首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The igneous rocks of the Pongola Supergroup (PS) and Usushwana Intrusive Suite (UIS) represent a case of late Archaean continental magmatism in the southeastern part of the Kaapvaal craton of South Africa and Swaziland.

U-Pb dating on zircons from felsic volcanic rocks of the PS yields a concordia intercept age of 2940 ± 22Ma that is consistent with a Sm-Nd whole rock age of 2934 ± 114Ma determined on the PS basalt-rhyolite suite. The initial εNd of−2.6 ± 0.9 is the lowest value so far reported for Archaean mantle-derived rocks. Rb-Sr whole rock dating of the PS yields a younger isochron age of 2883 ± 69Ma, which is not significantly different form the accepted U-Pb zircon age.

An internal (cpx-opx-plag-whole rock) isochron for a pyroxenite from the younger UIS yields an age of 2871 ± 30 Ma and initial 143Nd/144Nd that lies off the CHUR growth curve by εNd −2.9 ± 0.2. However, Sm-Nd whole-rock data for the UIS yield an excessively high age of 3.1 Ga that conflicts with firm geological evidence showing the UIS to be intrusive into the PS.

The negative deviations of initialεNd from the chondritic Nd evolution curve suggest significant contamination of the PS and UIS melts by older continental crust. A mixing process with continental crust after magma segregation is supported by a high initial 87Sr/86Sr ratio of0.703024 ± 24 for a clinopyroxene sample from a UIS pyroxenite, compared with an expected value of 0.701 for the 2.9 Ga mantle. We therefore interpret the linear array of data points for the UIS gabbros as a mixing line between 2.87 Ga old magma and older continental crust.

Parallel LREE-enriched REE patterns, negative Nb-Ti anomalies, a distinctive and uniform ratio of Ti/Zr 46 and a narrow span of initial Nd indicate a common source for both the PS and UIS suites which is different from primitive mantle.  相似文献   


2.
Basalts from young seamounts situated within 6.8 m.y. of the East Pacific Rise, between 9° and 14°N latitude, display significant variations in 143Nd/144Nd (0.51295–0.51321), 87Sr/86Sr (0.7025–0.7031), and(La/Sm)N (0.415–3.270). Nd and Sr isotope ratios are anti-correlated and form a trend roughly parallel to the “mantle array” on a143Nd/144Nd vs.87Sr/86Sr variation diagram. Nd and Sr isotope ratios display negative and positive correlations, respectively, with(La/Sm)N. The geochemical variations observed at the seamounts are nearly as great or greater than those observed over several hundred kilometers of the Reykjanes Ridge, or at the islands of Iceland or Hawaii.

Samples from one particular seamount, Seamount 6, display nearly the entire observed range of chemical variations, offering an ideal opportunity to constrain the nature of heterogeneities in the source mantle. Systematics indicative of magma mixing are recognized when major elements, trace elements, trace element ratios, and isotope ratios are compared with each other in all possible permutations. The source materials required to produce the end-member magmas are: (1) a typical MORB-source-depleted peridotite; and (2) a relatively enriched material which may represent ancient mantle segregations of basaltic melt, incompletely mixed remnants of subducted ocean crust, or metasomatized peridotite such as that found at St. Paul's Rocks or Zabargad Island. Due to the proximity of the seamounts to the East Pacific Rise (EPR), the source materials are thought to comprise an intimate mixture in the mantle immediately underlying the seamounts and the adjacent EPR. Lavas erupted at the ridge axis display a small range of isotopic and incompatible trace element compositions because the large degrees of melting and presence of magma chambers tend to average the chemical characteristics of large volumes of mantle.

If the postulated mantle materials, with large magnitude, small-scale heterogeneities, are ubiquitous in the upper mantle, chemical variations in basalts ranging from MOR tholeiites to island alkali basalts may reflect sampling differences rather than changes in bulk mantle chemistry.  相似文献   


3.
Archean komatiitic and tholeiitic lavas from Newton Township, Ontario, have a sufficient range of Sm-Nd ratios to define a well-constrained line on the normal 143Nd/144Nd vs. 147Sm/144Nd isochron plot. The data give an isochron age of 2826 ± 64Ma, and an initial εNdof+2.65 ± 0.26. However, U-Pb analysis of zircons from a dacitic volcaniclastic that underlies the komatiite-tholeiite suite give an age of 2697 ± 1.1Ma. There is strong evident that the zircon age is the eruption age, suggesting that the older Sm-Nd age is incorrect and probably results from mixing between isotopically distinct mantle sources. At the time of eruption, the sources had εNd values from about +4.2 to +1.6, indicating that the Archean mantle in this area was markedly heterogeneous and not uniformly depleted.  相似文献   

4.
Peridotite xenoliths from the Eifel can be divided into incompatible element-depleted and -enriched members. The depleted group is restricted to dry lherzolites whereas the enriched group encompasses dry harzburgites, dry websterite and amphibole and/or phlogopite-bearing peridotites. Isotopically the depleted group is very diverse with143Nd/144Nd ranging from 0.51302 to 0.51355 and87Sr/86Sr from 0.7041 to 0.7019, thus occupying a field larger than expected for oceanic-type subcontinental mantle. These xenoliths are derived from a mantle which appears to have diverged from a bulk-earth Nd and Sr isotopic evolution path 2 Ga ago as a consequence of partial melting. The combination of high143Nd/144Nd with high87Sr/86Sr in some members of the depleted-xenoliths suite is likely to be the result of incipient reaction with incompatible element-enriched fluids in the mantle. In the enriched group such reactions have proceeded further and erased any pre-enrichment isotope memory resulting in a smaller isotopic diversity (143Nd/144Nd 0.51256–0.51273,87Sr/86Sr 0.7044–0.7032). An evaluation of SmHf and YbHf relationships suggests that the amphibole-bearing lherzolites and harzburgites acquired their high enrichment of light rare earth elements by fluid infiltration into previously depleted peridotite rather than by silicate melt-induced metasomatism. Upper mantle composed of such metasomatized peridotites does not represent a potential source for the basanites and nephelinites from the Eifel. The isotopic and chemical diversity of the subcontinental lithospheric part of the mantle may result from it having remained isolated from the convecting mantle for times > 1 Ga.  相似文献   

5.
The first comprehensive chemical and Sr–Nd–Pb isotopic data set of Plio–Pleistocene tholeiitic and alkaline volcanic rocks cropping out in Sardinia (Italy) is presented here. These rocks are alkali basalts, hawaiites, basanites, tholeiitic basalts and basaltic andesites, and were divided into two groups with distinct isotopic compositions. The vast majority of lavas have relatively high 87Sr/86Sr (0.7043–0.7051), low 143Nd/144Nd (0.5124–0.5126), and are characterised by the least radiogenic Pb isotopic composition so far recorded in Italian (and European) Neogene-to-Recent mafic volcanic rocks (206Pb/204Pb=17.55–18.01) (unradiogenic Pb volcanic rocks, UPV); these rocks crop out in central and northern Sardinia. Lavas of more limited areal extent have chemical and Sr–Nd–Pb isotopic ratios indicative of a markedly different source (87Sr/86Sr=0.7031–0.7040; 143Nd/144Nd=0.5127–0.5129; 206Pb/204Pb=18.8–19.4) (radiogenic Pb volcanic rocks, RPV), and crop out only in the southern part of the island. The isotopic ratios of these latter rocks match the values found in the roughly coeval anorogenic (i.e. not related to recent subduction events in space and time) mafic volcanic rocks of Italy (i.e. Mt. Etna, Hyblean Mts., Pantelleria, Linosa), and Cenozoic European volcanic rocks. The mafic rocks of the two Sardinian rock groups also show distinct trace element contents and ratios (e.g. Ba/Nb>14, Ce/Pb=8–25 and Nb/U=29–38 for the UPV; Ba/Nb<9, Ce/Pb=24–28 and Nb/U=46–54 for the RPV). The sources of the UPV could have been stabilised in the Precambrian after low amounts of lower crustal input (about 3%), or later, during the Hercynian Orogeny, after input of Precambrian lower crust in the source region, whereas the sources of the RPV could be related to processes that occurred in the late Palaeozoic–early Mesozoic, possibly via recycling of proto-Tethys oceanic lithosphere by subduction.  相似文献   

6.
Chemical heterogeneities in the Martian mantle are believed to result from the crystallization of a magma ocean in the first 100 million years of its history. Shergottite meteorites from Mars are thought to retain a compositional record of such early differentiation and the resulting mineralogy at different depths. The coupled 176Lu–176Hf and 147Sm–143Nd isotope systematics in 9 shergottites are used here to investigate these issues. Three compositional groups in the shergottites display distinct isotope systematics. One group, commonly termed as depleted, is characterized by positive 176Hfi from + 46.2 to + 50.4 and 143Ndi from + 36.2 to + 39.1. Another, termed as enriched, has negative 176Hfi = − 16.5 to − 13.2 and 143Ndi = − 7.0 to − 6.5. The third group is intermediate between the depleted and enriched groups with positive 176Hfi = + 30.0 to + 33.4 and 143Ndi = + 16.9. Together, they describe mixing curves between 176Hf/177Hf, 143Nd/144Nd, Lu/Hf, and Sm/Nd, implying that they sample two distinct sources in the Martian mantle. All shergottites are characterized by (Sm/Nd)source < (Sm/Nd)sample, but (Lu/Hf)source > (Lu/Hf)sample. This decoupling can be explained by two successive partial melting episodes in the depleted shergottite source and localized in the Martian upper mantle. The genesis of shergottites can be modeled using non-modal equilibrium partial melting in a source initially composed of 60% olivine, 21% clinopyroxene, 9% orthopyroxene, and 10% garnet, with degrees of partial melting of 8.8% and 3.9%, respectively, for the two successive events. The enriched end-member of the shergottite mixing curve is best modeled by late-stage quenched residual melt resulting from the crystallization of a magma ocean. The depleted shergottite source may be modeled as a mixture of cumulates and residual melt, as convection in the Martian magma ocean is expected to reduce the incompatible trace element heterogeneity in the final solidified layers. Consequently, equilibrium crystallization is preferred to model the crystallization of the Martian magma ocean. The models that best explain the shergottite data are those where the magma ocean is at a depth of at least 1350 km in Mars.  相似文献   

7.
The currently active off-rift central volcano Öræfajökull in south-east Iceland sits unconformably on much older (10–12 Ma) and eroded crust. The composition of recent volcanics ranges from basalt to rhyolite, but the series is more sodic alkaline than the common rift zone tholeiitic suites. In this study we present Sr, Nd, Pb and O isotopic data for a suite of Öræfajökull samples. The complete suite shows typical mantle values for oxygen isotopes. The 87Sr/86Sr ratios (average of 15 SAMPLES=0.703702) of the modern Öræfajökull rocks (basalts as well as rhyolites) are much higher than observed so far for any other Icelandic rocks. The 143Nd/144Nd ratios (average=0.512947; n=15) are lower than for rift rocks, but similar to rocks of the off-rift Snæfellsnes volcanic zone. Furthermore, the Öræfajökull rocks are enriched in the 207Pb/204Pb and 208Pb/204Pb isotope ratios compared to Icelandic rift basalts. The enriched nature of the suite indicates that Öræfajökull samples a source component that has characteristics common with EM2 type mantle. Furthermore, it is concluded that the silicic rocks of Öræfajökull formed by fractional crystallization from mafic melts rather than by partial melting of older crust.  相似文献   

8.
Large-scale compositional domains at DSDP/ODP drill sites 417A, 417D and 418A were analyzed for O, Sr and Nd isotope ratios, and REE, U, K, Rb and Sr abundances, to constrain the bulk chemical composition of the oceanic crust that is recycled at subduction zones. The combination of the three sites gives the composition of the upper oceanic crust in this region over a distance of about 8 km. The δ18OSMOW and87Sr/86Srmeas of compositional domains 10–100 m in size correlate well, with a range of 7.7–19.2 and 0.70364–0.70744, and mean of 9.96 and 0.70475, respectively. The Rb inventory of the upper crust increases by about an order of magnitude, while Sr contents remain constant. U abundances increase moderately under oxidizing alteration conditions and nearly triple in the commonly reducing alteration environments of the upper oceanic crust. REEs are influenced by alteration only to a small extent, and recycled oceanic crust is similar to MORB with respect to143Nd/144Nd. Even though the average composition of the upper oceanic crust is well defined, the large scale composition varies widely. Highly altered compositional domains may not have a large impact on the average composition of the oceanic crust, but they may preferentially contribute to fluids or partial melts derived from the crust by prograde metamorphic reactions.  相似文献   

9.
New Hf isotope and trace element data on mid-ocean ridge basalts (MORB) from the Pacific Ocean basin are remarkably uniform (176Hf/177Hf≈0.28313–0.28326) and comparable to previously published data [Salters, Earth Planet. Sci. Lett. 141 (1996) 109–123; Patchett, Lithos 16 (1983) 47–51]. Atlantic MORB have 176Hf/177Hf ranging from 0.28302 to 0.28335 confirming the wide range originally identified by Patchett and Tatsumoto [Geophys. Res. Lett. 7 (1980) 1077–1080]. Indian MORB define an even wider range, from 0.28277 to 0.28337, but three exotic samples have very unradiogenic Hf isotope compositions. Their very low 176Hf/177Hf ratios, together with their trace element characteristics, require the presence of unusual plume-type material beneath the Indian ridge. All other Indian MORB have uniform Hf isotope compositions at about 0.2832, and define a small field displaced to the right of other MORB in Hf–Nd isotope space. The distinct nature of Indian MORB is best explained by the presence in Indian depleted mantle of old recycled oceanic crust and pelagic sediments. Sm/Hf ratios calculated from new high-precision rare earth element and Hf trace element data do not vary in MORB in the same way as in ocean island basalts (OIB): ratios are constant in OIB, but decrease with increasing Sm contents in MORB. The constancy of Sm/Hf in OIB is probably due to an overwhelming influence of residual garnet during melting. By contrast, the decrease of Sm/Hf in MORB is due to the effect of clinopyroxene in the residue of melting beneath ridges, an interpretation confirmed by quantitative modeling of melting. The relationship between Sm/Nd and Lu/Hf ratios in MORB does not require the presence of garnet in the residual mineralogy. The decoupling of Lu/Hf ratios and Hf isotope compositions – the so-called Hf paradox [Salters and Hart, EOS Trans. Am. Geophys. Union 70 (1989) 510] – can be explained by melting dominantly in the spinel field at shallow depths beneath mid-ocean ridges.  相似文献   

10.
Geochemical variations in mid-ocean ridge basalts have been attributed to differing proportions of compositionally distinct mantle components in their sources, some of which may be recycled crust. Oxygen isotopes are strongly fractionated by near-surface interactions of rocks with the hydrosphere, and thus provide a tracer of near-surface materials that have been recycled into the mantle. We present here oxygen isotope analyses of basaltic glasses from the mid-Atlantic ridge south of and across the Azores platform. Variations in δ18O in these samples are subtle (range of 0.47‰) and may partly reflect shallow fractional crystallization; we present a method to correct for these effects. Relatively high fractionation-corrected δ18O in these samples is associated with geochemical indices of enrichment, including high La/Sm, Ce/Pb, and 87Sr/86Sr and low 143Nd/144Nd. Our results suggest two first-order conclusions about these enriched materials: (1) they are derived (directly or indirectly) from recycled upper oceanic crustal rocks and/or sediments; and (2) these materials are present in the north Atlantic MORB sources in abundances of less than 10% (average 2–5%). Modeling of variations of δ18O with other geochemical variables further indicates that the enriched component is not derived from incorporation of sediment or bulk altered oceanic crust, from metasomatism of the mantle by hydrous or carbonate-rich fluids, or from partial melting of subducted sediment. Instead, the data appear to require a model in which the enriched component is depleted mantle that has been metasomatized by small-degree partial melts of subducted, dehydrated, altered oceanic crust. The age of this partial melting is broadly constrained to 250 Ma. Reconstructed plate motions suggest that the enriched component in the north Atlantic mantle may have originated by subduction along the western margin of Pangea.  相似文献   

11.
The Nd isotopic systematics of the sources of crustal granitic rocks are used to estimate the Sm/Nd ratio of the continental crust as a function of its age. It is found that the Sm/Nd value of granite magma sources in continental crust increases from about 0.47 to 0.64 times the chondritic value with decreasing age from the Early Archean to the Late Proterozoic. This trend is opposite to that inferred for the crust from rare earth element patterns in sedimentary rocks. The observed trend may apply strictly only to the felsic portions of the crust, but unless older crust contains a much higher percentage of mafic material than young crust (50% versus 0%), the direction of the trend also applies to the bulk crust. Because some portion of the earth's oldest crust has probably been destroyed by subsequent processes, the trend could conceivably be the result of preservational bias rather than a real shift in crustal composition with time. The isotopic data, combined with the crustal age distribution, indicate that the Sm/Nd value of the bulk continental crust is not lower than 0.60 times the chondritic value. This limit and estimates of the Nd concentration of the crust are consistent with the mass balance that equates the Nd in the continents to that missing from the upper mantle down to a depth of about 700 km.  相似文献   

12.
Alkali basalts and nephelinites from the southern end of the East African Rift (EAR) in northern Tanzania have incompatible trace element compositions that are similar to those of ocean island basalts (OIB). They define a considerable range of Sr, Nd and Pb isotopic compositions (87Sr/86Sr= 0.7035−0.7058,εNd = −5to+3, and206Pb/204Pb= 17.5−21.3), each of which partially overlaps the range found in OIB. However, they occupy a unique position in combined Nd, Sr and Pb isotopic compositional space. Nearly all of the lavas have radiogenic Pb, similar to HIMU with high time-integrated238U/204Pb coupled with unradiogenic Nd (+2 to −5) and radiogenic Sr (>0.704), similar to EMI. This combination has not been observed in OIB and provides evidence that these magmas predominantly acquired their Sr, Nd and Pb in the subcontinental lithospheric mantle rather than in the convecting asthenosphere. These data contrast with compositions for lavas from farther north in the EAR. The Pb isotopic compositions of basalts along the EAR are increasingly radiogenic from north to south, indicating a fundamental change to sources with higher time-integratedU/Pb, closer to the older cratons in the south. An ancient underplated OIB melt component, isolated for about 2 Ga as enriched lithospheric mantle and then remelted, could generate both the trace element and isotopic data measured in the Tanzanian samples. Whereas the radiogenic Pb in Tanzanian lavas requires a source with high time-integratedU/Pb, most continental basalts that are thought to have interacted with the continental lithospheric mantle have unradiogenic Pb, requiring a source with a history of lowU/Pb. Such lowU/Pb is readily accomplished with the addition of subduction-derived components, since the lower averageU/Pb of arc basalts (0.15) relative to OIB (0.36) probably reflects addition of Pb from subducted oceanic crust. If the subcontinental lithosphere is normally characterized by low time-integratedU/Pb it would appear that subduction magmatism is more important than OIB additions in supplying the Pb inventory of the lithospheric mantle. However,U/Pb ratios of xenoliths derived from the continental lithospheric mantle suggest that both processes may be important. This apparent discrepancy could be because xenoliths are not volumetrically representative of the subcontinental lithospheric mantle, or, more likely, that continental lithospheric mantle components in basalts are normally only identified as such when the isotopic ratios are dissimilar from MORB or OIB. Lithospheric enrichment from subaccreted OIB components appears to be more significant than generally recognized.  相似文献   

13.
New UPb zircon crystallization ages and 40Ar/39Ar cooling ages from the Colombian Andes confirm the existence of rocks metamorphosed during the Orinoquian Orogenic Event (ca. 1.0 Ga) of northern South America. εNd (t = 1.1 Ga) for these rocks range from −3.9 to +0.91, which is interpreted as a mixture of Late Archean-Early Proterozoic crust with juvenile material produced during the 1.1 Ga orogenic event. The Colombian Grenville age rocks are part of a much longer metamorphic pericratonal belt, sporadically exposed along the Andes, in western-central Peru, southern Bolivia and northern Argentina. In addition, Nd model (TDM) ages for the Colombian rocks range from 1.9 to 1.45 Ga, similar to those obtained in the Grenville Province of the eastern U.S. and in the Mexican basement, placing constraints on Late Proterozoic-Early Paleozoic paleocontinental reconstructions.  相似文献   

14.
Up to now the age of granulite gneisses intruded by the Zabargad mantle diapir has been an unsolved problem. These gneisses may represent either a part of the adjacent continental crust primarily differentiated during the Pan African orogeny, or new crust composed of Miocene clastic sediments deposited in a developing rift, crosscut by a diabase dike swarm and gabbroic intrusions, and finally metamorphosed and deformed by the mantle diapir. Previous geochronological results obtained on Zabargad island and Al Lith and Tihama-Asir complexes (Saudi Arabia) suggest an Early Miocene age of emplacement for the Zabargad mantle diapir during the early opening of the Red Sea rift. In contrast, SmNd and RbSr internal isochrons yield Pan African dates for felsic and basic granulites collected 500–600 m from the contact zone with the peridotites. Devoid of evidence for retrograde metamorphic, minerals from a felsic granulite provide well-defined RbSr and SmNd dates of 655 ± 8 and 699 ± 34 Ma for the HP-HT metamorphic event (10 kbar, 850°C). The thermal event related to the diapir emplacement is not recorded in the SmNd and RbSr systems of the studied gneisses; in contrast, the development of a retrograde amphibolite metamorphic paragenesis strongly disturbed the RbSr isotopic system of the mafic granulite. The initial143Nd/144Nd ratio of the felsic granulite is higher than the contemporaneous value for CHUR and is in agreement with other Nd isotopic data for samples of upper crust from the Arabian shield. This result suggests that source rocks of the felsic granulite were derived at 1.0 to 1.2 Ga from either an average MORB-type mantle or a local 2.2 Ga LREE-depleted mantle. Zabargad gneisses represent a part of the disrupted lower continental crust of the Pan African Afro-Arabian shield. During early stages of the Red Sea rifting in the Miocene, these Precambrian granulites were intruded and dragged upwards by a rising peridotite diapir.  相似文献   

15.
Pb, Nd and Sr isotope analyses together with U, Pb, Sm, Nd, Rb and Sr concentrations have been obtained for separated phases of lherzolite and bulk rock mafic granulite xenoliths in Recent volcanics from Tanzania. A garnet lherzolite from the Lashaine vent has yielded the least radiogenicPb(206Pb/204Pb= 15.55) and Nd(143Nd/144Nd= 0.51127; ?Nd0 = ?26.7) isotope compositions recorded so far for an ultramafic xenolith, and 87Sr/86Sr= 0.83604. The Pb isotope compositions of the mafic granulites are variable 15.77<206Pb/204Pb<17.50 and some show evidence for depletion of U relative to Pb up to 2.0 Ga ago. Overall the isotope results suggest that the mantle part of the continental lithosphere beneath Tanzania has components that have undergone a complex history that includes major chemical fractionations ca. 2.0 Ga ago. A phlogopite-amphibole vein from the Pello Hill sample has Sr, Nd and Pb isotope compositions similar to those of mid-ocean ridge basalts, indicating both a young emplacement age for the vein material and a source which had an isotopic signature characteristic of depleted mantle.The Sr, Nd and Pb isotope systematics of ultramafic xenoliths do not conform with those of MORB, particularly in terms of their PbSr, and NdPb relationships. In this regard they are similar to some ocean islands and could be a viable source material for some ocean island basalts at least. The mantle part of the continental lithosphere is as likely to contain recycled components derived from the continental crust as are other regions of mantle. If the mantle part of continental lithosphere is invoked as a source for ocean islands, it does not negate the possibility that substantial recycled components are involved.  相似文献   

16.
U-Pb zircon dating, Sr-Nd isotope tracing and major/trace/RE element analyses were performed to constrain the age, origin and geodynamic significance of plagiogranites that intrude lherzolites and gabbros in the Ligurian Alps and the Northern Apennines. In addition, a host Fe-diorite was investigated. Samples from the Ligurian Alps were collected from the Voltri Group and the Sestri-Voltaggio Zone, whereas the plagiogranites from the Northern Apennines were taken in the Bracco unit. All these units have been affected by Alpine metamorphism reaching eclogite facies in the Voltri Group, blueschist degree in the Sestri Voltaggio samples, and prehnite-pumpellyite facies in the Bracco Unit, which has additionally been affected by rodingitization.

U-Pb zircon ages of 150 ± 1, 153 ± 1 and ≈ 156 Ma were obtained, respectively, for two plagiogranites and the host Fe-diorite in the Ligurian Alps, and an age of 153 ± 1 Ma was determined for the plagiogranite in Northern Apennines. Inherited components in zircon and initial Pb in plagioclase indicate mixing of variously differentiated basaltic magmas with small amounts of roughly 1.7–2.1 Ga old continental crust material. REE patterns in both the plagiogranites and the host diorite are characterized by high REE abundance, and moderate LREE enrichment. Nd isotopic compositions lie in the range of N-MORB sources, yielding initial epsilon Nd values between + 8.8 and + 9.7, whereas Sr is isotopically heterogeneous. The geochemical pattern of the plagiogranites and the host Fe-diorite requires melting of a MORB-type mantle source that experienced LREE enrichment shortly before melting. The most likely explanation for such enrichment is the injection of melts derived by small degrees of melting from an adjacent mantle region. The basaltic, LREE-enriched parent magmas generated from this enriched domain have probably undergone up to about 72% of low-pressure fractional crystallization prior to their emplacement into the gabbro-peridotite complex.

The 156–150 Ma magmatism occurred in close relation to normal faulting, sedimentation of breccias, and detachment of the mantle complex from its overlying continental crust, followed by exposure on the ocean floor. This tectono-magmatic event in the Ligurian Alps and the Northern Apennines reflects rifting of the Adriatic-Iberian continental plate segment, preceding wider opening of the Piedmont-Ligurian ocean basin and pillow basalt deposition.  相似文献   


17.
The peri‐Arabian ophiolite belt, from Cyprus in the west, eastward through Northwest Syria, Southeast Turkey, Northeast Iraq, Southwest Iran, and into Oman, marks a 3000 km‐long convergent margin that formed during a Late Cretaceous (ca 100 Ma) episode of subduction initiation on the north side of Neotethys. The Zagros ophiolites of Iran are part of this belt and are divided into Outer (OB) and Inner (IB) Ophiolitic Belts. We here report the first Nd–Hf isotopic study of this ophiolite belt, focusing on the Dehshir ophiolite (a part of IB). Our results confirm the Indian mid‐oceanic ridge basalt (MORB) mantle domain origin for the Dehshir mafic and felsic igneous rocks. All lavas have similar Hf isotopic compositions, but felsic dikes have significantly less‐radiogenic Nd isotopic compositions compared to mafic lavas. Elevated Th/Nb and Th/Yb in felsic samples accompany nonradiogenic Nd, suggesting the involvement of sediments or continental crust.  相似文献   

18.
We present Re–Os, Sm–Nd and Pb–Pb isotope and trace element data for the Konchozero sill, a layered mafic–ultramafic intrusion in the Early Proterozoic Onega plateau, one of the oldest continental flood basalt provinces on Earth. The Sm–Nd and Pb–Pb combined mineral and whole-rock isochron ages of 1988±34 and 1985±57 Ma for the sill coincide with the age of ferropicrites from Pechenga (the Kola Peninsula). The lithostratigraphic, chemical and isotope evidence suggest the derivation of Pechenga lavas and the Onega plateau volcanics from a single mantle plume. Peridotite and gabbro whole-rock samples, and primary ulvospinel and ilmenite mineral separates from the sill yield a Re–Os isochron with a slope corresponding to an age of 1969±18 Ma, γOs(T) =−0.61±5.9. This age is consistent with the other isotope data, and indicates the closed-system behavior of Re and Os in the rocks. The peridotites and ulvospinel have high Os concentrations (2.5–14 ppb) and low 187Re/188Os ratios (0.35–1.1), thus allowing a more accurate determination of the weighted average initial 187Os/188Os of 0.1144±0.0019 (2σpop), γOs(T) =+0.77±1.7. This value is lower than that determined by Walker et al. (Geochim. Cosmochim. Acta 61 (1997) 3145–3160) for the Pechenga lavas (γOs(T) =+6.1±0.7), and implies a substantial Os-isotope heterogeneity in this ancient plume. Compared to the Onega plateau primary basalt magma, Pechenga ferropicrites are relatively enriched in iron and Ni, have lower (Nb/Th)N ratios (2.1 vs 1.1) and less radiogenic Nd-isotope compositions (Nd(T) = +3.1 and +1.4, respectively), but share similar low-radiogenic Pb-isotope characteristics (μ1=8.57 and 8.60). Incorporation of small amounts (1.5%) of outer core material into the hotter central part of the plume and subsequent contamination of the Pechenga ferropicritic magmas with the 2.9 Ga Belomorian gneisses can explain the observed chemical and isotope variations in the two provinces provided that the core had <0.25 ppm of Pb.  相似文献   

19.
The published Nd isotopic data on rocks representative of either the continental crust or the depleted mantle are used to determine the Sm/Nd evolution of each system through time making allowance for a contribution from a primitive (chondritic) mantle. Screening using the 147Sm/144Nd ratio permits data of doubtful significance to be discarded. Mass balance equations describing mantle-crust exchange processes are numerically integrated. They suggest that crustal growth probably occurs through the addition of strongly LREE-enriched magmas derived from the mantle either directly (andesites) or indirectly (rhyolites). If the modern mean 147Sm/144Nd ratio of the crust is close to the sediment average (0.11), then progressive enrichment of LREE in the crust and depletion in the depleted mantle has occurred. If this ratio is of 0.13, then it, and the probable depleted-mantle 147Sm/144Nd ratio (0.26) have been constant over the last 3.8 Ga. The fraction of the total Nd (exclusive of the primitive mantle) stored in the continental crust has varied from 40% to 50% over the same period.The volume of the continents can have remained constant only if the rate of sediment reinjection into the mantle is 2.5 km3 a−1 or more. For lower, probably more geologically reasonable, reinjection rates, a nearly uniform continent growth rate over the past 3.8 Ga is inferred. In all cases, the depleted mantle is continuously forming from a primitive reservoir.  相似文献   

20.
The chronology and isotope geochemistry of a selection of Proterozoic Scourie dykes has been investigated in order to specify both their time of emplacement within the thermal history of the Archaean crust of N.W. Scotland, and to attempt to characterise the evolution of continental lithosphere. SmNd, RbSr and UPb isotope analyses are presented. Primary, major igneous minerals separated from four well preserved dykes yield SmNd ages of 2.031 ± 0.062Ga, 2.015 ± 0.042Ga, 1.982 ± 0.044Ga and 2.101 ± 0.078Ga, which are interpreted as crystallisation ages.The initial Nd isotope compositions in the dykes at their emplacement age of 2.0 Ga, range from +3.4 to −6.8, indicating the presence of an older lithospheric component. SmNd whole-rock isotope data for fifteen dykes, if interpreted to have age significance, yield an “age” of 3.05 ± 0.27 Ga. SmNd crustal residence ages for the same dykes average 2.95 Ga, which is interpreted as the time that small melts were added to the Lewisian lithosphere. The possibility that correlated147Sm/144Nd and143Nd/144Nd ratios are an artifact of mixing between depleted mantle melts generated at 2.0 Ga, and an older enriched lithospheric component is not eliminated by the data, but the relationship between 1/Nd and143Nd/144Nd ratios rules out any simple mixing. UPb isotope data for plagioclase feldspars and whole-rock samples of dykes provide useful estimates of initial Pb-isotope composition of the dykes at the time of their emplacement. Initial206Pb/204Pb and207Pb/204Pb ratios vary considerably and range from 13.98 to 15.78, and 14.72 to 15.56 respectively, and suggest that the UPb fractionation responsible must have occurred at least 2.5 Ga ago.The Scourie dykes have inherited a trace element enriched component from the Lewisian lithosphere, which has resided there since ca. 3 Ga ago. Whether the dykes inherited this material from the crust or the mantle portions of the lithosphere or both, it seems likely that small basaltic melts derived from asthenospheric mantle were ultimately responsible for the enrichment. The simplest view is that these small melt fractions had been resident in the mantle part of the Lewisian lithosphere. In this case the Archaean trace-element enrichment and element fractionation in the Lewisian lithospheric mantle sampled by the dykes was closely associated in time with the generation of the 2.9 Ga old crustal portion of the lithosphere [36,37].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号