首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rich and massive clusters of galaxies at intermediate redshift are capable of magnifying and distorting the images of background galaxies. A comparison of different mass estimators among these clusters can provide useful information about the distribution and composition of cluster matter and its dynamical evolution. Using the hitherto largest sample of lensing clusters drawn from the literature, we compare the gravitating masses of clusters derived from the strong/weak gravitational lensing phenomena, from the X-ray measurements based on the assumption of hydrostatic equilibrium, and from the conventional isothermal sphere model for the dark matter profile characterized by the velocity dispersion and core radius of galaxy distributions in clusters. While there is excellent agreement between the weak lensing, X-ray and isothermal sphere model-determined cluster masses, these methods are likely to underestimate the gravitating masses enclosed within the central cores of clusters by a factor of 2–4 as compared with the strong lensing results. Such a mass discrepancy has probably arisen from the inappropriate applications of the weak lensing technique and the hydrostatic equilibrium hypothesis to the central regions of clusters, as well as from assuming an unreasonably large core radius for both luminous and dark matter profiles. Nevertheless, it is pointed out that these cluster mass estimators may be safely applied on scales greater than the core sizes. Namely, the overall clusters of galaxies at intermediate redshift can still be regarded as the dynamically relaxed systems, in which the velocity dispersion of galaxies and the temperature of X-ray emitting gas are good indicators of the underlying gravitational potentials of clusters.  相似文献   

2.
We use the integral-field spectrograph SAURON to measure the stellar line-of-sight velocity distribution and absorption line strengths out to four effective radii ( R e) in the early-type galaxies NGC 3379 and 821. With our newly developed observing technique, we can now probe these faint regions in galaxies that were previously not accessible with traditional long-slit spectroscopy. We make optimal use of the large field-of-view and high throughput of the spectrograph: by adding the signal of all ∼1400 lenslets into one spectrum, we obtain sufficient signal-to-noise in a few hours of observing time to reliably measure the absorption line kinematics and line strengths out to large radius.
We find that the line strength gradients previously observed within 1 R e remain constant out to at least 4 R e, which puts constraints on the merger histories of these galaxies. The stellar halo populations are old and metal poor. By constructing orbit-based Schwarzschild dynamical models, we find that dark matter is necessary to explain the observed kinematics in NGC 3379 and 821, with 30–50 per cent of the total matter being dark within 4 R e. The radial anisotropy in our best-fitting halo models is less than in our models without halo, due to differences in orbital structure. The halo also has an effect on the  Mg  b – V esc  relation: its slope is steeper when a dark matter halo is added to the model.  相似文献   

3.
We present an extensive study of the double β model for the X-ray surface brightness profiles of clusters, and derive analytically the gas density and total masses of clusters under the hydrostatic equilibrium hypothesis. It is shown that the employment of the double β model instead of the conventional single β model can significantly improve the goodness-of-fit to the observed X-ray surface brightness profiles of clusters, which will in turn lead to a better determination of the gas and total mass distributions in clusters. In particular, the observationally fitted β parameter for the extended component in a double β model may become larger. This opens a new possibility of resolving the long-standing β discrepancy for clusters. Using an ensemble of 33 ROSAT PSPC observed clusters drawn from the Mohr, Mathiesen & Evrard sample, we find that the asymptotic value of β fit is 0.83±0.33 at large radii, consistent with both the average spectroscopic parameter β spec=0.78±0.37 and the result given by numerical simulations.  相似文献   

4.
Elliptical galaxies are modelled as Sérsic luminosity distributions with density profiles (DPs) for the total mass adopted from the DPs of haloes within dissipationless ΛCDM (cold dark matter) N -body simulations. Ellipticals turn out to be inconsistent with cuspy low-concentration NFW models representing the total mass distribution, neither are they consistent with a steeper −1.5 inner slope, nor with the shallower models proposed by Navarro et al., nor with NFW models 10 times more concentrated than predicted, as deduced from several X-ray observations – the mass models, extrapolated inwards, lead to local mass-to-light ratios that are smaller than the stellar value inside an effective radius ( R e), and to central aperture velocity dispersions that are much smaller than observed. This conclusion remains true as long as there is no sharp steepening (slope < −2) of the dark matter DPs just inside 0.01 virial radii.
The very low total mass and velocity dispersion produced within R e by an NFW-like total mass profile suggests that the stellar component should dominate the dark matter component out to at least R e. It should then be difficult to kinematically constrain the inner slope of the DP of ellipticals. The high-concentration parameters deduced from X-ray observations appear to be a consequence of fitting an NFW model to the total mass DP made up of a stellar component that dominates inside and a dark matter component that dominates outwards.
An appendix gives the virial mass dependence of the concentration parameter, central density and total mass of the Navarro et al. model. In a second appendix are given single integral expressions for the velocity dispersions averaged along the line of sight, in circular apertures and in thin slits, for general luminosity density and mass distributions, with isotropic orbits.  相似文献   

5.
The evolution in X-ray properties of early-type galaxies is largely unconstrained. In particular, little is known about how, and if, remnants of mergers generate hot gas haloes. Here we examine the relationship between X-ray luminosity and galaxy age for a sample of early-type galaxies. Comparing normalized X-ray luminosity to three different age indicators, we find that L X L B increases with age, suggesting an increase in X-ray halo mass with time after the last major star formation episode of a galaxy. The long-term nature of this trend, which appears to continue across the full age range of our sample, poses a challenge for many models of hot halo formation. We conclude that models involving a declining rate of type Ia supernovae, and a transition from outflow to inflow of the gas originally lost by galactic stars, offer the most promising explanation for the observed evolution in X-ray luminosity.  相似文献   

6.
We present a ROSAT and ASCA study of the Einstein source X-9 and its relation to a shock-heated shell-like optical nebula in a tidal arm of the M81 group of interacting galaxies. Our ASCA observation of the source shows a flat and featureless X-ray spectrum well described by a multicolour disc blackbody model. The source most likely represents an optically thick accretion disc around an intermediate-mass black hole  ( M ∼102 M)  in its high/soft state, similar to other variable ultraluminous X-ray sources observed in nearby disc galaxies. Using constraints derived from both the innermost stable orbit around a black hole and the Eddington luminosity, we find that the black hole is fast-rotating and that its mass is between ∼80 M–1.5×102 M. The inferred bolometric luminosity of the accretion disc is ∼(1.1×1040 erg s−1)/(cos  i ). Furthermore, we find that the optical nebula is very energetic and may contain large amounts of hot gas, accounting for a soft X-ray component as indicated by archival ROSAT PSPC data. The nebula is apparently associated with X-9; the latter may be powering the former and/or they could be formed in the same event (e.g. a hypernova). Such a connection, if confirmed, could have strong implications for understanding both the birth of intermediate-mass black holes and the formation of energetic interstellar structures.  相似文献   

7.
1 INTRODUCTION In the hierarchical clustering model, massive objects form by gravitational aggregation oflower-mass objects, and the disks in spiral galaxies like our Galaxy form by a late accretionof gas from an extended reservoir around the galactic halos. According to this scenario, spiralgalaxies are still growing at present. At the virial temperature of galactic halos, T r.-' io5 ?i06 K, the dominant cooling mech-anism is X-ray bremsstrahlung. If the cooling rate is significant, the…  相似文献   

8.
We apply the modified acceleration law obtained from Einstein gravity coupled to a massive skew symmetric field,   F μνλ  , to the problem of explaining X-ray galaxy cluster masses without exotic dark matter. Utilizing X-ray observations to fit the gas mass profile and temperature profile of the hot intracluster medium (ICM) with King 'β-models', we show that the dynamical masses of the galaxy clusters resulting from our modified acceleration law fit the cluster gas masses for our sample of 106 clusters without the need of introducing a non-baryonic dark matter component. We are further able to show for our sample of 106 clusters that the distribution of gas in the ICM as a function of radial distance is well fitted by the dynamical mass distribution arising from our modified acceleration law without any additional dark matter component. In a previous work, we applied this theory to galaxy rotation curves and demonstrated good fits to our sample of 101 low surface brightness, high surface brightness and dwarf galaxies including 58 galaxies that were fitted photometrically with the single-parameter mass-to-light ratio ( M / L )stars. The results obtained there were qualitatively similar to those obtained using Milgrom's phenomenological Modified Newtonian Dynamics (MOND) model, although the determined galaxy masses were quantitatively different, and MOND does not show a return to Keplerian behaviour at extragalactic distances. The results obtained here are compared to those obtained using Milgrom's phenomenological MOND model which does not fit the X-ray galaxy cluster masses unless an auxiliary dark matter component is included.  相似文献   

9.
We present precise measurements of the X-ray gas mass fraction for a sample of luminous, relatively relaxed clusters of galaxies observed with the Chandra observatory, for which independent confirmation of the mass results is available from gravitational lensing studies. Parametrizing the total (luminous plus dark matter) mass profiles using the model of Navarro, Frenk & White, we show that the X-ray gas mass fractions in the clusters asymptote towards an approximately constant value at a radius r 2500, where the mean interior density is 2500 times the critical density of the Universe at the redshifts of the clusters. Combining the Chandra results on the X-ray gas mass fraction and its apparent redshift dependence with recent measurements of the mean baryonic matter density in the Universe and the Hubble constant determined from the Hubble Key Project, we obtain a tight constraint on the mean total matter density of the Universe,     , and measure a positive cosmological constant,     . Our results are in good agreement with recent, independent findings based on analyses of anisotropies in the cosmic microwave background radiation, the properties of distant supernovae, and the large-scale distribution of galaxies.  相似文献   

10.
We present a statistical analysis of the largest X-ray survey of nearby spiral galaxies in which diffuse emission has been separated from discrete source contributions. Regression and rank-order correlation analyses are used to compare X-ray properties, such as total, source and diffuse luminosities and diffuse emission temperature, with a variety of physical and multiwavelength properties, such as galaxy mass, type and activity, and optical and infrared luminosity.
The results are discussed in terms of the way in which hot gas and discrete X-ray sources scale with the mass and activity of galaxies, and with the star formation rate. We find that the X-ray properties of starburst galaxies are dependent primarily on their star-forming activity, whilst for more quiescent galaxies, galaxy mass is the more important parameter. One of the most intriguing results is the tight linear scaling between far-infrared and diffuse X-ray luminosity across the sample, even though the hot gas changes from a hydrostatic corona to a free wind across the activity range sampled here.  相似文献   

11.
NGC 3741: the dark halo profile from the most extended rotation curve   总被引:1,自引:0,他引:1  
We present new H  i observations of the nearby dwarf galaxy NGC 3741. This galaxy has an extremely extended H  i disc, which allows us to trace the rotation curve out to unprecedented distances in terms of the optical disc: we reach 42 B -band exponential scalelengths or about 7 kpc. The H  i disc is strongly warped, but the warp is very symmetric. The distribution and kinematics are accurately derived by building model data cubes, which closely reproduce the observations. In order to account for the observed features in the data cube, radial motions of the order of 5–13 km s−1 are needed. They are consistent with an inner bar of several hundreds of pc and accretion of material in the outer regions.
The observed rotation curve was decomposed into its stellar, gaseous and dark components. The Burkert dark halo (with a central constant density core) provides very good fits. The dark halo density distribution predicted by the Λ cold dark matter (CDM) theory fails to fit the data, unless NGC 3741 is a 2.5σ exception to the predicted relation between concentration parameter and virial mass and at the same time a high value of the virial mass (though poorly constrained) of  1011 M  . Noticeably, modified Newtonian dynamics (MOND) seems to be consistent with the observed rotation curve. Scaling up the contribution of the gaseous disc also gives a good fit.  相似文献   

12.
The shape of the dark matter halo in the early-type galaxy NGC 2974   总被引:1,自引:0,他引:1  
We present H  i observations of the elliptical galaxy NGC 2974, obtained with the Very Large Array. These observations reveal that the previously detected H  i disc in this galaxy is in fact a ring. By studying the harmonic expansion of the velocity field along the ring, we constrain the elongation of the halo and find that the underlying gravitational potential is consistent with an axisymmetric shape.
We construct mass models of NGC 2974 by combining the H  i rotation curve with the central kinematics of the ionized gas, obtained with the integral-field spectrograph SAURON. We introduce a new way of correcting the observed velocities of the ionized gas for asymmetric drift, and hereby disentangle the random motions of the gas caused by gravitational interaction from those caused by turbulence. To reproduce the observed flat rotation curve of the H  i gas, we need to include a dark halo in our mass models. A pseudo-isothermal sphere provides the best model to fit our data, but we also tested an NFW halo and modified Newtonian dynamics, which fit the data marginally worse.
The mass-to-light ratio M / L I increases in NGC 2974 from 4.3 M/L, I at one effective radius to 8.5 M/L, I at 5  R e. This increase of M / L already suggests the presence of dark matter: we find that within 5  R e at least 55 per cent of the total mass is dark.  相似文献   

13.
The distribution of galaxy properties in groups and clusters holds important information on galaxy evolution and growth of structure in the Universe. While clusters have received appreciable attention in this regard, the role of groups as fundamental to formation of the present-day galaxy population has remained relatively unaddressed. Here, we present stellar ages, metallicities and α-element abundances derived using Lick indices for 67 spectroscopically confirmed members of the NGC 5044 galaxy group with the aim of shedding light on galaxy evolution in the context of the group environment.
We find that galaxies in the NGC 5044 group show evidence for a strong relationship between stellar mass and metallicity, consistent with their counterparts in both higher and lower mass groups and clusters. Galaxies show no clear trend of age or α-element abundance with mass, but these data form a tight sequence when fitted simultaneously in age, metallicity and stellar mass. In the context of the group environment, our data support the tidal disruption of low-mass galaxies at small group-centric radii, as evident from an apparent lack of galaxies below  ∼109 M  within ∼100 kpc of the brightest group galaxy. Using a joint analysis of absorption- and emission-line metallicities, we are able to show that the star-forming galaxy population in the NGC 5044 group appears to require gas removal to explain the ∼1.5 dex offset between absorption- and emission-line metallicities observed in some cases. A comparison with other stellar population properties suggests that this gas removal is dominated by galaxy interactions with the hot intragroup medium.  相似文献   

14.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

15.
Theoretical electron density sensitive line ratios   R 1– R 6  of Si  x soft X-ray emission lines are presented. We found that these line ratios are sensitive to electron density n e, and the ratio R 1 is insensitive to electron temperature T e. For reliable determination of the electron density of laboratory and astrophysical plasmas, atomic data, such as electron impact excitation rates, are very important. Our results reveal that the discrepancy of the line ratios from different atomic data calculated with the distorted wave (DW) approximation and the R-matrix method is up to 19 per cent at   n e= 2 × 108 cm−3  . We applied the theoretical intensity ratio R 1 to the Low Energy Transmission Grating Spectrometer (LETGS) spectrum of the solar-like star Procyon. By comparing the observed value (1.29) with the theoretical calculation, the derived electron density n e is  2.6 × 108 cm−3  , which is consistent with that derived from  (C  v < 8.3 × 108 cm−3)  . When the temperature structure of the Procyon corona is taken into account, the derived electron density increases from   n e= 2.6 × 108  to  2.8 × 108 cm−3  .  相似文献   

16.
We present XMM–Newton observations of three optically selected   z > 0.6  clusters from the European Southern Observatory (ESO) Distant Cluster Survey (EDisCS), comprising the first results of a planned X-ray survey of the full EDisCS high-redshift sample. The EDisCS clusters were identified in the Las Campanas Distant Cluster Survey as surface brightness fluctuations in the optical sky and their masses and galaxy populations are well described by extensive photometric and spectroscopic observations. We detect two of the three clusters in the X-ray and place a firm upper limit on diffuse emission in the third cluster field. We are able to constrain the X-ray luminosity and temperature of the detected clusters and estimate their masses. We find that the X-ray properties of the detected EDisCS clusters are similar to those of X-ray-selected clusters of comparable mass and – unlike other high-redshift, optically selected clusters – are consistent with the T –σ and   L X–σ  relations determined from X-ray-selected clusters at low redshift. The X-ray determined mass estimates are generally consistent with those derived from weak-lensing and spectroscopic analyses. These preliminary results suggest that the novel method of optical selection used to construct the EDisCS catalogue may, like selection by X-ray luminosity, be well suited for identification of relaxed, high-redshift clusters whose intracluster medium is in place and stable by   z ∼ 0.8  .  相似文献   

17.
We report on the BeppoSAX detection of a hard X-ray excess in the X-ray spectrum of the classical high-ionization Seyfert 2 galaxy Tol 0109–383. The X-ray emission of this source observed below 7 keV is dominated by reflection from both cold and ionized gas, as seen in the ASCA data. The excess hard X-ray emission is presumably caused by the central source absorbed by an optically thick obscuring torus with N H∼2×1024 cm−2 . The strong cold X-ray reflection, if it is produced at the inner surface of the torus, is consistent with the picture where much of the inner nucleus of Tol 0109–383 is exposed to direct view, as indicated by optical and infrared properties. However, the X-ray absorption must occur at small radii in order to hide the central X-ray source but leave the optical high-ionization emission-line region unobscured. This may also be the case for objects such as the Seyfert 1 galaxy Mrk231.  相似文献   

18.
We use three-integral models to infer the distribution function (DF) of the boxy E3–E4 galaxy NGC 1600 from surface brightness and line-profile data on the minor and major axes. We assume axisymmetry and that the mass-to-light ratio is constant in the central ∼1 R e. Stars in the resulting gravitational potential move mainly on regular orbits. We use an approximate third integral K from perturbation theory and write the DF as a sum of basis functions in the three integrals E , L z and K . We then fit the projected moments of these basis functions to the kinematic observables and deprojected density, using a non-parametric algorithm. The deduced dynamical structure is radially anisotropic, with σ θ σ r ≈ σ φ σ r ≈0.7 on the major axis. Both on the minor axis and near the centre the velocity distribution is more isotropic; thus the model is flattened by equatorial radial orbits. The kinematic data are fitted without the need for a central black hole; the central mass determined previously from ground-based data therefore overestimates the actual black-hole mass. The mass-to-light ratio of the stars is M L V =6  h 50. The anisotropy structure of NGC 1600 with a radially anisotropic main body and more nearly isotropic centre is similar to that found recently in NGC 1399, 2434, 3379 and 6703, suggesting that this pattern may be common amongst massive elliptical galaxies. We discuss a possible merger origin of NGC 1600 in the light of these results.  相似文献   

19.
We present high-resolution images of the Faraday rotation measure (RM) structure of the radio galaxy PKS 1246−410 at the centre of the Centaurus cluster. Comparison with Hα-line and soft X-ray emission reveals a correspondence between the line-emitting gas, the soft X-ray emitting gas, regions with an excess in the RM images and signs of depolarization. Magnetic field strengths of 25 μG, organized on scales of ∼1 kpc and intermixed with gas at a temperature of 5 × 106 K with a density of ∼0.1 cm−3, can reproduce the observed RM excess, the depolarization and the observed X-ray surface brightness. This hot gas may be in pressure equilibrium with the optical line-emitting gas, but the magnetic field strength of 25 μG associated with the hot gas provides only 10 per cent of the thermal pressure and is therefore insufficient to account for the stability of the line-emitting filaments.  相似文献   

20.
Current theories of galaxy formation predict that spiral galaxies are embedded in a reservoir of hot gas. This gas is able to cool on to the galaxy, replenishing cold gas that is consumed by star formation. Estimates of the X-ray luminosity emitted in the cooling region suggest a bolometric luminosity of the order of 10×1041 erg s−1 in massive systems. We have used ROSAT PSPC data to search for extended X-ray emission from the haloes of three nearby, massive, late-type galaxies: NGC 2841, 4594 and 5529. We infer 95 per cent upper limits on the bolometric X-ray luminosities of the haloes of NGC 2841, 4594 and 5529 of 0.4, 1.2 and 3.8×1041 erg s−1 respectively. Thus, the true luminosity lies well below the straightforward theoretical prediction. We discuss this discrepancy and suggest a number of ways in which the theoretical model might be brought into agreement with the observational results. A possible solution is that the gravitational potentials of the dark matter haloes of these galaxies are weaker than assumed in the current model. Alternatively, the present-day accretion may be substantially less than is required on average to build the disc over the Hubble time. Our results are, however, based on only three galaxies, none of which is ideal for this kind of study. A larger data set is required to explore this important problem further.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号