首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pseudo-binary system Mg3Al2Si3O12–Na2MgSi5O12 modelling the sodium-bearing garnet solid solutions has been studied at 7 and 8.5 GPa and 1,500–1,950°C. The Na-bearing garnet is a liquidus phase of the system up to 60 mol% Na2MgSi5O12 (NaGrt). At higher content of NaGrt in the system, enstatite (up to ∼80 mol%) and then coesite are observed as liquidus phases. Our experiments provided evidence for a stable sodium incorporation in garnet (0.3–0.6 wt% Na2O) and its control by temperature and pressure. The highest sodium contents were obtained in experiments at P = 8.5 GPa. Near the liquidus (T = 1,840°C), the equilibrium concentration of Na2O in garnet is 0.7–0.8 wt% (∼6 mol% Na2MgSi5O12). With the temperature decrease, Na concentration in Grt increases, and the maximal Na2MgSi5O12 content of ∼12 mol% (1.52 wt% Na2O) is gained at the solidus of the system (T = 1,760°С). The data obtained show that most of natural diamonds, with inclusions of Na-bearing garnets usually containing <0.4 wt% Na2O, could be formed from sodium-rich melts at pressures lower than 7 GPa. Majoritic garnets with higher sodium concentrations (>1 wt% Na2O) may crystallize at a pressure range of 7.0–8.5 GPa. However the upper pressure limit for the formation of naturally occurring Na-bearing garnets is restricted by the eclogite/garnetite bulk composition.  相似文献   

2.
Based on experimental and mineralogical data, the model of mantle carbonate-silicate (carbonatite) melts as dominating parental media for natural diamonds was substantiated. It was demonstrated that the compositions of silicate constituents of parental melts were variable and saturated with respect to mantle rocks, namely pyrope peridotite, garnet pyroxenite, and eclogite. Based on concentration contributions and role in diamond genesis, major (carbonate and silicate) and minor (admixture) components were distinguished. The latter components may be both soluble (oxides, phosphates, chlorides, carbon dioxide, and water) and insoluble (sulfides, metals, and carbides) in silicate-carbonate melts. This paper presents the results of a study of diamond crystallization in multicomponent melts of variable composition with carbonate components (K2CO3, CaCO3 · MgCO3, and K-Na-Ca-Mg-Fe carbonatite) and silicate components represented by model peridotite (60 wt % olivine, 16 wt % orthopyroxene, 12 wt % clinopyroxene, and 12 wt % garnet) and eclogite (50 wt % garnet and 50 wt % clinopyroxene). Carbonate-silicate melts behave like completely miscible liquid phases in experiments performed under the P-T conditions of diamond stability. The concentration barriers of diamond nucleation (CBDN) in melts with variable proportions of silicates and carbonates were determined at 8.5 GPa. In the peridotite system with K2CO3, CaCO3 · MgCO3, and carbonatite, they correspond to 30, 25, and 30 wt % silicates, respectively, and in the eclogite system, the CBDN is shifted to 45, 30, and 35 wt % silicates. In the silicate-carbonate melts with higher silicate contents, diamond grows on seeds, which is accompanied by the crystallization of thermodynamically unstable graphite. At P = 7.0 GPa and T = 1200−1800°C, we studied and constructed phase diagrams for the multicomponent peridotite-carbonate and eclogite-carbonate systems as a physicochemical basis for revealing the syngenetic relationships between diamond and its silicate (olivine, ortho- and clinopyroxene, and garnet) and carbonate (aragonite and magnesite) inclusions depending on the physicochemical conditions of growth media. The results obtained allowed us to reconstruct the evolution of diamond-forming systems. The experiments revealed similarity between the compositions of synthetic silicate minerals and inclusions in natural diamonds (high concentrations of Na in garnets and K in clinopyroxenes). It was experimentally demonstrated that the formation of Na-bearing majoritic garnets is controlled by the P-T parameters and melt alkalinity. Diamonds with inclusions of such garnets can be formed in alkalic carbonate-silicate (aluminosilicate) melts. A mechanism was suggested for sodic end-member dissolution in majoritic garnets, and garnet with the composition Na2MgSi5O12 and tetragonal symmetry was synthesized for the first time.  相似文献   

3.
To understand partitioning of hydrogen between hydrous basaltic and andesitic liquids and coexisting clinopyroxene and garnet, experiments using a mid-ocean ridge basalt (MORB) + 6 wt.% H2O were conducted at 3 GPa and 1,150–1,325°C. These included both isothermal and controlled cooling rate crystallization experiments, as crystals from the former were too small for ion microprobe (SIMS) analyses. Three runs at lower bulk water content are also reported. H2O was measured in minerals by SIMS and in glasses by SIMS, Fourier Transform infrared spectroscopy (FTIR), and from oxide totals of electron microprobe (EMP) analyses. At 3 GPa, the liquidus for MORB with 6 wt.% H2O is between 1,300 and 1,325°C. In the temperature interval investigated, the melt proportion varies from 100 to 45% and the modes of garnet and clinopyroxene are nearly equal. Liquid composition varies from basaltic to andesitic. The crystallization experiments starting from above the liquidus failed to nucleate garnets, but those starting from below the liquidus crystallized both garnet and clinopyroxene. SIMS analyses of glasses with >7 wt.% H2O yield spuriously low concentrations, perhaps owing to hydrogen degassing in the ultra-high vacuum of the ion microprobe sample chamber. FTIR and EMP analyses show that the glasses have 3.4 to 11.9 wt.% water, whilst SIMS analyses indicate that clinopyroxenes have 1,340–2,330 ppm and garnets have 98–209 ppm H2O. D H cpx−gt is 11 ± 3, D H cpx−melt is 0.023 ± 0.005 and D H gt−melt is 0.0018 ± 0.0006. Most garnet/melt pairs have low values of D H gt−melt, but D H gt−melt increases with TiO2 in the garnet. As also found by previous studies, values of D H cpx−melt increase with Al2O3 of the crystal. For garnet pyroxenite, estimated values of D H pyroxenite−melt decrease from 0.015 at 2.5 GPa to 0.0089 at 5 GPa. Hydration will increase the depth interval between pyroxenite and peridotite solidi for mantle upwelling beneath ridges or oceanic islands. This is partly because the greater pyroxene/olivine ratio in pyroxenite will tend to enhance the H2O concentration of pyroxenite, assuming that neighboring pyroxenite and peridotite bodies have similar H2O in their pyroxenes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Phase relations on the diopside-jadeite join were experimentally determined at 16–22 GPa pressures and temperatures in the vicinity of 1500 °C under hydrous and 2100 °C under anhydrous conditions, using a split-sphere anvil apparatus (USSA-2000). Starting compositions on the diopside-jadeite join produced assemblages containing CaSiO3 perovskite. This assured that the coexisting garnet with compositions in the ternary system Mg2Si2O6(En)-CaMgSi2O6(Di)-NaAlSi2 O6(Jd) had the maximum Ca content possible under the given conditions. Garnet reached its maximum Ca content at 17 GPa, and exsolved CaSiO3 perovskite at higher pressures. The garnet composition closest to the join, En5Di47.5Jd47.5 (mol%), was reached at 18–19 GPa and 2100 °C. The maximum Na content of garnet limited by the coexisting pyroxene did not exceed 51 mol% jadeite at 22 GPa and 2100 °C. At 22 GPa, pyroxene was replaced with NaAlSiO4 (calcium ferrite structure) and stishovite under anhydrous conditions, while in the presence of H2O a new hydrous Na-bearing phase with the ideal composition Na7(Ca, Mg)3AlSi5O9(OH)18 was synthesized instead. Garnet coexisting with CaSiO3 perovskite and MgSiO3 ilmenite at 22 GPa and 1400 °C was En51Di9Jd40, coincidentally identical to the first garnet forming in the ternary system at 13 GPa. The new data are applicable to the Earth's transition zone (400–670 km depths) and suggest that the transformation from eclogite to garnetite would occur primarily over a limited depth interval from 400 to 500 km. Gaps in the observed garnet compositions suggest immiscibility, which could potentially cause a sharp 400 km discontinuity in an eclogitic mantle.  相似文献   

5.
Fluid inclusions in garnet combined with element X-ray mapping, phase equilibrium modelling and conventional thermobarometry have been used to constrain the metamorphic evolution of metapelitic gneiss from the HP/UHP metamorphic terrane of Pohorje Mountains in the Eastern Alps, Slovenia. Retrograde PT trajectory from ~2.75 GPa and 780°C is constrained by the composition of matrix phengite (6.66 apfu Si) coexisting with garnet cores, kyanite and quartz. The intersection of the X Prp = 0.25 isopleth for the garnet with the upper stability boundary for K-feldspar in the matrix indicates near-isothermal decompression to ~0.9 GPa at 720°C. Temperatures over 650°C during this stage are corroborated by the high degree of ordering of graphite inclusions associated with Zn, Mg-rich staurolite and phlogopite in the Mg-rich (X Prp = 0.22–0.25) garnet cores. Majority of garnet porphyroblasts are depleted in Mg (down to X Prp = 0.09) and enriched in Mn (up to X Sps = 0.12) along cracks and at their margins. The associated retrograde mineral assemblage comprises Zn, Mg-poor staurolite, muscovite, biotite–siderophyllite, sillimanite and quartz. The onset of the retrogression and the compositional modification of the garnet porphyroblasts were accompanied by the addition of fluid-deposited graphite around older graphite inclusions, probably due to removal of water from a graphite-buffered COH fluid by dissolution in partial silicic melt. Instantaneous expulsion of water near the melt solidus (640°C, max. 0.45 GPa) caused dissolution of the graphite at redox conditions corresponding to 0.25–1.25 logfO2 units below the QFM buffer, giving rise to a H2O–CO2–CH4 fluid trapped in primary inclusions in Mn-rich, Mg-poor, almandine garnet that reprecipitated within the retrogressed domains. The absence of re-equilibration textures and consistent densities of the fluid inclusions reflect a near-isochoric cooling postdating the near-isothermal decompression. Bulk water content in the metapelite attained 2 wt% during this stage. The low-degree partial melting and extensive hydration due to the release of the internally derived, low-pressure aqueous fluids led to the reset of peak-pressure mineral assemblage.  相似文献   

6.
The melting behaviour of three carbonated pelites containing 0–1 wt% water was studied at 8 and 13 GPa, 900–1,850°C to define conditions of melting, melt compositions and melting reactions. At 8 GPa, the fluid-absent and dry carbonated pelite solidi locate at 950 and 1,075°C, respectively; >100°C lower than in carbonated basalts and 150–300°C lower than the mantle adiabat. From 8 to 13 GPa, the fluid-present and dry solidi temperatures then increase to 1,150 and 1,325°C for the 1.1 wt% H2O and the dry composition, respectively. The melting behaviour in the 1.1 wt% H2O composition changes from fluid-absent at 8 GPa to fluid-present at 13 GPa with the pressure breakdown of phengite and the absence of other hydrous minerals. Melting reactions are controlled by carbonates, and the potassium and hydrous phases present in the subsolidus. The first melts, which composition has been determined by reverse sandwich experiments, are potassium-rich Ca–Fe–Mg-carbonatites, with extreme K2O/Na2O wt ratios of up to 42 at 8 GPa. Na is compatible in clinopyroxene with D\textNa\textcpx/\textcarbonatite = 10-18 D_{\text{Na}}^{{{\text{cpx}}/{\text{carbonatite}}}} = 10{-}18 at the solidus at 8 GPa. The melt K2O/Na2O slightly decreases with increasing temperature and degree of melting but strongly decreases from 8 to 13 GPa when K-hollandite extends its stability field to 200°C above the solidus. The compositional array of the sediment-derived carbonatites is congruent with alkali- and CO2-rich melt or fluid inclusions found in diamonds. The fluid-absent melting of carbonated pelites at 8 GPa contrasts that at ≤5 GPa where silicate melts form at lower temperatures than carbonatites. Comparison of our melting temperatures with typical subduction and mantle geotherms shows that melting of carbonated pelites to 400-km depth is only feasible for extremely hot subduction. Nevertheless, melting may occur when subduction slows down or stops and thermal relaxation sets in. Our experiments show that CO2-metasomatism originating from subducted crust is intimately linked with K-metasomatism at depth of >200 km. As long as the mantle remains adiabatic, low-viscosity carbonatites will rise into the mantle and percolate upwards. In cold subcontinental lithospheric mantle keels, the potassic Ca–Fe–Mg-carbonatites may freeze when reacting with the surrounding mantle leading to potassium-, carbonate/diamond- and incompatible element enriched metasomatized zones, which are most likely at the origin of ultrapotassic magmas such as group II kimberlites.  相似文献   

7.
Cation diffusion rates at 690 ± 30 °C have been calculated by inverse modelling of observed manganese (Mn) zonation profiles in 40 garnets from two kyanite-bearing metapelite samples from the High Himalayan Crystalline Series, Zanskar, northwest India. Knowledge of the initial growth profile of Mn in garnet is a pre-requisite for this technique. Following previous workers we model Mn partitioning into growing garnet in terms of a Rayleigh fractionation process, and demonstrate that the Mngarnet:whole rock partition coefficient is 60–100. Three-dimensional zonation profiles were obtained by successively grinding and polishing ∼1 cm slabs of each sample at 0.1–0.2 mm intervals and analysing the garnets at each stage, thus ensuring that core sections were measured. The diffusion model assumes that garnet has a spherical geometry and behaves as a closed system, and simulates diffusive modification of the hypothetical Mn Rayleigh growth profile for each garnet. The derived measure of the time-integrated diffusion history for each garnet is then combined with radiometric and field-relation constraints for the duration of the Himalayan metamorphic event to calculate cation diffusion rates. The average cation interdiffusion rate calculated for garnets in the two samples examined is (6 ± 3.2) × 10−23 m2s−1. This interdiffusion rate pertains to a temperature of 690 ± 30 °C, which is 0.97 × T PEAK, the peak temperature conditions experienced by the samples estimated using standard thermobarometric techniques. Garnet compositions are Py2–17Alm65–77Gro6–16Sp1–17. These new diffusion data are consistent with, and more precise than, existing high-temperature (>1000 °C) experimentally determined diffusion data, although some uncertainties remain difficult to constrain. Qualitative comparison between diffusively modified Mn growth profiles in garnets from the Scottish Dalradian and the Himalayan garnets suggests that the duration of metamorphism affecting the Dalradian garnets was 10–20 times longer than that endured by the Himalayan garnets. Received: 5 June 1996 / Accepted: 29 January 1997  相似文献   

8.
A suite of more than 200 garnet single crystals, extracted from 150 xenoliths, covering the whole range of types of garnet parageneses in mantle xenoliths so far known from kimberlites of the Siberian platform and collected from nearly all the kimberlite pipes known in that tectonic unit, as well as some garnets found as inclusions in diamonds and olivine megacrysts from such kimberlites, were studied by means of electron microprobe analysis and single-crystal IR absorption spectroscopy in the v OH vibrational range in search of the occurrence, energy and intensity of the v OH bands of hydroxyl defects in such garnets and its potential use in an elucidation of the nature of the fluid phase in the mantle beneath the Siberian platform. The v OH single-crystal spectra show either one or a combination of two or more of the following major v OH bands, I 3645–3662 cm−1, II 3561–3583 cm−1, III 3515–3527 cm−1, and minor bands, Ia 3623–3631 cm−1, IIa 3593–3607 cm−1. The type of combination of such bands in the spectrum of a specific garnet depends on the type of the rock series of the host xenolith, Mg, Mg-Ca, Ca, Mg-Fe, or alkremite, on the xenolith type as well as on the chemical composition of the respective garnet. Nearly all garnets contain band systems I and II. Band system III occurs in Ti-rich garnets, with wt% TiO2 > ca. 0.4, from xenoliths of the Mg-Ca and Mg-Fe series, only. The v OH spectra do not correspond to those of OH defects in synthetic pyropes or natural ultra-high pressure garnets from diamondiferous metamorphics. There were no indications of v OH from inclusions of other minerals within the selected 60 × 60 μm measuring areas in the garnets. The v OH spectra of pyrope-knorringite- and pyrope-knorringite-uvarovite-rich garnets included in diamonds do not show band systems I to III. Instead, they exhibit one weak, broad band (Δv OH 200–460 cm−1) near 3570 cm−1, a result that was also obtained on pyrope-knorringite-rich garnets extracted from two olivine megacrysts. The quantitative evaluation, on the basis of relevant existing calibrational data (Bell et al. 1995), of the sum of integral intensities of all v OH bonds of the garnets studied yielded a wide range of “water” concentrations within the set of the different garnets, between values below the detection limit of our single-crystal IR method, near 2 × 10−4 wt%, up to 163 × 10−4 wt%. The “water” contents vary in a complex manner in garnets from different xenolith types, obviously depending on a large number of constraints, inherent in the crystal chemistry as well as the formation conditions of the garnets during the crystallization of their mantle host rocks. Secondary alteration effects during uplift of the kimberlite, play, if any, only a minor role. Despite the very complex pattern of the “water” contents of the garnets, preventing an evaluation of a straightforward correlation between “water” contents of the garnets and the composition of the mantle's fluid phase during garnet formation, at least two general conclusions could be drawn: (1) the wide variation of “water” contents in garnets is not indicative of regional or local differences in the composition of the mantle's fluid phase; (2) garnets formed in the high-pressure/high-temperature diamond-pyrope facies invariably contain significantly lower amounts of “water” than garnets formed under the conditions of the graphite-pyrope facies. This latter result (2) may point to significantly lower f H2O and f O2 in the former as compared to the latter facies. Received: 25 November 1997 / Accepted: 9 March 1998  相似文献   

9.
This paper presents the first report on the occurrence of eclogite from the Kumon range of the Western province in Myanmar, which is in the southeastern extension of the Himalayan orogenic belt. The eclogite is mainly composed of omphacite, garnet, hornblende/edenite/katophorite/taramite, biotite, quartz, and rutile. The garnet grains in the eclogite usually show textures of barrier reef, atoll, and table reef types, and have a wide compositional range of Alm58–70Sps1–2Prp9–16Grs14–31. Omphacite grains that occur as garnet inclusions and as isolated crystals in the matrix have similar compositions of Jd34–45 and Jd37–44, respectively. Lesser amounts of jadeitic clinopyroxene (Jd21–38), phengite, biotite, albite, and quartz occur in the lagoon of barrier reef and atoll garnet grains. The matrix omphacite is partly replaced by symplectite of sodic clinopyroxene of Jd20–29 and albite. The lower limits of the pressure/temperature during the eclogite stage, which are defined by the assemblage of garnet, omphacite (Jd40–45), and quartz, are 1.2–1.3 GPa/530–615 °C. The finding of eclogite from Myanmar suggests the possibility of a wide occurrence of high-pressure metamorphic rocks in the ophiolite zone along the southeastern extension of the Indus-Yarlung Zangbo suture in Myanmar and Indochina.  相似文献   

10.
Mg-Al-rich rocks from the Palghat-Cauvery Shear Zone System (PCSZ) within the Gondwana suture zone in southern India contain sodicgedrite as one of the prograde to peak phases, stable during = 900–990°C ultrahigh-temperature metamorphism. Gedrite in these samples is Mg-rich (Mg/[Fe + Mg] = X Mg = 0.69–0.80) and shows wide variation in Na2O content (1.4–2.3 wt.%, NaA = 0.33–0.61 pfu). Gedrite adjacent to kyanite pseudomorph is in part mantled by garnet and cordierite. The gedrite proximal to garnet shows an increase in NaA and AlIV from the core (NaA = 0.40–0.51 pfu, AlIV = 1.6–1.9 pfu) to the rim (NaA = 0.49–0.61 pfu, AlIV = 2.0–2.2 pfu), suggesting the progress of the following dehydration reaction: Ged + Ky → Na-Ged + Grt + Crd + H2O. This reaction suggests that, as the reactants broke down during the prograde stage, the remaining gedrite became enriched in Na to form sodicgedrite, which is regarded as a unique feature of high-grade rocks with Mg-Al-rich and K–Si-poor bulk chemistry. We carried out high-P-T experimental studies on natural sodicgedrite and the results indicate that gedrite and melt are stable phases at 12 kbar and 1,000°C. However, the product gedrite is Na-poor with only <0.13 wt.% Na2O (NaA = 0.015–0.034 pfu). In contrast, the matrix glass contains up to 8.5 wt.% Na2O, suggesting that, with the progressive melting of the starting material, Na was partitioned into the melt rather than gedrite. The results therefore imply that the occurrence of sodicgedrite in the UHT rocks of the PCSZ is probably due to the low H2O activity during peak P-T conditions that restricted extensive partial melting in these rocks, leaving Na partitioned into the solid phase (gedrite). The occurrence of abundant primary CO2-rich fluid inclusions in this rock, which possibly infiltrated along the collisional suture during the final amalgamation of the Gondwana supercontinent, strengthens the inference of low water activity.  相似文献   

11.
Crystallization of garnet in high-chromium restite formed under the conditions of partial melting in the spinel facies and subsequently subducted into the garnet depth facies was studied experimentally in the MgO–Al2O3–Cr2O3–SiO2 system. The crystallization of garnet and the dependence of its composition on the temperature and bulk composition of the system with low Al concentration were studied as well. Experiments in the knorringite–majorite–pyrope system with 5, 10, and 20 mol % Prp were carried out at 7 GPa. The phase associations for the starting composition of pure knorringite Mg3Cr2Si3O12 included chromiumbearing enstatite MgSiO3 (up to 3.2 wt % Cr2O3) and eskolaite Cr2O3. Addition of Al resulted in crystallization of high-chromium majoritic garnet. The portion of garnet in the samples always exceeded the concentration of pyrope in the starting composition owing to the formation of the complex majorite–knorringite–pyrope series of solid solutions. With increasing content of pyrope (from 5 to 20 mol %) and increasing temperature, the modal concentration of garnet increased significantly (from 6–12 to 22–37%). The garnet was characterized by high concentrations of the pyrope (23–80 mol %) and knorringite (22–70 mol %) components. The excess of Si (>3 f.u.) with decreasing Cr concentration provided evidence for the contribution of the majorite–knorringite trend to the variation in garnet composition. On the basis of the natural data, most of the garnets composing xenoliths of ultrabasic rocks in kimberlites and occurring as inclusions in diamonds are low-chromium; i.e., their protolith was not subjected to partial melting, at least in the spinel depth facies.  相似文献   

12.
Garnet-bearing mantle peridotites, occurring as either xenoliths in volcanic rocks or lenses/massifs in high-pressure and ultrahigh-pressure terrenes within orogens, preserve a record of deep lithospheric mantle processes. The garnet peridotite xenoliths record chemical equilibrium conditions of garnet-bearing mineral assemblage at temperatures (T) ranging from ~700 to 1,400°C and pressures (P) > 1.6–8.9 GPa, corresponding to depths of ~52–270 km. A characteristic mineral paragenesis includes Cr-bearing pyropic garnet (64–86 mol% pyrope; 0–10 wt% Cr2O3), Cr-rich diopside (0.5–3.5 wt% Cr2O3), Al-poor orthopyroxene (0–5 wt% Al2O3), high-Cr spinel (Cr/(Cr + Al) × 100 atomic ratio = 2–86) and olivine (88–94 mol% forsterite). In some cases, partial melting, re-equilibration involving garnet-breakdown, deformation, and mantle metasomatism by kimberlitic and/or carbonatitic melt percolations are documented. Isotope model ages of Archean and Proterozoic are ubiquitous, but Phanerozoic model ages are less common. In contrast, the orogenic peridotites were subjected to ultrahigh-pressure (UHP) metamorphism at temperature ranging from ~700 to 950°C and pressure >3.5–5.0 GPa, corresponding to depths of >110–150 km. The petrologic comparisons between 231 garnet peridotite xenoliths and 198 orogenic garnet peridotites revealed that (1) bulk-rock REE (rare earth element) concentrations in xenoliths are relatively high, (2) clinopyroxene and garnet in orogenic garnet peridotites show a highly fractionated REE pattern and Ce-negative anomaly, respectively, (3) Fo contents of olivines for off-cratonic xenolith are in turn lower than those of orogenic garnet and cratonic xenolith but mg-number of garnet for orogenic is less than that of off-cratonic and on-cratonic xenolith, (4) Al2O3, Cr2O3, CaO and Cr# of pyroxenes and chemical compositions of whole rocks are very different between these garnet peridotites, (5) orogenic garnet peridotites are characterized by low T and high P, off-cratonic by high T and low P, and cratonic by medium T and high P and (6) garnet peridotite xenoliths are of Archean or Proterozoic origin, whereas most of orogenic garnet peridotites are of Phanerozoic origin. Taking account of tectonic settings, a new orogenic garnet peridotite exhumation model, crust-mantle material mixing process, is proposed. The composition of lithospheric mantle is additionally constrained by comparisons and compiling of the off-cratonic, on-cratonic and orogenic garnet peridotite.  相似文献   

13.
The Xugou garnet peridotite body of the southern Sulu ultrahigh‐pressure (UHP) terrane is enclosed in felsic gneiss, bounded by faults, and consists of harzburgite and lenses of garnet clinopyroxenite and eclogite. The peridotite is composed of variable amounts of olivine (Fo91), enstatite (En92?93), garnet (Alm20?23Prp53?58Knr6?9Grs12?18), diopside and rare chromite. The ultramafic protolith has a depleted residual mantle composition, indicated by a high‐Mg number, very low CaO, Al2O3 and total REE contents compared to primary mantle and other Sulu peridotites. Most garnet (Prp44?58) clinopyroxenites are foliated. Except for rare kyanite‐bearing eclogitic bands, most eclogites contain a simple assemblage of garnet (Alm29?34Prp32?50Grs15?39) + omphacite (Jd24?36) + minor rutile. Clinopyroxenite and eclogite exhibit LREE‐depleted and LREE‐enriched patterns, respectively, but both have flat HREE patterns. Normalized La, Sm and Yb contents indicate that both eclogite and garnet clinopyroxenite formed by high‐pressure crystal accumulation (+ variable trapped melt) from melts resulting from two‐stage partial melting of a mantle source. Recrystallized textures and P–T estimates of 780–870 °C, 5–7 GPa and a metamorphic age of 231 ± 11 Ma indicate that both mafic and ultramafic protoliths experienced Triassic UHP metamorphism in the P–T forbidden zone with an extremely low thermal gradient (< 5 °C km?1), and multistage retrograde recrystallization during exhumation. Develop of prehnite veins in clinopyroxenite, eclogite, felsic blocks and country rock gneiss, and replacements of eclogitic minerals by prehnite, albite, white mica, and K‐feldspar indicate low‐temperature metasomatism.  相似文献   

14.
We have determined mineral-melt partition coefficients (D values) for 20 trace elements in garnet-pyroxenite run products, generated in 3 to 7 GPa, 1,425–1,750°C experiments on a high-Fe mantle melt (97SB68) from the Paraná-Etendeka continental-flood-basalt (CFB) province. D values for both garnet (∼Py63Al25Gr12) and clinopyroxene (∼Ca0.2Mg0.6Fe0.2Si2O6) show a large variation with temperature but are less dependent on pressure. At 3 GPa, D cpx/liq values for pyroxenes in garnet-pyroxenite run products are generally lower than those reported from Ca-rich pyroxenes generated in melting experiments on eclogites and basalts (∼Ca0.3–0.5Mg0.3–0.6Fe0.07–0.2Si2O6) but higher than those for Ca-poor pyroxenes from peridotites (∼Ca0.2Mg0.7Fe0.1Si2O6). D grt/liq values for light and heavy rare-earth elements are ≤0.07 and >0.8, respectively, and are similar to those for peridotitic garnets that have comparable grossular but higher pyrope contents (Py70–88All7–20Gr8–14). 97SB68 D LREEgrt/liq values are higher and D HREEgrt/liq values lower than those for eclogitic garnets which generally have higher grossular contents but lower pyrope contents (Py20–70Al10–50Gr10–55). D values agree with those predicted by lattice strain modelling and suggest that equilibrium was closely approached for all of our experimental runs. Correlations of D values with lattice-strain parameters and major-element contents suggest that the wollastonite component and pyrope:grossular ratio exert major controls on 97SB68 clinopyroxene and garnet partitioning, respectively. These are controlled by the prevailing pressure and temperature conditions for a given bulk-composition. The composition of co-existing melt was found to have a relatively minor effect on 97SB68 D values. The variations in D values displayed by different mantle lithologies are subtle and our study confirms previous investigations which have suggested that the modal proportions of garnet and clinopyroxene are by far the most influential factor in determining incompatible trace-element concentrations in mantle melts. The trace-element partition coefficients we have determined may be used to place high-pressure constraints on garnet-pyroxenite melting models.  相似文献   

15.
The structural variations along the solid solution Sr2−x Ba x MgSi2O7 (0 ≤ x ≤ 2), combined to the high-pressure characterization of the two end-members, have been studied. A topological change from the tetragonal (melilite-type) to the monoclinic (melilite-related) structure along the join Sr2MgSi2O7 (e.g., P[`4]21 m P\bar{4}2_{1} m )–Ba2MgSi2O7 (e.g., C2/c) occurs with a Ba content higher than 1.6 apfu. Favored in the crystallization from a melt, the tetragonal form has a tetrahedral sheet topology exclusively based on five-membered rings, which provide a regular “4 up + 4 down” ligand arrangement. In contrast, the melilite-related structure, favored by solid-state reaction synthesis, is made by alternating six- and four-membered tetrahedral rings, which give an asymmetric arrangement of alternated “5 up + 3 down” and “3 up + 5 down” ligands around Sr or Ba. This latter configuration is characterized by an additional degree of freedom with Ba polyhedra hosted in the interlayer with a more irregular and compact coordination and longer Ba–O bond distances. Further insights into the relationships between the two melilite typologies were achieved by investigating the in situ high-pressure behavior of these systems. The synchrotron high-pressure experiments allowed to calculate the elastic moduli for the Sr melilite-type end-member and for the Ba monoclinic polymorph (Sr2MgSi2O7: K T0 = 107, K a=b  = 121, and K c  = 84 GPa; m-Ba2MgSi2O7: K T0 = 85, K a  = 96, K b  = 72, and K c  = 117 GPa) and compare them with those reported in the literature for ?kermanite (Ca2MgSi2O7). The results show that, although the volume of Ba polyhedron in tetragonal polymorphs is larger than in the monoclinic forms, the interlayer compressibility is significantly lower in the former structures due to the occurrence of very short Ba–O distances. This unfavored Ba environment also makes tetragonal Ba2MgSi2O7 a metastable phase at room conditions, possibly favored by high pressure. However, no phase transition occurs from monoclinic to tetragonal form due to kinetic hindrance in reconstructing the sheet topology.  相似文献   

16.
We performed a series of piston-cylinder experiments on a synthetic pelite starting material over a pressure and temperature range of 3.0–5.0 GPa and 1,100–1,600°C, respectively, to examine the melting behaviour and phase relations of sedimentary rocks at upper mantle conditions. The anhydrous pelite solidus is between 1,150 and 1,200°C at 3.0 GPa and close to 1,250°C at 5.0 GPa, whereas the liquidus is likely to be at 1,600°C or higher at all investigated pressures, giving a large melting interval of over 400°C. The subsolidus paragenesis consists of quartz/coesite, feldspar, garnet, kyanite, rutile, ±clinopyroxene ±apatite. Feldspar, rutile and apatite are rapidly melted out above the solidus, whereas garnet and kyanite are stable to high melt fractions (>70%). Clinopyroxene stability increases with increasing pressure, and quartz/coesite is the sole liquidus phase at all pressures. Feldspars are relatively Na-rich [K/(K + Na) = 0.4–0.5] at 3.0 GPa, but are nearly pure K-feldspar at 5.0 GPa. Clinopyroxenes are jadeite and Ca-eskolaite rich, with jadeite contents increasing with pressure. All supersolidus experiments produced alkaline dacitic melts with relatively constant SiO2 and Al2O3 contents. At 3.0 GPa, initial melting is controlled almost exclusively by feldspar and quartz, giving melts with K2O/Na2O ~1. At 4.0 and 5.0 GPa, low-fraction melting is controlled by jadeite-rich clinopyroxene and K-rich feldspar, which leads to compatible behaviour of Na and melts with K2O/Na2O ≫ 1. Our results indicate that sedimentary protoliths entrained in upwelling heterogeneous mantle domains may undergo melting at greater depths than mafic lithologies to produce ultrapotassic dacitic melts. Such melts are expected to react with and metasomatise the surrounding peridotite, which may subsequently undergo melting at shallower levels to produce compositionally distinct magma types. This scenario may account for many of the distinctive geochemical characteristics of EM-type ocean island magma suites. Moreover, unmelted or partially melted sedimentary rocks in the mantle may contribute to some seismic discontinuities that have been observed beneath intraplate and island-arc volcanic regions.  相似文献   

17.
Summary ?Post-magmatic garnets occur in volcanic breccias at the base of the Neapolitan Yellow Tuff (NYT) formation in the north-western area of the Phlegraean Fields. We report the results of a comprehensive study of these grandites. Garnet is found on the surfaces of tuffaceous blocks or inside their micropores, and is associated with sodalite, sanidine, marialite and amorphous silica. Garnet samples were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), powder and single-crystal X-ray diffraction (XRD) and infrared spectroscopy (IR). SEM observations on morphology showed typical dodecahedral and icositetrahedral habits. EPM analysis showed that they are close to grossular or andradite end members, with only moderate solid solution between them. X-ray study of single crystals showed cubic cell dimensions ao of 11.86 ? (grossular) and 12.04 ? (andradite). IR spectroscopy confirmed the presence of hydroxyls in coexisting garnet and sanidine, 0.06 wt% H2O (garnet) and 0.05–0.07 wt% H2O (sanidine), respectively. Well-crystallized sanidine of an earlier generation showed significantly higher water contents, in the range 0.13–0.23 wt% H2O. Type of occurrence and mineralogical features suggest a post-magmatic (pneumatolitic) genesis for these garnets. This is consistent with the physico-chemical processes linked to the eruptive dynamics of the breccias. Experimental studies of garnet synthesis at 550 °C and 2 kbar provide further support for this concept. Received January 16, 2002; accepted March 18, 2002  相似文献   

18.
Electron microprobe analyses sensitive to 20ppmw (2σ) were made for Na, P, K and Ti in garnet, pyroxenes and olivine from peridotite and eclogite xenoliths from African kimberlites and volcanic rocks in Tanzania. Average concentrations (ppmw) in peridotite (mostly garnet lherzolite) are: Na2O gt 340 ol 90 opx 1070 cpx 2.1 (wt.%); P2O5 gt 460 ol 130 opx 50 cpx 350; K2O gt <20 ol <20 opx 30 cpx 170; TiO2 gt 1470 ol 130 opx 480 cpx 1630. For eclogites and a cpx megacryst with gt inclusions: Na2O gt 610 cpx 4.3 (wt.%); P2O5 gt 530 cpx 300; K2O gt <20 cpx 370; TiO2 gt 1990 cpx 1980.In garnet, Na can be explained by coupled substitution with P and Ti, and there is no need to invoke six-coordinated silicon. The Na distribution between garnet and clinopyroxene correlates with the Fe/Mg distribution for both eclogites and peridotites, and for the peridotites correlates with estimates of pressure and temperature from pyroxene composition. When calibrated experimentally, the Na distribution may be a useful indicator of physical conditions at depths for which the Fe/Mg distribution is insensitive; furthermore the Na distribution may be less sensitive to oxidation state.  相似文献   

19.
To evaluate the role of garnet and amphibole fractionation at conditions relevant for the crystallization of magmas in the roots of island arcs, a series of experiments were performed on a synthetic andesite at conditions ranging from 0.8 to 1.2 GPa, 800–1,000°C and variable H2O contents. At water undersaturated conditions and fO2 established around QFM, garnet has a wide stability field. At 1.2 GPa garnet + amphibole are the high-temperature liquidus phases followed by plagioclase at lower temperature. Clinopyroxene reaches its maximal stability at H2O-contents ≤9 wt% at 950°C and is replaced by amphibole at lower temperature. The slopes of the plagioclase-in boundaries are moderately negative in space. At 0.8 GPa, garnet is stable at magmatic H2O contents exceeding 8 wt% and is replaced by spinel at decreasing dissolved H2O. The liquids formed by crystallization evolve through continuous silica increase from andesite to dacite and rhyolite for the 1.2 GPa series, but show substantial enrichment in FeO/MgO for the 0.8 GPa series related to the contrasting roles of garnet and amphibole in fractionating Fe–Mg in derivative liquids. Our experiments indicate that the stability of igneous garnet increases with increasing dissolved H2O in silicate liquids and is thus likely to affect trace element compositions of H2O-rich derivative arc volcanic rocks by fractionation. Garnet-controlled trace element ratios cannot be used as a proxy for ‘slab melting’, or dehydration melting in the deep arc. Garnet fractionation, either in the deep crust via formation of garnet gabbros, or in the upper mantle via formation of garnet pyroxenites remains an important alternative, despite the rare occurrence of magmatic garnet in volcanic rocks.  相似文献   

20.
The Jervois region of the Arunta Inlier, central Australia, contains para- and orthogneisses that underwent low-pressure amphibolite facies metamorphism (P = 200–300 MPa, T = 520–600 °C). Marble layers cut by metre-wide quartz + garnet ± epidote veins comprise calcite, quartz, epidote, clinopyroxene, grandite garnet, and locally wollastonite. The marbles also contain locally discordant decimetre-thick garnet and epidote skarn layers. The mineral assemblages imply that the rocks were infiltrated by water-rich fluids (XCO2 = 0.1–0.3) at ∼600 °C. The fluids were probably derived from the quartz-garnet vein systems that represent conduits for fluids exsolved from crystallizing pegmatites emplaced close to the metamorphic peak. At one locality, the marble has calcite (Cc) δ18O values of 9–18‰ and garnet (Gnt) δ18O values of 10–14‰. The δ18O(Gnt) values are only poorly correlated with δ18O(Cc), and the δ18O values of some garnet cores are higher than the rims. The isotopic disequilibrium indicates that garnet grew before the δ18O values of the rock were reset. The marbles contain  ≤15% garnet and, for water-rich fluids, garnet-forming reactions are predicted to propagate faster than O-isotopes are reset. The Sm-Nd and Pb-Pb ages of garnets imply that fluid flow occurred at 1750–1720 Ma. There are no significant age differences between garnet cores and rims, suggesting that fluid flow was relatively rapid. Texturally late epidote has δ18O values of 1.5–6.2‰ implying δ18O(H2O) values of 2–7‰. Waters with such low-δ18O values are probably at least partly meteoric in origin, and the epidote may be recording the late influx of meteoric water into a cooling hydrothermal system. Received: 29 April 1996 / Accepted: 12 March 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号