首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Sedimentology》2018,65(4):993-1042
Reconstruction of the palaeoenvironmental context of Martian sedimentary rocks is central to studies of ancient Martian habitability and regional palaeoclimate history. This paper reports the analysis of a distinct aeolian deposit preserved in Gale crater, Mars, and evaluates its palaeomorphology, the processes responsible for its deposition, and its implications for Gale crater geological history and regional palaeoclimate. Whilst exploring the sedimentary succession cropping out on the northern flank of Aeolis Mons, Gale crater, the Mars Science Laboratory rover Curiosity encountered a decametre‐thick sandstone succession, named the Stimson formation, unconformably overlying lacustrine deposits of the Murray formation. The sandstone contains sand grains characterized by high roundness and sphericity, and cross‐bedding on the order of 1 m in thickness, separated by sub‐horizontal bounding surfaces traceable for tens of metres across outcrops. The cross‐beds are composed of uniform thickness cross‐laminations interpreted as wind‐ripple strata. Cross‐sets are separated by sub‐horizontal bounding surfaces traceable for tens of metres across outcrops that are interpreted as dune migration surfaces. Grain characteristics and presence of wind‐ripple strata indicate deposition of the Stimson formation by aeolian processes. The absence of features characteristic of damp or wet aeolian sediment accumulation indicate deposition in a dry aeolian system. Reconstruction of the palaeogeomorphology suggests that the Stimson dune field was composed largely of simple sinuous crescentic dunes with a height of ca 10 m, and wavelengths of ca 150 m, with local development of complex dunes. Analysis of cross‐strata dip azimuths indicates that the general dune migration direction and hence net sediment transport was towards the north‐east. The juxtaposition of a dry aeolian system unconformably above the lacustrine Murray formation represents starkly contrasting palaeoenvironmental and palaeoclimatic conditions. Stratigraphic relationships indicate that this transition records a significant break in time, with the Stimson formation being deposited after the Murray formation and stratigraphically higher Mount Sharp group rocks had been buried, lithified and subsequently eroded.  相似文献   

3.
《Quaternary Science Reviews》2004,23(16-17):1733-1756
This study shows that successions of Pleistocene carbonate aeolian deposits can be placed successfully in a geochronologic framework using magnetostratigraphic and susceptibility stratigraphic analysis supplemented by luminescence dating, studies of wave-cut platforms, and biostratigraphic evidence. The investigated aeolian system covers a significant part of southernmost Mallorca and is exposed in impressive coastal cliff sections.At the study site at Els Bancals the aeolian system has a maximum thickness of 16 m and is composed of alternating dark red colluvial deposits and greyish red aeolian dune and sand-sheet deposits forming seven cyclostratigraphic units. Each cyclostratigraphic unit represents landscape stabilisation, colluviation, and soil formation followed by dunefield development, when marine carbonate sand was transported far inland by westerly or north-westerly winds. The aeolian system is located on top of a wave-cut marine platform 12–14 m a.s.l. This platform probably formed during a sea-level highstand in Marine Isotope Stage (MIS) 11 (427–364 ka), and renewed marine activity probably later in MIS 11 is indicated by the formation of beach deposits.Two sections at Els Bancals were sampled for a paleomagnetic study; additional samples were taken to detect variations in magnetic susceptibility (MS). The characteristic remanent magnetisation has been recovered for the most part of the succession in spite of diagenetic overprinting. There is evidence for two probably three reversal polarity excursions, possible connected to the Levantine, CR1 and CR0/Biwa III episodes. If this correlation is correct, the sampled succession represents a time interval in the Middle Pleistocene between ca 410 and ca 260 ka. This age estimate is supported by the MS study and by luminescence dates of 333±70 ka (aeolianite from lower part of the succession) and 275±23 ka (aeolianite from the top of the succession).The nature of the succession suggests deposition during alternating warm and moist (colluvial deposition; soil formation) and cold, dry and windy conditions (dunefield formation). The susceptibility signal can be correlated with the insolation signal at 65°N suggesting that environmental variation on Mallorca was linked to orbitally forced climate change, and it seems that aeolian activity and dunefield formation were linked to glacial or stadial periods.  相似文献   

4.
Sand dunes are common along the sea coasts of Lithuania and in some regions of the mainland part of the country. Until recently, the age of the aeolian deposits was only approximate because of the lack of radiocarsbon-dating of soils buried in dune deposits. A relatively new alternative method to direct dating of organic-free deposits is infra-red optically stimulated luminescence (IR-OSL). Using this method, we investigated the sedimentary history of some Lateglacial and Holocene depositional sites of Lithuanian dunes. The samples for IR-OSL dating have been taken from boreholes (Mančiagirè, Smalininkai, Žalioji Giria) and outcrops (Mančiagire and Ventes Ragas) in different dune massifs. The results indicate that the aeolian sedimentation in Lithuania started during the Younger Dryas. The termination of the aeolian processes in the continental part of Lithuania is correlated with the end of the Atlantic or the beginning of the Subboreal period; this can be explained by significant climatic changes during the Atlantic period. There were several periods of high aeolian activity during the Holocene, but these are asynchronous in different dune massifs and variations in the sedimentation rate occurred both vertically over the section and spatially across the massif.  相似文献   

5.
Outcrops and cored/counter‐flushed boreholes in the coastal area between Espinho and Aveiro (north‐west Portugal) were investigated to reconstruct the changing patterns of sedimentation during the Late Pleistocene–Holocene. To obtain a common comparison basis, the grain‐size data from outcrop and borehole samples were analysed. The outcrops and the cored parts of the boreholes were dated by radiocarbon and optically stimulated luminescence. The results show that, on top of pebble‐rich beds of fluvial origin, a wet aeolian dune and interdune environment was active during the later part of the Pleistocene, turning to dry aeolian at the transition to the Holocene. The data indicate also that aeolian accumulation was controlled by vegetation changes (climate) and groundwater table fluctuations. During the Holocene, a podzol formed on the Pleistocene dunes and extensive vegetation precluded major aeolian accumulations. Remobilization of sand started again because of human deforestation and – last but not least – the Little Ice Age.  相似文献   

6.
Fluvial-aeolian interactions: Part I, modern systems   总被引:4,自引:0,他引:4  
R. P. LANGFORD 《Sedimentology》1989,36(6):1023-1035
Two modern fluvial-aeolian depositional systems (Great Sand Dunes National Monument, Colorado and the Mojave River Wash, California) are remarkably similar in spite of different climates, sizes, fluvial sediment textures, and relative directions of aeolian and fluvial transport. Dune growth and migration, and deflation of blowouts create 8–10 m of local relief in unflooded aeolian landscapes. There are six prominent fluvial-aeolian interactions. (1) Fluvial flow extends into the aeolian system until it is dammed by aeolian landforms; (2) interdune areas (overbank-interdunes) upstream of aeolian dams, and alongside channels are flooded; (3) water erodes dunes alongside channels and interdunes; (4) flood waters deposit sediment in interdune areas; (5) fluvially derived groundwater floods interdunes (interdune-playas); (6) wind erodes fluvial sediment and redeposits it in the aeolian system. Unique and characteristic sediments are deposited in overbank-interdunes and in interdune-playas, reflecting alternate fluvial and aeolian processes and rapidly changing flow and salinity conditions. These fluvial-aeolian interdune deposits are characterized by irregular, concave-up bases and flat upper surfaces containing mudcracks or evaporite cement. Characteristic low-relief surfaces form in aeolian systems as an effect of flooding. Fluvial deposits are resistant to aeolian deflation. Aeolian sand is preserved when flood sediments are deposited around the bases of the dunes. Thus repetitive fluvial and aeolian aggradation tends to be ‘stepwise’ as interdune floors are suddenly raised during floods. The effects of flooding should be easy to recognize in ancient aeolianites, even beyond the area covered with overbank muds.  相似文献   

7.
Data from a moderate energy, meso-tidal beach on the east side of Delaware Bay, New Jersey, USA, revealed the significance of both beach width as a source for aeolian transport and the effect of tidal rise on source width. Wind speeds averaged over 17·1 min, recorded 6 m above the crest of a 0·5 m high dune, ranged from 11·6 to 12·7 m s?1 during the experiment. The highest observed rate of transport on the beach was 0·0085 kg m?1 s?1, monitored at rising low tide when the average wind speed was 11·6 m s?1 across 0·35 mm diameter surface sediments. The wind direction was oblique to the shoreline, creating a source width of 34 m. The reduction in the width of the beach as a source for aeolian transport during rising tide was approximately arithmetic, whereas the reduction in volume of sediment trapped was exponential. Aeolian transport effectively ceased when source width was less than 8 m. Wind conditions, moisture content of the surface sediments and presence of binding salts did not appear to vary dramatically, and no coarse grained lag deposit formed on the surface of the beach. The decrease in rate of sediment trapped through time in the tidal cycle is attributed to differences in source width. Sediment deposited in the litter behind the active beach by strong winds during the rising tide was eroded during the high water period by the high waves and storm surge generated by these winds, and net losses of sediment were observed despite initial aeolian accretion.  相似文献   

8.
Ephemeral fluvial systems are commonly associated with arid to semi-arid climates. Although their complex sedimentology and depositional settings have been described in much detail, depositional models depicting detailed lateral and vertical relationships, and interactions with coeval depositional environments, are lacking compared to well-recognized meandering and braided fluvial systems. This study critically evaluates the applicability of current models for ephemeral fluvial systems to an ancient arid fluvial example of the Lower Jurassic Kayenta Formation of the Colorado Plateau, USA. The study employs detailed sedimentary logging, palaeocurrent analysis and photogrammetric panels across the regional extent of the Kayenta. A generic model that accounts for the detailed sedimentology of a sandy arid ephemeral fluvial system (drawing upon both ancient and geomorphological studies) is developed, along with analysis of the spatial and temporal interactions with the aeolian setting. Results show that the ephemeral system is dominated by laterally and vertically amalgamated, poorly channelized to sheet-like elements, with abundant upper flow regime flat beds and high sediment load structures formed between periods of lower flow regime conditions. Through interaction with a coeval aeolian system, most of the fluvial deposits are dominated by sand-grade sediment, unlike many modern ephemeral fluvial systems that contain a high proportion of conglomeratic and/or finer grained mudstone and siltstone deposits. During dominantly fluvial deposition, high width to thickness ratios are observed for channelized and sheet-like elements. However, with increasing aridity, the aeolian environment becomes dominant and fluvial deposition is restricted to interdune corridors, resulting in lower width to thickness ratio channels dominated by flash-flood and debris-flow facies. The data presented here, coupled with modern examples of ephemeral systems and flood regimes, suggest that ephemeral flow produces and preserves distinctive sedimentological traits that can not only be recognized in outcrops, but also within core.  相似文献   

9.
The existence of a mid‐Cretaceous erg system along the western Tethyan margin (Iberian Basin, Spain) was recently demonstrated based on the occurrence of wind‐blown desert sands in coeval shallow marine deposits. Here, the first direct evidence of this mid‐Cretaceous erg in Europe is presented and the palaeoclimate and palaeoceanographic implications are discussed. The aeolian sand sea extended over an area of 4600 km2. Compound crescentic dunes, linear draa and complex aeolian dunes, sand sheets, wet, dry and evaporitic interdunes, sabkha deposits and coeval extradune lagoonal deposits form the main architectural elements of this desert system that was located in a sub‐tropical arid belt along the western Tethyan margin. Sub‐critically climbing translatent strata, grain flow and grain fall deposits, pin‐stripe lamination, lee side dune wind ripples, soft‐sediment deformations, vertebrate tracks, biogenic traces, tubes and wood fragments are some of the small‐scale structures and components observed in the aeolian dune sandstones. At the boundary between the aeolian sand sea and the marine realm, intertonguing of aeolian deposits and marine facies occurs. Massive sandstone units were laid down by mass flow events that reworked aeolian dune sands during flooding events. The cyclic occurrence of soft sediment deformation is ascribed to intermittent (marine) flooding of aeolian dunes and associated rise in the water table. The aeolian erg system developed in an active extensional tectonic setting that favoured its preservation. Because of the close proximity of the marine realm, the water table was high and contributed to the preservation of the aeolian facies. A sand‐drift surface marks the onset of aeolian dune construction and accumulation, whereby aeolian deposits cover an earlier succession of coastal coal deposits formed in a more humid period. A prominent aeolian super‐surface forms an angular unconformity that divides the aeolian succession into two erg sequences. This super‐surface formed in response to a major tectonic reactivation in the basin, and also marks the change in style of aeolian sedimentation from compound climbing crescentic dunes to aeolian draas. The location of the mid‐Cretaceous palaeoerg fits well to both the global distribution of other known Cretaceous erg systems and with current palaeoclimate data that suggest a global cooling period and a sea‐level lowstand during early mid‐Cretaceous times. The occurrence of a sub‐tropical coastal erg in the mid‐Cretaceous of Spain correlates with the exposure of carbonate platforms on the Arabian platform during much of the Late Aptian to Middle Albian, and is related to this eustatic sea‐level lowstand.  相似文献   

10.
Aeolian sand sheets, which are characterized by low relief surfaces that lack dunes, are common in arid and semi‐arid climatic settings. The surface of an aeolian sand sheet can either be stable and subject to pedogenetic effects, or unstable such that it is affected by deflation or sedimentation. The Marília Formation (Late Cretaceous) may be interpreted as an ancient aeolian sand sheet area, where alternating phases of stability and instability of the accumulation surface have been recorded. Detailed field studies were carried out in several sections of the Marília Formation, where cyclic alternations of palaeosols and aeolian deposits were evident, using palaeopedological and facies analysis methods, supported in the laboratory by the analysis of rock samples, cut and polished in slabs, thin sections, scanning electron microscope images and X‐ray diffraction data from the clay minerals. The deposits comprise three lithofacies that, in order of abundance, are characterized by: (i) translatent wind‐ripple strata; (ii) flood deposits; and (iii) ephemeral river channel deposits. Palaeosols constitute, on average, 65% of the vertical succession. Three types of palaeosols (pedotypes) are recognized: (i) Aridisols; (ii) Entisols; and (iii) Vertisols. Erosional surfaces due to aeolian deflation divide the top of the palaeosol profiles from the overlying aeolian deposits. The palaeoenvironmental interpretation of the deposits and the palaeosols allows the depositional system of the Marília Formation to be defined as a flat area, dominated by aeolian sedimentation, with subordinate ephemeral river sedimentation, and characterized by a dry climatic setting with occasional rainfall. The climate is the main forcing factor controlling the alternation between episodes of active sedimentation and periods of palaeosol development. A climate‐controlled model is proposed in which: (i) the palaeosols are indicative of a stable surface that is developed during the more humid climatic phases; and (ii) the erosional surfaces and the overlying aeolian sediments attest to periods of deflation and subsequent sedimentation, thereby increasing the availability of sediment during the drier climatic phases. The ephemeral fluvial deposits mark the more humid climatic conditions and contribute to the lagged sediment influx caused during the drier periods by the erosion of previously stored sediment.  相似文献   

11.
Aggradation and fluvial incision controlled by downstream base-level changes at timescales of 10 to 500 kyr is incorporated in classic sequence stratigraphic models. However, upstream climate control on sediment supply and discharge variability causes fluvial incision and aggradation as well. Orbital forcing often regulates climate change at 10 to 500 kyr timescales while tectonic processes such as flexural (un)loading exert a dominant control at timescales longer than 500 kyr. It remains challenging to attribute fluvial incision and aggradation to upstream or downstream processes or disentangle allogenic from autogenic forcing, because time control is mostly limited in fluvial successions. The Palaeocene outcrops of the fluvial Lebo Shale Member in north-eastern Montana (Williston Basin, USA) constitute an exception. This study uses a distinctive tephra layer and two geomagnetic polarity reversals to create a 15 km long chronostratigraphic framework based on the correlation of twelve sections. Three aggradation–incision sequences are identified with durations of approximately 400 kyr, suggesting a relation with long-eccentricity. This age control further reveals that incision occurred during the approach of – or during – a 405 kyr long-eccentricity minimum. A long-term relaxation of the hydrological cycle related to such an orbital phasing potentially exerts an upstream climate control on river incision. Upstream, an expanding vegetation cover is expected because of an increasingly constant moisture supply to source areas. Entrapping by vegetation led to a significantly reduced sediment supply relative to discharge, especially at times of low evapotranspiration. Hence, high discharges resulted in incision. This study assesses the long-eccentricity regulated climate control on fluvial aggradation and incision in a new aggradation–incision sequence model.  相似文献   

12.
Sediment-hosted uranium ores at Henkries in northwest South Africa occur in fine-grained sands, carbonaceous muds and diatomaceous earth within late Pleistocene lake deposits. The lakes are linked by short fluvial channel reaches and these aqueous beds are encompassed in predominant aeolian dune deposits. The late Pleistocene fluvial-lacustrine-aeolian succession is succeeded by a Holocene dune cover. Textural characterisation of lacustrine, fluvial and aeolian sands was based on volume percentages observed in sediment settling tubes. Vortex action during Holocene dune migration contaminated these aeolian cover sands with small amounts of substrate material, whose presence could be detected in settling tube patterns of surface aeolian sediment samples. It was thus possible to map buried lacustrine ore bodies, which were shown, by a successful drilling programme, to be displaced downwind. Received: 28 August 1996 / Accepted: 3 September 1996  相似文献   

13.
Beach fetch distance and aeolian sediment transport   总被引:3,自引:0,他引:3  
Jackson  & Cooper 《Sedimentology》1999,46(3):517-522
An experiment was conducted to examine the influence of fetch distance on aeolian sediment transport on a natural sand beach at Benone Strand, County Londonderry, Northern Ireland. The site consisted of a wide dissipative beach, approximately 150 m wide at low tide and 80 m wide during high tide. Surface moisture levels (and hence dry fetch distance) were dictated by both local groundwater, from a stream outlet across the beach, as well as local tidal levels. An abundant dry sediment supply was available during the experiment. High-resolution (1 Hz) measurements were made of wind speed and direction along with sediment flux. Wind velocity ranged from 2·1 to 8·1 m s–1 during the study. Second-order polynomial sand transport equations were derived from the wind speed and trap results with r 2 values of better than 0·93 for all data. When the data were sorted into velocity bins of 1 m s–1, there was no discernible relationship between fetch distance and sand transport, with a measured fetch distance range of 10–58 m available during the experiment. Results show that fetch distance is unimportant when an adequate sand supply is available. However, it is suggested that fetch may restrict the development of steady-state transport under sediment-limited conditions. Sediment availability is thus identified as a key variable in aeolian transport studies on natural beaches.  相似文献   

14.
Aeolian sand sea accumulations can serve as valuable archives of climate change in continental environments. The Wahiba Sand Sea is situated at the northern margin of the area presently affected by Indian Summer Monsoon Circulation and it records environmental changes associated with this major climatic boundary over the last 160 000 years. The internal stratigraphy and evolution of the sand sea is investigated using a combination of outcrop, borehole, seismic and luminescence data. Proximity to the Indian Ocean means that the sand sea succession shows the influence of sea level changes on the sedimentary architecture and composition of the dune deposits. During the last two glacial periods, low global sea level was associated with a high input of bioclastic grains, reflecting the significance of subaerially exposed shelf areas as one of the main sources of aeolian sediment. The onset of aeolian sediment transport and deposition was related to the breakdown of stabilizing vegetation during arid periods that equate with sea level lowstands. The preservation of aeolian sediments by the formation of supersurfaces and associated palaeosoils took place during times of increased wetness and elevated groundwater tables. This interplay of constructive and destructive periods greatly influenced the sedimentary architecture. Oscillations of wet and dry periods between 160 000 and 130 000 years and 120 000–105 000 years ago are attributed to the evolution of a wet aeolian system. Younger periods of aeolian deposition around and after the last glacial maximum were characterized by dry aeolian conditions. No soil horizons developed during these times.  相似文献   

15.
Aeolian dune fields characterized by partly vegetated bedforms undergoing active construction and with interdune depressions that lie at or close to the water table are widespread on Skei?arársandur, Southern Iceland. The largest aeolian dune complex on the sandur covers an area of 80 km2 and is characterized by four distinct landform types: (i) spatially isolated aeolian dunes; (ii) extensive areas of damp and wet (flooded) interdune flat with small fluvial channels; (iii) small aeolian dune fields composed of assemblages of bedforms with simple morphologies and small, predominantly damp, interdune corridors; and (iv) larger aeolian dune fields composed of assemblages of complex bedforms floored by older aeolian dune deposits that are themselves raised above the level of the surrounding wet sandur plain. The morphology of each of these landform areas reflects a range of styles of interaction between aeolian dune, interdune and fluvial processes that operate coevally on the sandur surface. The geometry, scale, orientation and facies composition of sets of strata in the cores of the aeolian dunes, and their relationship to adjoining interdune strata, have been analysed to explain the temporal behaviour of the dunes in terms of their mode of initiation, construction, pattern of migration, style of accumulation and nature of preservation. Seasonal and longer‐term flooding‐induced changes in water table level have caused episodic expansion and contraction of the wet interdune ponds. Most of the dunes are currently undergoing active construction and migration and, although sediment availability is limited because of the high water table, substantial aeolian transport must occur, especially during winter months when the surface of the wet interdune ponds is frozen and sand can be blown across the sandur without being trapped by surface moisture. Bedforms within the larger dune fields have grown to a size whereby formerly damp interdune flats have been reduced to dry enclosed depressions and dry aeolian system accumulation via bedform climb is ongoing. Despite regional uplift of the proximal sandur surface in response to glacial retreat and unloading over the past century, sediment compaction‐induced subsidence of the distal sandur is progressively placing aeolian deposits below the water table and is enabling the accumulation of wet aeolian systems and increasing the likelihood of their long‐term preservation. Wet, dry and stabilizing aeolian system types all co‐exist on Skei?arársandur and the dunes are variously undergoing coeval construction, accumulation, bypass, stabilization and destruction as a result of interactions between localized factors.  相似文献   

16.
The Upper Jurassic Guará Formation comprises an 80–200 m thick continental succession exposed in the western portion of the Rio Grande do Sul State (Brazil). It comprises four distinct facies associations: (i) simple to locally composite crescentic aeolian dune sets, (ii) aeolian sand sheets, (iii) distal floodflows, and (iv) fluvial channels. The vertical stacking of the facies associations defines several 5–14 m thick wetting-upward cycles. Each cycle starts with aeolian dune sets followed by aeolian sand sheets deposits and culminating in either fluvial channels or distal flood strata. Within some cycles, aeolian sand sheets are absent and fluvial deposits rest directly above aeolian dune facies. The transitions from one facies association to another are abrupt and marked by erosive surfaces that delineate distinct episodes of sediment accumulation. The origin of both the wetting-upward cycles and the erosive surfaces was controlled by the ground-water table level, dry sand availability and aeolian and fluvial sediment transport capacity variations, related to climatic fluctuations between relatively arid and humid conditions. Preservation of the fluvial–aeolian deposits reflects an overall relative water table rise driven by subsidence.  相似文献   

17.
The sediment state of aeolian dune fields and sand seas at a basinal scale is defined by the separate components of sediment supply, sediment availability and the transport capacity of the wind. The sediment supply for aeolian systems is the sediment that contemporaneously or at some later point serves as the source material for the aeolian system. Numerous factors impact the susceptibility of grains on a surface to transport, but these are cumulatively manifested by the actual transport rate, which serves as a proxy for sediment availability. Transport capacity is the potential sediment transport rate of the wind. Because the three aspects of sediment state can be given as a volumetric rate, they are directly comparable. Plotted simultaneously against time, the generated curves define nine possible classes of sediment state. Sediment supply that is stored occurs because it is transport or availability limited, or generated at a rate greater than the potential or actual transport rates respectively. Contemporaneous or lagged influx to an aeolian system may be limited by sediment availability, but cannot exceed the transport capacity of the wind. For the Kelso dune field in the Mojave Desert of California, a variety of stratigraphic and geomorphic evidence is used to approximate the sediment state of the system. The sediment supply was generated during the latest Pleistocene and earliest Holocene during humid periods of enhanced discharge by the Mojave River to form the Lake Mojave fan delta or terminal fan, and has been calculated over time from the sedimentation rate and the frequency of floods. Estimation of transport capacity over time was based upon modern wind data, with an allowance for greater winds during the Pleistocene based upon climatic models. Sediment availability was approximated by calculation of a modern dune mobility index, with variation over time based upon climatic inferences. While quantifying the Kelso or any natural system is subject to numerous uncertainties, the sediment state approach reflects the temporal and spatial disjointed nature of accumulations at Kelso, as well as illuminating questions for future research.  相似文献   

18.
Aeolian sand and dust in polar regions are transported offshore over sea ice and released to the ocean during summer melt. This process has long been considered an important contributor to polar sea floor sedimentation and as a source of bioavailable iron that triggers vast phytoplankton blooms. Reported here are aeolian sediment dispersal patterns and accumulation rates varying between 0·2 g m?2 yr?1 and 55 g m?2 yr?1 over 3000 km2 of sea ice in McMurdo Sound, south‐west Ross Sea, adjacent to the largest ice free area in Antarctica. Sediment distribution and the abundance of southern McMurdo Volcanic Group‐derived glass, show that most sediment originates from the McMurdo Ice Shelf and nearby coastal outcrops. Almost no sediment is derived from the extensive ice free areas of the McMurdo Dry Valleys due to winnowed surficial layers shielding sand‐sized and silt‐sized material from wind erosion and because of the imposing topographic barrier of the north‐south aligned piedmont glaciers. Southerly winds of intermediate strength (ca 20 m sec?1) are primarily responsible for transporting sediment northwards and offshore. The results presented here indicate that sand‐sized sediment does not travel more than ca 5 km offshore, but very‐fine sand and silt grains can travel >100 km from source. For sites >10 km from the coast, the mass accumulation rate is relatively uniform (1·14 ± 0·57 g m?2 yr?1), three orders of magnitude above estimated global atmospheric dust values for the region. This uniformity represents a sea floor sedimentation rate of only 0·2 cm kyr?1, well below the rates of >9 cm kyr?1 reported for biogenic‐dominated sedimentation measured over much of the Ross Sea. These results show that, even for this region of high‐windblown sediment flux, aeolian processes are only a minor contributor to sea floor sedimentation, excepting areas proximal to coastal sources.  相似文献   

19.
Aeolian limestones are widespread in the Quaternary record and have been identified in outcrops and cores of late Palaeozoic strata. These rocks have been interpreted as a low latitude signal of glacio-eustatic sea level fluctuations and have not been previously reported from the Mesozoic or from other episodes of earth history generally believed to have been non-glacial. Numerous lenticular bodies of cross-stratified oolite lie near the contact between the lower and upper members of the mudstone-dominated lower Sundance Formation (Middle and Upper Jurassic) in the Bighorn Basin of north-central Wyoming, USA. The lenses, up to 12 m thick, contain sedimentary structures diagnostic of aeolian deposition. Inversely graded laminae within thick sets of cross-strata were deposited by climbing wind ripples. Adhesion structures and evenly dispersed lag granules are present in flat-bedded strata at the bases of several of the oolite bodies. Thin sections reveal abundant intergranular micrite of vadose origin. The lenses appear to represent virtually intact, isolated aeolian bedforms that migrated across a nearly sand-free deflation surface. When the Sundance Sea transgressed the dunes, a thin (<1 m thick), wave-rippled, oolite veneer formed on the upper surface of the aeolianite. Previous workers, primarily on the basis of sedimentary structures in the veneer, interpreted the oolite lenses as tidal sand bodies. The dunes provide clear evidence of widespread subaerial exposure on the crest and north flank of the Sheridan Arch. This structural high was delineated by previous workers who demonstrated thinning of pre-upper-Sundance Formation strata and localized development of ooid shoals. Ooids that formed in shoals on the windward (southern) side of the palaeohigh were exposed and deflated during lowstand. Thin, scour-filling ooid grainstone lenses that crop out in the southern part of the study area represent remnants of the marine beds that sourced the aeolianites. Farther north (down-wind), oolitic dunes prograded over thinly laminated lagoonal silts. When relative sea level began to rise, the uncemented dunes were buried under fine-grained marine sediment as the lee side of a low-relief island was inundated.  相似文献   

20.
The process of aeolian flux in wild areas is usually unstable due to turbulent fluctuation of airflow. The physical parameters of wind and aeolian flux have strong pulsation characteristics and are even intermittent. Since the classical aeolian flux equations derived from steady sediment transport processes do not take into account the physical parameters such as soil particle properties and airflow turbulence characteristics, they cannot accurately predict the process of sediment transport driven by turbulent wind. Based on the analysis of the variables contained in the classical aeolian flux equations and their effects on the aeolian flux, the soil particle properties and the airflow turbulent fluctuation which influence unsteady sediment transport process, and the delayed response of the unsteady sediment transport process to airflow turbulent fluctuation, then the steady and unsteady sediment transports were defined. Strictly, there is no steady sediment transport process in nature, but the sediment transport process in a short period of time can be roughly considered to be a steady sediment transport process as the fluctuation of sediment transport is very little. Thus, the unsteady sediment transport process in a long-term series can be regarded as series of steady sediment transport processes on an "appropriate time scale" (Δt). The construction principles, variables in unsteady aeolian flux equation, and establishing unsteady aeolian flux equation of the way which is the method of determining each variable by controlling the conditional experiments were put forward. Finally, the foreseeable key issues in the process of establishing the unsteady aeolian flux equation were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号