual statics calculations benefit greatly from the large CRS stacking fold which increases the numbers of estimates for single static shifts. This improves the surface‐consistent averaging of static shifts and the convergence of the static solution which removes the remaining static shifts in the 2D seismic data. The large CRS stacking fold also increases the signal‐to‐noise ratio in the final CRS stack.  相似文献   

15.
Non‐uniqueness occurs with the 1D parametrization of refraction traveltime graphs in the vertical dimension and with the 2D lateral resolution of individual layers in the horizontal dimension. The most common source of non‐uniqueness is the inversion algorithm used to generate the starting model. This study applies 1D, 1.5D and 2D inversion algorithms to traveltime data for a syncline (2D) model, in order to generate starting models for wave path eikonal traveltime tomography. The 1D tau‐p algorithm produced a tomogram with an anticline rather than a syncline and an artefact with a high seismic velocity. The 2D generalized reciprocal method generated tomograms that accurately reproduced the syncline, together with narrow regions at the thalweg with seismic velocities that are less than and greater than the true seismic velocities as well as the true values. It is concluded that 2D inversion algorithms, which explicitly identify forward and reverse traveltime data, are required to generate useful starting models in the near‐surface where irregular refractors are common. The most likely tomogram can be selected as either the simplest model or with a priori information, such as head wave amplitudes. The determination of vertical velocity functions within individual layers is also subject to non‐uniqueness. Depths computed with vertical velocity gradients, which are the default with many tomography programs, are generally 50% greater than those computed with constant velocities for the same traveltime data. The average vertical velocity provides a more accurate measure of depth estimates, where it can be derived. Non‐uniqueness is a fundamental reality with the inversion of all near‐surface seismic refraction data. Unless specific measures are taken to explicitly address non‐uniqueness, then the production of a single refraction tomogram, which fits the traveltime data to sufficient accuracy, does not necessarily demonstrate that the result is either ‘correct’ or the most probable.  相似文献   

16.
Multichannel seismic data in the Aruba Gap region near JOIDES/DSDP Site 153 verify the presence of a deep sub-B″ reflection. One multichannel seismic line trends NE-SW on and along the edge of Beata Ridge and passes within 1 km of Site 153, and another line runs N-S across the entire Aruba Gap with the drill site 4 km east from its northern end. Closely spaced velocity analyses indicate the presence of deep primary reflection events and enable calculation of interval velocities between the A″-B″ marker horizons. Deconvolved, true amplitude, normal incidence profiles sharply delineate the A″-B″ marker horizons and indicate the presence of the sub-B″ reflection event. On the NE-SW line, this deep reflector is best described as a “diffuse” discontinuous zone, relatively horizontal, lying about 0.8 seconds of two-way travel time below the B″ reflector, with an interval velocity of approximately 5.0 km/s between Horizon B″ and this reflection. The N-S line is more complex since the sub-B′' reflection event is masked by a strong internal multiple from the A″-B″ interval. In the central and western Venezuela Basin, deep primary reflections beneath Horizon B″ are also observed on the northern and western sides of what appears to be a major fault zone. This fault zone separates the smooth B″ and sub-B″ reflectors on the northern and western sides of this fault zone from what appears to be typical oceanic basement. The widespread presence of sub-B″ reflections yielding high interval velocities for the section between these events and Horizon B″ suggest that this material is probably igneous in origin.  相似文献   

17.
A joint inversion of both first and refracted arrivals is applied on a seismic line, acquired onshore, in order to obtain a well‐resolved velocity field for the computation of static corrections. The use of different arrivals in the inversion involves exploiting the information derived from the different raypaths associated with each wave type, thus enhancing the reliability of the inversion. The data was gathered by Saudi Aramco in an area of the Arabian Peninsula characterized by strong lateral variations, both in topography and shallow velocity, and where therefore a well‐defined near‐surface velocity field is important. In addition to velocity, the depth distribution of the quality factor Q is computed from the tomographic inversion of the seismic‐signal frequency shift. Thus, the Q‐factor field is used to perform an inverse Q‐data filtering and improve the resolution of the final stacked section.  相似文献   

18.
The performance of refraction inversion methods that employ the principle of refraction migration, whereby traveltimes are laterally migrated by the offset distance (which is the horizontal separation between the point of refraction and the point of detection on the surface), can be adversely affected by very near‐surface inhomogeneities. Even inhomogeneities at single receivers can limit the lateral resolution of detailed seismic velocities in the refractor. The generalized reciprocal method ‘statics’ smoothing method (GRM SSM) is a smoothing rather than a deterministic method for correcting very near‐surface inhomogeneities of limited lateral extent. It is based on the observation that there are only relatively minor differences in the time‐depths to the target refractor computed for a range of XY distances, which is the separation between the reverse and forward traveltimes used to compute the time‐depth. However, any traveltime anomalies, which originate in the near‐surface, migrate laterally with increasing XY distance. Therefore, an average of the time‐depths over a range of XY values preserves the architecture of the refractor, but significantly minimizes the traveltime anomalies originating in the near‐surface. The GRM statics smoothing corrections are obtained by subtracting the average time‐depth values from those computed with a zero XY value. In turn, the corrections are subtracted from the traveltimes, and the GRM algorithms are then re‐applied to the corrected data. Although a single application is generally adequate for most sets of field data, model studies have indicated that several applications of the GRM SSM can be required with severe topographic features, such as escarpments. In addition, very near‐surface inhomogeneities produce anomalous head‐wave amplitudes. An analogous process, using geometric means, can largely correct amplitude anomalies. Furthermore, the coincidence of traveltime and amplitude anomalies indicates that variations in the near‐surface geology, rather than variations in the coupling of the receivers, are a more likely source of the anomalies. The application of the GRM SSM, together with the averaging of the refractor velocity analysis function over a range of XY values, significantly minimizes the generation of artefacts, and facilitates the computation of detailed seismic velocities in the refractor at each receiver. These detailed seismic velocities, together with the GRM SSM‐corrected amplitude products, can facilitate the computation of the ratio of the density in the bedrock to that in the weathered layer. The accuracy of the computed density ratio improves where lateral variations in the seismic velocities in the weathered layer are known.  相似文献   

19.
In common‐reflection‐surface imaging the reflection arrival time field is parameterized by operators that are of higher dimension or order than in conventional methods. Using the common‐reflection‐surface approach locally in the unmigrated prestack data domain opens a potential for trace regularization and interpolation. In most data interpolation methods based on local coherency estimation, a single operator is designed for a target sample and the output amplitude is defined as a weighted average along the operator. This approach may fail in presence of interfering events or strong amplitude and phase variations. In this paper we introduce an alternative scheme in which there is no need for an operator to be defined at the target sample itself. Instead, the amplitude at a target sample is constructed from multiple operators estimated at different positions. In this case one operator may contribute to the construction of several target samples. Vice versa, a target sample might receive contributions from different operators. Operators are determined on a grid which can be sparser than the output grid. This allows to dramatically decrease the computational costs. In addition, the use of multiple operators for a single target sample stabilizes the interpolation results and implicitly allows several contributions in case of interfering events. Due to the considerable computational expense, common‐reflection‐surface interpolation is limited to work in subsets of the prestack data. We present the general workflow of a common‐reflection‐surface‐based regularization/interpolation for 3D data volumes. This workflow has been applied to an OBC common‐receiver volume and binned common‐offset subsets of a 3D marine data set. The impact of a common‐reflection‐surface regularization is demonstrated by means of a subsequent time migration. In comparison to the time migrations of the original and DMO‐interpolated data, the results show particular improvements in view of the continuity of reflections events. This gain is confirmed by an automatic picking of a horizon in the stacked time migrations.  相似文献   

20.
Conventional velocity analysis, based on the ideas of rms velocity and hyperbolic reflection events in the x-t domain, is restricted in validity to near vertical incidence. Thus analysis of near-offset datasets usually requires the muting of wide-angle reflections from shallow interfaces before the rms velocities are determined. The ray-theoretical integral for the delay time τ, which depends on the slowness p and the velocity function, is valid for all angles. The wide-angle reflections can be used to improve the accuracy of the derived velocity function in the near surface region, if the recorded x-t data are mapped into the τ-p domain. By representing the velocity function between reflectors as a series of gradient zones, i.e. regions with a uniform increase in velocity with depth, the recovery of the velocities may be posed as a matrix linear inverse problem for the slopes of the gradient zones. In order to convert the problem to a linear one, the velocity discontinuities at the reflecting interfaces must be fixed in advance. Their positions are based on the behaviour of the τ-p map of the data. Finding a stable velocity model may require several iterations with the reflecting interfaces at different positions. An understanding of the workings of the inversion algorithm allied with an analysis of the causes of instability aids the search for a stable model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号