首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Vladimir Svetsov 《Icarus》2011,214(1):316-326
I have performed 3D numerical hydrodynamic simulations of impacts of stony projectiles on stony planar targets in a range of impact velocities from 1.25 to 60 km/s. The projectile and target masses ejected at speeds greater than some given values have been calculated. This provided a possibility to determine impact erosion of a target which undergoes bombardment with comparatively small bodies. The relative losses of target masses and masses of retained projectile material have been averaged over impact angles and approximated by analytical formulas as functions of impact and escape velocities. The balance between escaped material of a target and retained material of a projectile determines growth or reduction of a target mass. The target cratering erosion predominates over the projectile retention when the impacts have velocities of more than 3-5 times the escape velocity of a target. The results can be applied to collisions of planetary embryos with planetesimals, which have higher velocities than embryo-embryo impacts. Estimates for impact velocities 1-10 km/s show that while large embryos accrete planetesimals smaller embryos erode and can completely vanish or partly lose their silicate shells if they are differentiated. Application of calculated erosion efficiency to Mercury made it possible to test a hypothesis (Vityazev, A.V., Pechernikova, G.V., Safronov, V.S. [1988]. Formation of Mercury and removal of its silicate shell. In: Vilas, F., Chapman, C.R., Matthews, M.S. (Eds.), Mercury. Univ. Arizona Press., Tucson, pp. 667−669) that differentiated massive proto-Mercury has lost its mantle due to collisions with objects of moderate sizes. It turned out that in order for this to happen, relative collision velocities must exceed 25 km/s. As alternatives to the widely-known hypothesis of a giant impact on a massive proto-Mercury, other possibilities are considered, which do not require such high speeds. The first one is formation of a number of small-sized metal-rich embryos which lose their silicate shells due to cratering erosion. The second is that a small proto-Mercury was metallic and gained its mantle at the latest stage of its accumulation when it grew so large that the erosion became ineffective.  相似文献   

2.
T.M. Davison  G.S. Collins 《Icarus》2010,208(1):468-481
Collisions between planetesimals at speeds of several kilometres per second were common during the early evolution of our Solar System. However, the collateral effects of these collisions are not well understood. In this paper, we quantify the efficiency of heating during high-velocity collisions between planetesimals using hydrocode modelling. We conducted a series of simulations to test the effect on shock heating of the initial porosity and temperature of the planetesimals, the relative velocity of the collision and the relative size of the two colliding bodies. Our results show that while heating is minor in collisions between non-porous planetesimals at impact velocities below 10 km s−1, in agreement with previous work, much higher temperatures are reached in collisions between porous planetesimals. For example, collisions between nearly equal-sized, porous planetesimals can melt all, or nearly all, of the mass of the bodies at collision velocities below 7 km s−1. For collisions of small bodies into larger ones, such as those with an impactor-to-target mass ratio below 0.1, significant localised heating occurs in the target body. At impact velocities as low as 5 km s−1, the mass of melt will be nearly double the mass of the impactor, and the mass of material shock heated by 100 K will be nearly 10 times the mass of the impactor. We present a first-order estimate of the cumulative effects of impact heating on a porous planetesimal parent body by simulating the impact of a population of small bodies until a disruptive event occurs. Before disruption, impact heating is volumetrically minor and highly localised; in no case was more than about 3% of the parent body heated by more than 100 K. However, heating during the final disruptive collision can be significant; in about 10% of cases, almost all of the parent body is heated to 700 K (from an initial temperature of ∼300 K) and more than a tenth of the parent body mass is melted. Hence, energetic collisions between planetesimals could have had important effects on the thermal evolution of primitive materials in the early Solar System.  相似文献   

3.
Safronov's (1972) demonstration that relative velocities of planetesimals would be comparable to the dominant size bodies' escape velocities, combined with a plausible size distribution that has most mass in the largest bodies, yielded his evolution model with limited growth of the largest planetesimal with respect to its next largest neighbors. A numerical simulation of planetesimal accretion (Greenberget al., 1978) suggests that at least over one stage of collisional accretion, velocities were much lower than the escape velocity of the largest bodies, because the bulk of the mass still resided in km-scale bodies. The low velocities at this early stage may conceivably have permitted early runaway growth, which, in turn, would have kept the velocities low and permitted continued runaway growth of the largest bodies.Paper presented at the European Workshop on Planetary Sciences, organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

4.
We investigate the orbital evolution of 10(13)- to 10(25) -g planetesimals near 1 AU and in the asteroid belt (near 2.6 AU) prior to the stage of evolution when the mutual perturbations between the planetesimals become important. We include nebular gas drag and the effects of Jupiter and Saturn at their present masses and in their present orbits. Gas drag introduces a size-dependent phasing of the secular perturbations, which leads to a pronounced dip in encounter velocities (Venc) between bodies of similar mass. Plantesimals of identical mass have Venc approximately 1 and approximately 10 m s-1 (near 1 and 2.6 AU, respectively) while bodies differing by approximately 10 in mass have Venc approximately 10 and approximately 100 m s-1 (near 1 and 2.6 AU, respectively). Under these conditions, growth, rather than erosion, will occur only by collisions of bodies of nearly the same mass. There will be essentially no gravitational focusing between bodies less than 10(22) to 10(25) g, allowing growth of planetary embryos in the terrestrial planet region to proceed in a slower nonrunaway fashion. The environment in the asteroid belt will be even more forbidding and it is uncertain whether even the severely depleted present asteroid belt could form under these conditions. The perturbations of Jupiter and Saturn are quite sensitive to their semi-major axes and decrease when the planets' heliocentric distances are increased to allow for protoplanet migration. It is possible, though not clearly demonstrated, that this could produce a depleted asteroid belt but permit formation of a system of terrestrial planet embryos on a approximately 10(6)-year timescale, initially by nonrunaway growth and transitioning to runaway growth after approximately 10(5) years. The calculations reported here are valid under the condition that the relative velocities of the bodies are determined only by Jupiter and Saturn perturbations and by gas drag, with no mutual perturbations between planetesimals. If, while subject to these conditions, the bodies become large enough for their mutual perturbations to influence their velocity and size evolution significantly, the problem becomes much more complex. This problem is under investigation.  相似文献   

5.
Wetherill GW  Stewart GR 《Icarus》1993,106(1):190-209
An earlier investigation of the formation of approximately 10(26) g planetary embryos from much smaller planetesimals (G.W. Wetherill and G.R. Stewart 1989, Icarus 77, 350-357) has been extended to include the effects of collisional fragmentation, the low relative velocity regime in which the effects due to solar gravity are important, and independent perturbations of eccentricity and inclination. In agreement with this earlier work, it if found that at 1 AU runaway growth occurs on a approximately 10(-5)-year time scale as a consequence of equipartition of energy between large and small planetesimals. It is now seen that the runaway is initiated after approximately 10(4) years, when the relative velocities of the larger bodies temporarily fall into the low-velocity regime, lowering their inclinations and increasing their gravitational capture rates. After approximately 2 X 10(4) years, relative velocities between most bodies emerge from the low-velocity regime, and these higher velocities tend to inhibit further runaway growth. This rapid runaway growth is self-regulated, however, by these same higher velocities, causing fragmentation of the smaller bodies. The velocities of the collision fragments are reduced by gas drag, facilitating their capture by the growing runaway embryos. Variations in which different fragmentation models are used, or long-range forces between nonrunaway bodies are absent, give similar results. When fragmentation is not included, the time scale for growth increases to approximately 3 X 10(5) years as a result of loss of the self-regulating process described above.  相似文献   

6.
Numerical simulations of planet growth in the outer solar system shows thatgrwoth of Uranus and Neptune occurs in reasonably short time, well below the actual age of the system, without the need for ad hoc assumptions about excess mass or artificially low relative velocities among the icy planetesimals. Low velocities, which speed accretion, are a natural consequence of the non-power-law size distribution of planetesimals, just as in our earlier simulations of terrestial planet growth. Initial planetesimals of size ~ 100 km, predicted by formal expressions for gravitational instability in a thin disk of solid material, failed to produce sufficient debris in the size range 1 to 10 km to account for population of the Oort cloud with comet-sized bodies. However, our model of nonhomologous settling of grains to the midplane of the solar system shows that gravitational clumping did not wait until all solid material had settled to the midplane, as had been assumed in earlier models. Rather, the clumping occurred in successive portions of the material that reached the midplane, producing “initial” planetesimals probably of comet-like sizes. Models of subsequent collisional evolution show that such an initial size distribution, similar to known comets, would have been required in order to have an adequate comet-like size distribution available to feed the Oort cloud as the other planets reach full size. Comets are probably unaltered remnants of the initial population of planetesimals in the outer solar system, not fragments of larger bodies.  相似文献   

7.
8.
There are obtained upper limits for the relative velocity at infinity of accreting planetesimals for a nearly constant mass of the largest accreting planetesimal and also in the case of variable mass. We conclude, that while the larger planets cannot be brought to the stage of rotational instability by stochastic collisions, the asteroids could be brought. provided that the relative velocities in the asteroid belt were larger than about 2 km s–1.  相似文献   

9.
Abstract— Various hypotheses of the origin of asteroids and comets are briefly discussed. Interaction of planetesimals in the asteroid zone (AZ) with the gas, their perturbations by proto-Jupiter, and sweeping them out by more massive Jupiter zone bodies when they penetrated the AZ are considered. If the gas was turbulent, it could prevent a settling of dust particles to the equatorial plane of the disk and formation of dust condensations due to gravitational instability. Then particles grew by sticking upon collision. Gas moved radially due to turbulent viscosity and its dissipation. Small particles moved more-or-less together with the gas. As a result of gas drag, larger particles and bodies moved relative to the gas in the direction of increasing gas pressure. Gas would remove much of the solid material from the AZ if most bodies larger than a few km disintegrated by collisions into fragments smaller than a few tens of meters. Most of these fragments would then move into the Martian zone, and the small mass of Mars would have no explanation. Resonant perturbations of asteroids by Jupiter are discussed. In the model of a small mass disk they could scan through the asteroid belt due to changes in Jupiter's distance from the Sun that occurred when this planet accreted the gas and ejected the bodies from the solar system. Such a scanning considerably accelerated the removal of asteroids from the AZ. Massive Jupiter zone bodies with large orbital eccentricities that crossed the AZ were probably efficient at sweeping out bodies. Larger bodies increased the random velocities of the remaining asteroids at close encounters to the present values ~ 5 km/s. Restrictions on the runaway growth of giant planets, on the relative velocities of bodies and the disk surface density that follow from the consideration of the origin of the asteroid belt and the cometary cloud are considered.  相似文献   

10.
The mass distribution of protoplanets is studied by a Monte Carlo technique. It is assumed that the bodies coalesce on collision and that their self-gravitation is important. It is found that over most of the mass range a distribution of the formn(m)αm ?q develops, withq tending to ~1.8. However, there is an overabundance of large masses relative to the power law: in particular the simulations indicate the growth of a large nucleus which progressively dominates the growth process. It is also found that the axial inclinations of the planets are best explained if they grew out of a coagulating medium comprising planetesimals with random velocities ~5 km s?1 and masses up to 10?2 of the embryo masses. The inclinations of the giant planets are consistent with a floccule-type origin of these bodies.  相似文献   

11.
Abstract— The primordial asteroid belt contained at least several hundred and possibly as many as 10,000 bodies with diameters of 1000 km or larger. Following the formation of Jupiter, nebular gas drag combined with passage of such bodies through Jovian resonances produced high eccentricities (e = 0.3‐0.5), low inclinations (i < 0.5°), and, therefore, high velocities (3–10 km/s) for “resonant” bodies relative to both nebular gas and non‐resonant planetesimals. These high velocities would have produced shock waves in the nebular gas through two mechanisms. First, bow shocks would be produced by supersonic motion of resonant bodies relative to the nebula. Second, high‐velocity collisions of resonant bodies with non‐resonant bodies would have generated impact vapor plume shocks near the collision sites. Both types of shocks would be sufficient to melt chondrule precursors in the nebula, and both are consistent with isotopic evidence for a time delay of ?1‐1.5 Myr between the formation of CAIs and most chondrules. Here, initial simulations are first reported of impact shock wave generation in the nebula and of the local nebular volumes that would be processed by these shocks as a function of impactor size and relative velocity. Second, the approximate maximum chondrule mass production is estimated for both bow shocks and impact‐generated shocks assuming a simplified planetesimal population and a rate of inward migration into resonances consistent with previous simulations. Based on these initial first‐order calculations, impact‐generated shocks can explain only a small fraction of the minimum likely mass of chondrules in the primordial asteroid belt (?1024‐1025g). However, bow shocks are potentially a more efficient source of chondrule production and can explain up to 10–100 times the estimated minimum chondrule mass.  相似文献   

12.
C.W. Ormel  C.P. Dullemond 《Icarus》2010,210(1):507-538
When preplanetary bodies reach proportions of ∼1 km or larger in size, their accretion rate is enhanced due to gravitational focusing (GF). We have developed a new numerical model to calculate the collisional evolution of the gravitationally-enhanced growth stage. The numerical model is novel as it attempts to preserve the individual particle nature of the bodies (like N-body codes); yet it is statistical in nature since it must incorporate the very large number of planetesimals. We validate our approach against existing N-body and statistical codes. Using the numerical model, we explore the characteristics of the runaway growth and the oligarchic growth accretion phases starting from an initial population of single planetesimal radius R0. In models where the initial random velocity dispersion (as derived from their eccentricity) starts out below the escape speed of the planetesimal bodies, the system experiences runaway growth. We associate the initial runaway growth phase with increasing GF-factors for the largest body. We find that during the runaway growth phase the size distribution remains continuous but evolves into a power-law at the high-mass end, consistent with previous studies. Furthermore, we find that the largest body accretes from all mass bins; a simple two-component approximation is inapplicable during this stage. However, with growth the runaway body stirs up the random motions of the planetesimal population from which it is accreting. Ultimately, this feedback stops the fast growth and the system passes into oligarchy, where competitor bodies from neighboring zones catch up in terms of mass. We identify the peak of GF with the transition between the runaway growth and oligarchy accretion stages. Compared to previous estimates, we find that the system leaves the runaway growth phase at a somewhat larger radius, especially at the outer disk. Furthermore, we assess the relevance of small, single-size fragments on the growth process. In classical models, where the initial velocity dispersion of bodies is small, these do not play a critical role during the runaway growth; however, in models that are characterized by large initial relative velocities due to external stirring of their random motions, a situation can emerge where fragments dominate the accretion, which could lead to a very fast growth.  相似文献   

13.
We have made numerical experiments of the collisional and gravitational interaction of a planetesimal swarm in the early Solar System. In particular we study the dynamical evolution of an initial population of kilometer-size planetesimals subject to collisions (accretion, rebound, cratering, and catastrophic fragmentation). This study is based on a Monte-Carlo statistical method and provides the mass and velocity distributions of the planetesimal swarm as a function of time as well as their distribution in heliocentric distance. Several experiments have been performed and three of them are presented here. They simulate the accretional growth of numerous planetesimals in the absence (or presence) of gaseous drag, with (or without) one larger embryo among them, and with (or without) a size gradient. The results show that (i) for a population of planetesimals submitted to a negative gradient in size as the heliocentric distance increases, the outer planetesimals spiral toward the Sun faster than inner ones, leading after some time to an accumulation of bodies inside the cloud which allows the formation of an embryo; (ii) the growth of one embryo among a population of planetesimals is accelerated by the presence of gas and is warranted as long as its feeding zone is fed by the inward flow of planetesimals due to gas drag. These results offer some complementary new insights in the understanding of the accretional formation of 4–5 terrestrial planets instead of the numerous Moon-size planets generally found in numerical experiments.  相似文献   

14.
The behavior of solid particles in a low-mass solar nebula during settling to the central plane and the formation of planetesimals is examined. Gravitational instability in a dust layer and collisional accretion are considered as possible mechanisms of planetesimal formation. Non-Keplerian rotation of the nebula results in shear between the gas and a dust layer. This shear produces turbulence within the layer which inhibits gravitational instability, unless the mean particle size exceeds a critical value, ~1 cm at 1 AU. The size requirement is less stringent at larger heliocentric distances, suggesting a possible difference in planetesimal formation mechanisms between the inner and outer nebula. Coagulation of grains during settling is expected in the solar nebula environment. Van der Waals forces appear adequate to produce centimeter-sized aggregates. Growth is primarily due to sweepup of small particles by larger ones due to size-dependent settling velocities. A numerical model for computing simultaneous coagulation and settling is described. Relative velocities are determined by gas drag and the non-Keplerian rotation of the nebula. The settling is very nonhomologous. Most of the solid matter reaches the central plane as centimeter-sized aggregates in a few times 103 revolutions, but some remains suspended in the form of fine dust. Drag-induced relative velocities result in collisions. The growth of bodies in the central plane is initially rapid. After sizes reach ~103 cm, relative velocities decrease and the growth rate declines. Gas drag rapidly damps the out-of-plane motions of these intermediate-sized bodies. They settle into a thin layer which is subject to gravitational instability. Kilometer-sized planetesimals are formed by this composite process.  相似文献   

15.
Numerous studies in the past few years have analyzed possible effects of planetary migration on the small bodies of the Solar System (mainly asteroids and KBOs), with the double aim of explaining certain dynamical structures in these systems, as well as placing limits on the magnitude of the radial migration of the planets. Here we undertake a similar aim, only this time concentrating on the dynamical stability of planetary satellites in a migration scenario. However, different from previous works, the strongest perturbations on satellite systems are not due to the secular variation of the semimajor axes of the planets, but from the planetesimals themselves. These perturbations result from close approaches between the planetesimals and satellites.We present results of several numerical simulations of the dynamical evolution of real and fictitious satellite systems around the outer planets, under the effects of multiple passages of a population of planetesimals representing the large-body component of a residual rocky disk. Assuming that this component dominated the total mass of the disk, our results show that the present systems of satellites of Uranus and Neptune do not seem to be compatible with a planetary migration larger than even one quarter that suggested by previous studies, unless these bodies were originated during the late stage of evaporation of the planetesimal disk. For larger variations of the semimajor axes of the planets, most of the satellites would either be ejected from the system or suffer mutual collisions due to excitation in their eccentricities. For the systems of Jupiter and Saturn, these perturbations are not so severe, and even large migrations do not introduce large instabilities.Nevertheless, even a small number of 1000-km planetesimals in the region may introduce significant excitation in the eccentricities and inclinations of satellites. Adequate values of this component may help explain the present dynamical distribution of distant satellites, including the highly peculiar orbit of Nereid.  相似文献   

16.
Experiments in vacuum (approx. 0.5 to 1 mbar) and in air quantify mechanics of collisions, rebound, and fragmentation at low velocities (1–50 m/sec), under the conditions usually postulated for the preplanetary environment in the primitive solar nebula. Such collisions have been little studied experimentally. Contrary to widespread assumptions, accretionary growth of the largest meteoroid- and asteroid-sized bodies in a given swarm results spontaneously from the simple mechanics of these collisions, without other ad hoc sticking mechanisms. The smaller bodies in the swarm are less likely to grow. Granular surfaces form, either by gravitational collapse of dust swarms or by rapid formation of regolith surfaces on solid planetesimals; these surfaces strongly promote further growth by retarding rebound. Growth of large bodies increases modal collision velocities, causing fragmentation of smaller bodies and eventual production of interstellar dust as a by-product planetesimal interactions.  相似文献   

17.
We explore the cross section of giant planet envelopes at capturing planetesimals of different sizes. For this purpose we employ two sets of realistic planetary envelope models (computed assuming for the protoplanetary nebula masses of 10 and 5 times the mass of the minimum mass solar nebula), account for drag and ablation effects and study the trajectories along which planetesimals move. The core accretion of these models has been computed in the oligarchic growth regime [Fortier, A., Benvenuto, O.G., Brunini, A., 2007. Astron. Astrophys. 473, 311-322], which has also been considered for the velocities of the incoming planetesimals. This regime predicts velocities larger that those used in previous studies of this problem. As the rate of ablation is dependent on the third power of velocity, ablation is more important in the oligarchic growth regime. We compute energy and mass deposition, fractional ablated masses and the total cross section of planets for a wide range of values of the critical parameter of ablation. In computing the total cross section of the planet we have included the contributions due to mass deposited by planetesimals moving along unbound orbits. Our results indicate that, for the case of small planetary cores and low velocities for the incoming planetesimals, ablation has a negligible impact on the capture cross section in agreement with the results presented in Inaba and Ikoma [Inaba, S., Ikoma, M., 2003. Astron. Astrophys. 410, 711-723]. However for the case of larger cores and high velocities of the incoming planetesimals as predicted by the oligarchic growth regime, we find that ablation is important in determining the planetary cross section, being several times larger than the value corresponding ignoring ablation. This is so regardless of the size of the incoming planetesimals.  相似文献   

18.
A mechanism of accumulation of grains in the primordial solar nebula is described. This process produces porous, low density compressible aggregates. Compaction of the aggregates in a collision between them dissipates the kinetic energy of the collision and can result in efficient growth. A simple analysis of such collisions is developed and applied over a range of aggregate sizes and relative velocities. The results indicate that large planetesimals could grow through collisions rather than fragment if the conditions are favorable. Our modelling suggests that primordial asteroids and comets on the order of a kilometer in size will have low densities and irregular shapes.Paper presented at the Conference on Planetary Systems: Formation, Evolution, and Detection held 7–10 December, 1992 at CalTech, Pasadena, California, U.S.A.  相似文献   

19.
《Icarus》1998,132(1):113-124
We present results of two-dimensional gravitationalN-body simulations of the late stage of planetary formation. This stage is characterized by the direct accretion of hundreds of lunar-sized planetesimals into planetary bodies. Our simulation code is based on the Hermite Individual Timestep integration algorithm, and gravitational interactions among all bodies are included throughout the simulations. We compare our simulation with earlier works that do not include all interactions, and we find very good agreement. A previously published collisional fragmentation model is included in our simulation to study the effects of the production of fragments on the subsequent evolution of the larger planetary bodies. It is found that for realistic two-body collisions that, according to this model, both bodies will suffer fragmentation, and that the outcome of the collision will be a relatively large core containing most of the mass and a few small fragments. We present the results of simulations that include this simple fragmentation model. They indicate that the presence of small fragments have only a small effect on the growth or orbital evolution of the large planet-sized bodies.  相似文献   

20.
We obtain the viscous stirring and dynamical friction rates of planetesimals with a Rayleigh distribution of eccentricities and inclinations, using three-body orbital integration and the procedure described by Ohtsuki (1999, Icarus137, 152), who evaluated these rates for ring particles. We find that these rates based on orbital integrations agree quite well with the analytic results of Stewart and Ida (2000, Icarus 143, 28) in high-velocity cases. In low-velocity cases where Kepler shear dominates the relative velocity, however, the three-body calculations show significant deviation from the formulas of Stewart and Ida, who did not investigate the rates for low velocities in detail but just presented a simple interpolation formula between their high-velocity formula and the numerical results for circular orbits. We calculate evolution of root mean square eccentricities and inclinations using the above stirring rates based on orbital integrations, and find excellent agreement with N-body simulations for both one- and two-component systems, even in the low-velocity cases. We derive semi-analytic formulas for the stirring and dynamical friction rates based on our numerical results, and confirm that they reproduce the results of N-body simulations with sufficient accuracy. Using these formulas, we calculate equilibrium velocities of planetesimals with given size distributions. At a stage before the onset of runaway growth of large bodies, the velocity distribution calculated by our new formulas are found to agree quite well with those obtained by using the formulas of Stewart and Ida or Wetherill and Stewart (1993, Icarus106, 190). However, at later stages, we find that the inclinations of small collisional fragments calculated by our new formulas can be much smaller than those calculated by the previously obtained formulas, so that they are more easily accreted by larger bodies in our case. The results essentially support the previous results such as runaway growth of protoplanets, but they could enhance their growth rate by 10-30% after early runaway growth, where those fragments with low random velocities can significantly contribute to rapid growth of runaway bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号