首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a number of new approaches that arise when the topology of currents in the high-latitude magnetosphere is investigated. We note that the high correlation between magnetospheric processes and solar wind parameters is a well-known feature of the magnetospheric dynamics. The proposed explanations of the observed dependences run into difficulties related to the high level of observed turbulence in the magnetosheath and inside the magnetosphere. The topology of the high-latitude magnetosphere in the transition region from dipole magnetic field lines to those extending into the tail is also poorly known. We consider the topology of transverse magnetospheric currents using satellite measurements of the plasma pressure distribution. The currents of the nearest plasma sheet are shown to be closed inside the magnetosphere. The generation of field-aligned currents in Iijima and Potemra region currents 1 and large-scale magnetospheric convection are discussed.  相似文献   

2.
Resonant transformation of fast magnetosonic (FMS) wave flux into Alfven and slow magnetosonic (SMS) oscillations is investigated in the one-dimensionally inhomogeneous magnetosphere. Spatial distribution of energy absorption rate of FMS oscillations penetrating into the magnetosphere from the solar wind is studied. The FMS wave energy absorption rate caused by magnetosonic resonance excitation is shown to be several orders of magnitude greater than that caused by Alfven resonance excitation at the same surface. It is connected with the spectrum of incident FMS waves. The Kolmogorov spectrum is used in numerical calculations. Magnitude of the Fourier harmonics exciting resonant Alfven oscillations is much smaller than that of the harmonics driving lower-frequency magnetosonic resonance. It is shown that resonant transformation of FMS waves into SMS oscillations can be an effective mechanism of energy transfer from the solar wind to the magnetosphere.  相似文献   

3.
The dependence of the maximal values of the |Dst| and AE geomagnetic indices observed during magnetic storms on the value of the interplanetary electric field (E y ) was studied based on the catalog of the large-scale solar wind types created using the OMNI database for 1976–2000 [Yermolaev et al., 2009]. An analysis was performed for eight categories of magnetic storms caused by different types of solar wind streams: corotating interaction regions (CIR, 86 storms); magnetic clouds (MC, 43); Sheath before MCs (ShMC, 8); Ejecta (95); Sheath (ShE, 56); all ICME events (MC + Ejecta, 138); all compression regions Sheaths before MCs and Ejecta (ShMC + ShE, 64); and an indeterminate type of storm (IND, 75). It was shown that the |Dst| index value increases with increasing electric field E y for all eight types of streams. When electric fields are strong (E y > 11 mV m−1), the |Dst| index value becomes saturated within magnetic clouds MCs and possibly within all ICMEs (MC + Ejecta). The AE index value during magnetic storms is independent of the electric field value E y for almost all streams except magnetic clouds MCs and possibly the compressed (Sheath) region before them (ShMC). The AE index linearly increases within MC at small values of the electric field (E y < 11 mV m−1) and decrease when these fields are strong (E y > 11 mV m−1). Since the dynamic pressure (Pd) and IMF fluctuations (σB) correlate with the E y value in all solar wind types, both geomagnetic indices (|Dst| and AE) do not show an additional dependence on Pd and IMF δB. The nonlinear relationship between the intensities of the |Dst| and AE indices and the electric field E y component, observed within MCs and possibly all ICMEs during strong electric fields E y , agrees with modeling the magnetospheric-ionospheric current system of zone 1 under the conditions of the polar cap potential saturation.  相似文献   

4.
5.
We present a newly developed global magnetohydrodynamic(MHD) model to study the responses of the Earth's magnetosphere to the solar wind. The model is established by using the space-time conservation element and solution element(CESE) method in general curvilinear coordinates on a six-component grid system. As a preliminary study, this paper is to present the model's numerical results of the quasi-steady state and the dynamics of the Earth's magnetosphere under steady solar wind flow with due northward interplanetary magnetic field(IMF). The model results are found to be in good agreement with those published by other numerical magnetospheric models.  相似文献   

6.
The magnetosphere is the outermost layer of the geospace, and the interaction of the solar wind with the magnetosphere is the key element of the space weather cause-and-effect chain process from the Sun to Earth, which is one of the most challenging scientific problems in the geospace weather study. The nonlinearity, multiple component, and time-dependent nature of the geospace make it very difficult to describe the physical process in geospace using traditional analytic analysis approach. Numerical simulations, a new research tool developed in recent decades, have a deep impact on the theory and application of the geospace. MHD simulations started at the end of the 1970s, and the initial study was limited to two-dimensional (2D) cases. Due to the intrinsic three-dimensional (3D) characteristics of the geospace, 3D MHD simulations emerged in the 1980s, in an attempt to model the large-scale structures and fundamental physical processes in the magnetosphere. They started to combine with the space exploration missions in the 1990s and make comparisons with observations. Physics-based space weather forecast models started to be developed in the 21st century. Currently only a few space-power countries such as USA and Japan have developed 3D magnetospheric MHD models. With the rapid advance of space science in China, we have developed a new global MHD model, namely PPMLR-MHD, which has high order spatial accuracy and low numerical dissipation. In this review, we will briefly introduce the global 3D MHD modeling, especially the PPMLR-MHD code, and summarize our recent work based on the PPMLR-MHD model, with an emphasis on the interaction of interplanetary shocks with the magnetosphere, large-scale current systems, reconnection voltage and transpolar potential drop, and Kelvin-Helmholtz (K-H) instability at the magnetopause.  相似文献   

7.
This paper is a continuation of (Nikolaeva et al., 2011, 2012) and it analyzes the development of the main phase of 190 magnetic storms with Dst ≤ −50 nT depending on the type of source in the solar wind (magnetic clouds, MC; corotating interaction regions, CIR; Ejecta; Sheath before them, ShE; Sheath before MC, ShMC; all Sheath regions before ICME, ShE + ShMC; all ICME, MC + Ejecta; and an indeterminate type of solar wind stream, IND).  相似文献   

8.
9.
A model of the magnetosheath structure proposed in a recent paper from the authors is extended to estimate the magnetopause stand-off distance from solar wind data. For this purpose, the relationship of the magnetopause location to the magnetosheath and solar wind parameters is studied. It is shown that magnetopause erosion may be explained in terms of the magnetosheath magnetic field penetration into the magnetosphere. The coefficient of penetration (the ratio of the magnetospheric magnetic field depression to the intensity of the magnetosheath magnetic field Bmz = -Bm sin2/2, is estimated and found approximately to equal 1. It is shown that having combined a magnetosheath model presented in an earlier paper and the magnetosheath field penetration model presented in this paper, it is possible to predict the magnetopause stand-off distance from solar wind parameters.  相似文献   

10.
The paper analyses the development of the main phase of magnetic storms with Dst ≤ −50 nT, the interplanetary source of which consists of eight types of solar wind streams: magnetic clouds (MC, 17 storms); corotating interaction regions (CIR, 49 storms); Ejecta (50 storms); compressed region (Sheath) before Ejecta ShE (34 storms); the Sheath before a magnetic cloud ShMC (6 storms); all Sheath before all ICME, ShE + ShMC (40 storms); all ICME, MC + Ejecta (67 storms); and an indeterminate type of stream IND (34 storms).  相似文献   

11.
In situ measurements of the solar wind largely cover more than two solar magnetic activity cycles, namely 20 and 21. This is a very appealing opportunity to study the influence of the activity cycle on the behaviour of the solar wind parameters. As a matter of fact, many authors so far have studied this topic comparing the long-term magnetic field and plasma averages. However, when the average values are evaluated on a data sample whose duration is comparable with (or even longer than) the solar rotation period we lose information about the contribution due to the fast and the slow solar wind components. Thus, discriminating in velocity plays a key role in understanding solar cycle effects on the solar wind. Based on these considerations, we performed a separate analysis for fast and slow wind, respectively. In particular, we found that: (a) fast wind carries a slightly larger momentum flux density at 1 AU, probably due to dynamic stream-stream interaction; (b) proton number density in slow wind is more cycle dependent than in fast wind and decreases remarkably across solar maximum; (c) fast wind generally carries a magnetic field intensity stronger than that carried by the slow wind; (d) we found no evidence for a positive correlation between velocity and field intensity as predicted by some theories of solar wind acceleration; (e) our results would support an approximately constant divergence of field lines associated with corotating high-velocity streams.  相似文献   

12.
The effect of the interplanetary parameters on the latitudinal position of the substorm westward electrojet is studied in the work. The data from the IMAGE chain of magnetic stations and POLAR and WIND satellites for the period close to the solar activity minimum (1995–1996) and for the period of the solar activity maximum (2000) have been used for this purpose. It has been indicated that the electrojet poleward edge reaches, on average, higher latitudes at a higher solar wind velocity and at a larger (B s ) IMF southward component. It has been indicated that the average latitude of the westward electrojet center increases with increasing solar wind velocity and decreases with increasing IMF southward component, as a result of which the electrojet center is, specifically, not observed at high geomagnetic latitudes at large values of the IMF southward component.  相似文献   

13.
Some theories predict the magnetosheath magnetic field strength will decrease and the density increase just outside the dayside magnetopause as the interplanetary magnetic field turns southward. Two studies have recently reported results which confirm these expectations. In contrast, we briefly review our own theoretical predictions which indicate that precisely the opposite effect is expected. We survey new and previously reported magnetosheath observations and demonstrate that they are consistent with the predictions of our model. The conflicting results indicate a need for further theoretical and observational work.  相似文献   

14.
Geomagnetism and Aeronomy - The paper discusses the results of the forecast of solar wind parameters at a distance of 1 AU made according to observations made by the STOP telescope magnetograph...  相似文献   

15.
Several satellites (GEOS-1, GEOS-2, ISEE-1, Viking and CRRES) carried electric field experiments on which probes were driven by a current from the satellite to be close to the plasma potential. The potential difference between an electric field probe and its spacecraft (with conductive surfaces) can be used to determine the ambient electron density and/or electron flux with limited accuracy but with high time resolution, of the order of 10–100 ms. It is necessary for the development of this diagnostic method to understand the photoemission characteristics of probes and satellites. According to the electric field experiments on the above-mentioned satellites, all materials develop very similar photoemission properties when they are beyond the influence of atmospheric oxygen. The photoelectron yield steadily increases over the first few months in space and reaches values well above those measured on clean surfaces in the laboratory. The method can be used for solar radiation levels corresponding to distances from 0.4 to 5 AU from the Sun.  相似文献   

16.
In a previous work the authors have developed a model, providing Kp as a function of the interplanetary magnetic field Bz component. They introduced a modified Bz function (denoted as Bzm), exhibiting a delayed reaction to Bz changes. The modified function Bzm was defined by using the analogy with a damping RC-circuit output voltage. The delaying reaction of Bzm to Bz was characterized by two time constants, one for rising and one for decreasing parts of Bz. The cross-correlation between Kp and Bzm has increased to 0.7, compared with −0.4 between Kp and Bz. In this paper, new dependences of Kp on solar wind velocity and dynamic pressure are included in the model to improve its accuracy. These solar wind parameters are found to correlate best with Kp. The hourly interpolated values are also added to the 3-h Kp values to increase the statistics. The new Kp data set is denoted as Kp1. The mean dependence of Kp on Bzm and dynamic pressure are approximated with parabolas, while the dependence on the velocity is linear. The constants in the model expression are obtained by using ACE data (1998–2000). The overall model error is estimated at 0.63 units Kp. The improvement over the previous simpler dependence in terms of the model error is about 30%.  相似文献   

17.
The measurements of an increase in the total electron content (TEC) of the ionosphere during solar flares, obtained based on the GPS data, indicated that up to 30% of TEC increments corresponded to the ionospheric regions above 300 km altitude in some cases, and TEC increased mainly below altitudes of 300 km in other cases. The theoretical model of the ionosphere and plasmasphere was used to study the obtained effects. The altitude-time variations in the charged particle density in the ionospheric region from 100 to 1000 km were used depending on the solar flare spectrum. An analysis of the modeling results indicated that an intensification of the flare UV emission in the 55–65 and 85–95 nm spectral ranges results in a pronounced increase in the electron density in the topside ionosphere (above 300 km). The experimental dependences of the ionospheric TEC response amplitude on the localization and peak power of flares on the Sun in the X-ray range, obtained based on the GPS data, are also presented in the work.  相似文献   

18.
Utilising fifteen (1990–2005) years of ground-based magnetometer data from four magnetometer stations, we characterise the statistical dependence of the Pc5 ULF wave power spectra on variations in F10.7 solar radio flux and on solar cycle phase. We show that the median Pc5 ULF wave power spectra can be characterised as a power-law with a localised Gaussian centred at a specific frequency superimposed on the power-law spectrum. Further, we demonstrate that the location of the Gaussian in frequency systematically varies with both solar cycle phase and F10.7 and is more pronounced during high-speed solar wind intervals. We postulate that the localised power spectrum enhancement (or Gaussian) is a manifestation of the local eigenfrequency of field line resonances in the Earth's magnetosphere and that the variation in the location of the Gaussian occurs as a result of increased ionospheric outflow during periods of enhanced F10.7 and active solar activity.  相似文献   

19.
The solar magnetic field B s at the Earth’s projection onto the solar-wind source surface has been calculated for each day over a long time interval (1976–2004). These data have been compared with the daily mean solar wind (SW) velocities and various components of the interplanetary magnetic field (IMF) near the Earth. The statistical analysis has revealed a rather close relationship between the solar-wind parameters near the Sun and near the Earth in the periods without significant sporadic solar and interplanetary disturbances. Empirical numerical models have been proposed for calculating the solar-wind velocity, IMF intensity, and IMF longitudinal and B z components from the solar magnetic data. In all these models, the B s value plays the main role. It is shown that, under quiet or weakly disturbed conditions, the variations in the geomagnetic activity index Ap can be forecasted for 3–5 days ahead on the basis of solar magnetic observations. Such a forecast proves to be more reliable than the forecasts based on the traditional methods.  相似文献   

20.
We examine the geomagnetic field and space plasma disturbances developing simultaneously in the solar wind, in the inner and outer magnetosphere, and on the ground from 0730 to 2030 UT on April 11, 1997 during the recovery phase of a moderate magnetic storm. The fluctuations of the solar wind density, H-component of the geomagnetic field, and power of Pc1–2 (0.1–5 Hz) waves at middle and low latitudes evolve nearly simultaneously. These fluctuations also match very well with variations of density and flux of the magnetospheric plasma at the geosynchronous orbit, and of the geomagnetic field at the geosynchronous orbit and northern polar cap. The time delay between the occurrence of disturbances in different magnetosphere regions matches the time of fast mode propagation. These disturbances are accompanied by the generation of Pc1–2 waves at mid- and high-latitude observatories in nearly the same frequency range. A scenario of the evolution of wave phenomena in different magnetospheric domains is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号