首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The distribution of arsenic (As) in shallow groundwater of eastern Chancheng District in Foshan City as a function of season and water table was investigated, and the influence of hydrochemical factors on the As distribution was discussed. The groundwater samples were collected from 20 sites in dry season and 9 sites in wet season. As concentrations in 20% groundwater samples exceeded value of the WHO guideline (10 μg/L), and the highest As concentration of 23.5 μg/L occurred in dry season. It is observed that groundwater As concentration decreased with the increase of depth of water table in dry season, and were generally higher in wet season than that in dry season, indicating that ground surface As might be one of the main sources for shallow groundwater As in study area, especially in wet season. Groundwater As concentration in study area had significantly positive correlation with the concentration of Fe, Mn, NH4, F, and COD, and was positively correlated to pH, but negatively correlated to Eh and K, indicating that reductive dissolution of Fe and Mn (oxy)hydroxides might be one of the main control mechanisms for groundwater As mobilization, while pH and F also played an important role in controlling the groundwater As mobilization in study area.  相似文献   

2.
吴初  武雄  钱程  朱阁 《现代地质》2017,31(3):629
对内蒙古杭锦旗气田区浅层地下水运用Piper三线图、Gibbs图、氯碱指数图等方法进行水化学特征及其形成作用分析研究,结果表明:杭锦旗气田区浅层地下水具有较高的矿化度,偏碱性,硬度较大,枯水期TDS浓度和总硬度高于丰水期;研究区浅层地下水化学组分在小范围内具有一定的空间变异性,地下水阳离子以Na+、Ca2+为主,阴离子以HCO3-为主,水化学类型主要有HCO3 Ca型、HCO3 Na型和SO4·Cl Na型;研究区浅层地下水化学组分来源于碳酸盐矿物、硅铝酸盐矿物和蒸发岩的风化溶解,且丰水期和枯水期水化学组分有微弱变化,地下水化学特征的形成以岩石风化溶解作用为主。  相似文献   

3.
The lower Jia Bharali catchment and adjoining areas in central part of North Brahmaputra Plain (NBP) is characterized by more than 800m thick Older and Younger Alluvium deposited by the west flowing Brahmaputra river and the south flowing trans Himalayan rivers. Unconfined, shallow alluvial aquifers of the area with a general southward flow are largely tapped for domestic use through numerous dug well attached with almost every household. Monitoring of 180 dug wells for two hydrological years show strong seasonal fluctuation of the groundwater table linked to the summer monsoon that brings more than 1500mm precipitation in the area between June-September. This study has presents the first ever systematic database on toxic trace elements viz., As, Cr, Fe, Mn, Ni, Pb and Zn from the shallow aquifers in north Brahmaputra plain based on water samples from 50 monitoring wells collected in both dry and wet seasons. The data was analysed with respect to WHO standards for drinking water and significantly, 2 % of the measurements show As in excess of the WHO limit while 60% of the samples in the wet season and as much as 90 % of the same in dry season have Cr content more than the WHO permissible limit. Pb concentration is above permissible limit of 0.05 mg/L in most of the dry season samples although 88 % of the rainy season samples show Pb concentration exceeding this limit. 34 % of the samples in the wet seasons and 86 % of the samples in the dry seasons have Mn above the permissible limit of 0.1 mg/L while in case of Ni, 56 % of the aquifers in the wet season and 72 % of the aquifers in the dry season show Ni content above the permissible limit of 0.02 mg/L. Zn contents of the aquifers are however very low throughout the year.  相似文献   

4.
Hydrochemical modeling, graphical methods, and different statistical techniques were applied to understand the nature of geological and hydrochemical processes in a shallow groundwater aquifer of the Jena biodiversity experimental field. Factor and cluster analyses were used to identify the governing underlying processes and to detect the spatial similarity between the sampling points. The hydrochemical modeling, using PHREEQC, was used to interpret the reactive minerals. Results of factor analysis indicated that there are five dominant factors which account for about 90 % of the variance of the chemical dataset in the cold season (March, April, November) and warm season (June, August). Factor analysis showed that 43 % of the variation in the cold season and 53 % of the variation in the warm season of the groundwater hydrochemical data are due to major cations and anions which reveals groundwater-geological matrix interaction. Redox and redox-sensitive elements are the next important factors and account for 15 % and 19 % variation in the cold season and warm season, respectively. The hydrochemical modeling using PHREEQC and X-ray diffraction results showed that calcite, dolomite, quartz, and siderite are reactive minerals and are responsible for changes in chemical composition. The hydrochemical data of the two seasons were also compared and the results showed that the groundwater chemistry of the study area varied seasonally in terms of some parameters such as mainly heavy metals (Ba, B, Fe, Mn, U, V, Zn, Sr, Ni), HCO3 ?, and DOC.  相似文献   

5.
The most relevant controls on the water quality within the Cretaceous-Eocene limestone aquifer of the Keta Basin, Ghana, and the coastal sedimentary basin of Togo were assessed using Q-mode hierarchical cluster analysis (HCA) and mass-balance modelling. The pattern recognition technique of HCA was employed for partitioning hydrochemical data from a total of 65 surface and borehole samples from the study area into water groups. A spatial plot of the water groups consisting of samples from the limestone aquifer shows that the vast majority of samples belonging to the same group are located in close proximity to one another, suggesting the same processes and/or flow paths in the limestone aquifer system. Geochemical reaction models of selected water groups were constructed using PHREEQC-2. The hydrochemical compositions of the water groups and the mass-balance calculations indicate that the dominant processes and reactions responsible for the hydrochemical evolution in the system are: (1) carbonate equilibria, (2) silicate weathering reactions, (3) limited mixing with saline water, and (4) ion exchange. The combined use of HCA and mass-balance modelling has shown to be a useful approach in interpreting groundwater hydrochemistry in an area where large uncertainties exist in the understanding of the groundwater flow system.  相似文献   

6.
7.
8.
A good understanding of roadside soil contamination and the location of pollution sources is important for addressing many environmental problems. The results are reported here of an analysis of the content of metals in roadside dust samples of four major highways in the Greater Toronto area (GTA) in Ontario, Canada. The metals analyzed are Pb, Zn, Cd, Ni, Cr, Cu, Mn, and Fe. Multivariate geostatistical analysis [correlation analysis (CA), principal component analysis (PCA), and hierarchical cluster analysis (HCA)] were used to estimate soil chemical content variability. The correlation coefficient shows a positive correlation between Cr–Cd, Mn–Fe, and Fe–Cu, while negatively between Zn–Cd, Mn–Cd, Zn-Cr, Pb–Zn, and Ni–Zn. PCA shows that the three eigenvalues are less than one, and suggests that the contamination sources are processing industries and traffic. HCA classifies heavy metals in two major groups. The cluster has two larger subgroups: the first contains only the variables Fe, Mn, Cu, Cr, Ni, and Pb, and the second includes Cd and Zn. The geostatistical analysis allows geological and anthropogenic causes of variations in the contents of roadside dust heavy metals to be separated and common pollution sources to be identified. The study shows that the high concentration of traffic flows, the parent material mineralogical and chemical composition, and land use are the main sources for the heavy metal concentration in the analyzed samples.  相似文献   

9.
The aim of this study was to investigate spatiotemporal variations in groundwater heavy-metal concentrations at the Karaduvar agricultural-industrial district (Mersin, SE Turkey), where parts of the underlying coastal aquifer has been polluted by petroleum hydrocarbons (PHCs) from diverse sources. The water chemistry data for the present study is comprised of 275 samples collected during 2006–2010 from 55 water-supply wells. The samples were analyzed in situ for physical parameters (EC, DO, pH, and temperature) and in the laboratory for As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn using the ICP-MS method. Box–whisker plots and principal components analysis (PCA) method were employed to determine the seasonal changes occurring in heavy-metal concentrations and to identify source apportionment of pollution parameters in groundwater. During the monitoring period, in many wells, heavy-metal concentrations (except for Cd) exceeded the limit values set by Turkish Water Pollution Control Directive (No: 25687). Results from the PCA suggest that elevated Mn, Fe, Co, Ni and As concentrations may be linked to oxidation–reduction of geogenic Mn/Fe oxyhydroxides in PHC-contaminated parts. The high concentrations of Cu, Mo and probably Cd in background areas result from the agricultural and petrochemical activities conducted in the recent past. At the site, high Pb and Zn concentrations are probably related to agricultural activities in PHC-contaminated areas, whereas Cr can be solely attributed to lithogenic sources. At the Karaduvar site, heavy-metal pollution in groundwater is found to be much more persistent than PHC contamination.  相似文献   

10.
In recent years, most of domestic and foreign researches about heavy metal pollutions of metal mine mainly focus on water, soil and plants on the surface. There is lack of researches about heavy metal pollution in groundwater of metal mine. In this research, a certain antimony mine area is selected as a typical study area. Also, the study about statistical characteristics of heavy metals in groundwater has been carried out. Furthermore, the interrelationships have been preliminarily discussed through related analysis, such as relevant analysis, cluster analysis and principle component analysis. The results show that: the excessive elements in groundwater of study area are Sb, As, Pb, Se, and Ni. The average mass concentration of Sb, As, and Pb is higher than that of drinking water standards (GB5749-2006). The concentration of most heavy metals in dry season is lower than or equal to that in wet season for groundwater. Zn is the only metal in groundwater showing a different pattern, the concentration of which in dry season is higher than that in wet season. Under the impacts of stratum leaching and absorption effect, the concentration of heavy metals (except Pb and Ba) in groundwater are lower than or equal to that in surface water. As and Se, the two heavy metals have a significant positive correlation, which shows the two elements might have gone through similar environmental geochemical effect. Also, the connection among Zn, Hg, Pb, and Mn is not obvious; therefore, the sources of those elements are quite different. In addition, the elements of Se and As have obvious positive interrelationship with elements of CO32- and F-. Also, the Pb has significant positive correlation with PO43-, H2SiO3 and oxygen consumption. The results of cluster analysis show that 9 different heavy metals in the study area can be divided into 3 categories: Zn, Cd, Mn, Hg, Cu, and Cr belong to the first category, Se and As belong to the second one, and the last category is Pb. Also, the principle component analysis divides 6 heavy metals (Zn, As, Hg, Pb, Mn, and Se) into 4 different principle components, which can be utilized to assess heavy metals pollution situations in groundwater. The reliability of this method is higher than 91%. Moreover, the research provides theory basis and models for establishing evaluation index system and exploring the evaluation method of heavy mental pollution in groundwater.  相似文献   

11.
Although arsenic (As) contamination has been extensively investigated in the aquifers of the lower and middle Gangetic plains, less attention has been given to the distribution and fate of As in the groundwater of the upper Gangetic plain, India. In the current study, groundwater samples (n = 40) were collected from Moradabad district in the upper Gangetic plain and analyzed for several physicochemical parameters to characterize the groundwater chemistry and evaluate various geogenic and anthropogenic factors controlling the occurrence, mobilization, and fate of As in the plain. Arsenic concentrations in groundwater ranged from 0.17 μg/L to 139 μg/L, with the majority of high-As groundwater associated with high Fe, Mn, and HCO3 and low NO3, SO42−, and negative Eh values, implying that As was released via reductive dissolution of Fe and Mn oxyhydroxides in reducing conditions under the influence of organic matter degradation. Interrelationships between various geochemical variables and the natural background level (NBL) quantification of As suggested the influence of anthropogenic processes on the mobility of As in groundwater. Piper and Gibbs diagrams and various bivariate plots revealed that the majority of groundwater was of the Ca2+ − Mg2+ − HCO3 type and that the major ions in groundwater were derived from carbonate and silicate weathering, cation exchange and reverse ion exchange processes, and anthropogenic activities. Moreover, the results of principal component analysis (PCA), and hierarchical cluster analysis (HCA) also suggested geogenic and anthropogenic sources for the ion concentration in groundwater. The health risk assessment showed a higher non-carcinogenic risk for children and a higher carcinogenic risk for adults, respectively, due to the daily intake of As contaminated groundwater. Overall, this study represents the first systematic investigation of the distribution, geochemical behavior, and release process of As in groundwater in the study area and provides a strong base for future research in the alluvial aquifers of the upper Gangetic plain.  相似文献   

12.
The oxidation of sulfide minerals generates acidic waters containing high levels of SO4 and Fe. The study area has active Pb?CZn?CCu mining. It is thought that the surface/subsurface/underground sulfide minerals in the region generally contribute to the acidification of groundwater. Low pH values are also responsible for dissolved metals (Al, Fe, Mn, SO4, Pb, Zn) in the groundwater and river. Furthermore, current mining wastes have affected concentrations of trace elements in the water. High Fe and Mn concentrations are generally found in the spring which has acidic and low Eh values, while Al, Fe and Mn concentrations in the acidic waters show notable increases with the maximum values reaching 8,829, 19,084 and 1,708?ppb, respectively. These values exceed the Turkish drinking water standard of 200, 200 and 50?ppb, respectively.  相似文献   

13.
The main aims of the present study are to identify the major factors affecting hydrogeochemistry of groundwater resources in the Marand plain, NW Iran and to evaluate the potential sources of major and trace elements using multivariate statistical analysis such as hierarchical clustering analysis (HCA) and factor analysis (FA). To achieve these goals, groundwater samples were collected in three sampling periods in September 2013, May 2014 and September 2014 and analyzed with regard to ions (e.g., Ca2+, Mg2+, Na+ and K+, HCO3 ?, SO4 2?, Cl?, F? and NO3 ?) and trace metals (e.g., Cr, Pb, Cd, Mn, Fe, Al and As). The piper diagrams show that the majority of samples belong to Na–Cl water type and are followed by Ca–HCO3 and mixed Ca–Na–HCO3. Cross-plots show that weathering and dissolution of different rocks and minerals, ion exchange, reverse ion exchange and anthropogenic activities, especially agricultural activities, influence the hydrogeochemistry of the study area. The results of the FA demonstrate that 6 factors with 81.7% of total variance are effective in the overall hydrogeochemistry, which are attributed to geogenic and anthropogenic impacts. The HCA categorizes the samples into two clusters. Samples of cluster C1, which appear to have higher values of some trace metals like Pb and As, are spatially located at the eastern and central parts of the plain, while samples of cluster C2, which express the salinization of the groundwater, are situated mainly westward with few local exceptions.  相似文献   

14.
Although high As groundwater has been observed in shallow groundwater of the Hetao basin, little is known about As distribution in deep groundwater. Quantitative investigations into relationships among chemical properties and among samples in different areas were carried out. Ninety groundwater samples were collected from deep aquifers of the northwest of the basin. Twenty-two physicochemical parameters were obtained for each sample. Statistical methods, including principal component analysis (PCA) and hierarchical cluster analysis (HCA), were used to analyze those data. Results show that As species were highly correlated with Fe species, NH4-N and pH. Furthermore, result of PCA indicates that high As groundwater was controlled by geological, reducing and oxic factors. The samples are classified into three clusters in HCA, which corresponded to the alluvial fans, the distal zone and the flat plain. Moreover, the combination of PCA with HCA shows the different dominant factors in different areas. In the alluvial fans, groundwater is influenced by oxic factors, and low As concentrations are observed. In the distal zone, groundwater is under suboxic conditions, which is dominated by reducing and geological factors. In the flat plain, groundwater is characterized by reducing conditions and high As concentrations, which is dominated by the reducing factor. This investigations indicate that deep groundwater in the alluvial fans mostly contains low As concentrations but high NO3 and U concentrations, and needs to be carefully checked prior to being used for drinking water sources.  相似文献   

15.
The hydrochemical and multivariate statistical techniques such as the principal component analysis (PCA) and the cluster analysis (CA) were used to identify the hydrochemical processes and their relation with groundwater quality and also to get an insight into the hydrochemical Zana aquifer groundwater chemistry evaluation. Twenty-four samples during the wet season and even during the dry season are analyzed. The Piper diagram showed that water facies are magnesium bicarbonate on the sides of the western reliefs and magnesium chloride-sulfated at the north and the center of the plain. The PCA carried out on three factors revealed that on the factorial design F1-F3, nitrates negatively determine factor 3, indicating the presence of an agriculture pollution. On the factorial design F1-F2, HCO3? positively determine the factor 2, indicating the carbonated origin. However, the CA, based on variables, showed that the waters in the region can be classified into three groups according to flow direction while the CA, based on major ion contents, defined three groups, reflecting the same hydrochemical facies. The first group with dry residue varying between 360 and 1700 mg/l and characterized by Mg2+ and Cl?, HCO3?. Samples of this group are mostly located in the north and northeastern part of the region. The second group with highest dry residue (2080 to 3820 mg/l) characterized by Mg2+ and SO4?, Cl? is located near the Northwestern and western outcrops. The third group coincides with the central part, the lowest of the plain, with heightened dry residue (4140 to 13,950 mg/l), characterized by Mg2+ and SO4?. The hydrochemical study made it possible to allot the evaporitic origin to the elements Na+, Mg2+, K+, Cl?, and SO4?, while for element HCO3?, it results from the carbonated formations. These results showed that the presence of nitrates in the studied area is closely linked to the agricultural activity.  相似文献   

16.
In this study, hydrogeologic and hydrochemical information from the Mersin-Erdemli groundwater system were integrated and used to determine the main factors and mechanisms controlling the chemistry of groundwaters in the area and anthropogenic factors presently affecting them. The PHREEQC geochemical modeling demonstrated that relatively few phases are required to derive water chemistry in the area. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into four categories: (1) silicate weathering reactions; (2) dissolution of salts; (3) precipitation of calcite, amorphous silica and kaolinite; (4) ion exchange. As determined by multivariate statistical analysis, anthropogenic factors show seasonality in the area where most contaminated waters related to fertilizer and fungicide applications that occur during early summer season.  相似文献   

17.
In Scopia basin, central Greece, a hydrochemical investigation was completed. Groundwater samples from 41 sites were used to assess the natural and anthropogenic impacts in groundwater, utilizing the principal component analysis (PCA) involved with the inverse distance weighted (IDW) interpolation modeling and hierarchical cluster analysis (HCA). Best fit model to explain the spatial distribution of both hydrochemical parameters and PCA was chosen by optimizing the IDW interpolator’s parameters. Precision of the model was picked based on less root-mean-squared prediction error (RMSPE) amongst predicted and actual values measured at the same locations. Groundwater exhibit Ca–Mg–HCO3 as the dominant hydrochemical type and their greater part are mixed waters with non-dominant ion. Interpolation models demonstrate high estimations of nitrates in zones with agricultural activities and high estimations of nickel and chromium in regions with the strong presence of ultrabasic rocks. Dominant part of the groundwater samples surpasses in many cases the European Community (EC) drinking water permissible limits. Thus, they are unsuitable for human consumption. PCA illustrated four factors, which clarified 80.62% of the aggregate variance of data and HCA classified two statistically significant clusters of sampling sites. Results show natural procedures ascribed to the weathering of the minerals contained in the ultrabasic rocks and anthropogenic influences related to the use of fertilizers and wastewater leak. In light of FAO standards and Richards’s classification, the groundwaters are reasonable for irrigation purposes, featuring waters with low sodium hazard and moderate salinity hazard.  相似文献   

18.
The Vaal River Basin is an economically significant area situated in the interior of South Africa (SA), where mining, industrial, domestic and agricultural activities are very intense. The purpose of the study was to assess the influence of geology and anthropogenic activities on groundwater chemistry, and identify the predominant hydrochemical processes in the basin. Data from seventy groundwater sites were retrieved from the national database, and attention was paid to fifteen water quality parameters. Groundwater samples were clustered into seven hydrochemically distinct groups using Hierarchical Cluster Analysis (HCA), and three samples treated independently. A Piper plot revealed two major water types, Ca–Mg–HCO3 and Ca–Mg–SO4-Cl, which were linked to dissolution of the underlying geology and mine pollution. The Ca?+?Mg vs HCO3?+?SO4 plot indicated that reverse ion exchange is an active process than cation exchange in the area. Principal component analysis (PCA) was used to identify the main natural and anthropogenic processes causing variation in groundwater chemistry. Four principal components were extracted using PCA that explains 82% of the total variance in the chemical parameters. The PCA results can be categorized by four components: (1) evaporites and silicates weathering enrichment of Na, K, Cl, SO4 and F, and anthropogenic Cl; (2) dissolution of dolomite, limestone and gypsum; (3) agricultural fertilizers (4) wastewater treatment. This study reveals that both natural and anthropogenic activities are the cause of groundwater variation in the basin.  相似文献   

19.
. Currently, exploration of gold ores is under discussion in Turkey, without considering its adverse affect on the environment. Studying the adverse affect on environment is extremely important because significant civic activities are already taking place on the geological units that contain gold ore bodies in Turkey. Such an area is located at the southeast of Izmir City (Turkey), and approximately 2-km-long gold-bearing ore veins occur close to the Efemçukuru Village. The objective of this study was to describe the characteristics and seasonal variation of the groundwater chemistry and pollution of the aquifer in the ore deposit site, and to determine the impact of ore deposits on groundwater quality. The gold-bearing formation is highly weathered and fractured. The fractures in the geological units control the permeability and the depth of groundwater in the area. The concentrations of Al, Ag, Cu, Cd, Cr, Fe, Pb, Mn, Zn, Ni, and Sb were determined for four well samples and two stream waters for wet and dry seasons. The results showed that the concentrations of most of these elements were below the USA EPA (Environmental Protection Agency) limits; however, Pb and Cd concentrations are slightly above the limits. The results indicate that minerals in gold bodies do not dissolve although the weathering of formations is high. The low concentration of elements in groundwater and streams may be attributed to the high velocity of ground and surface water.  相似文献   

20.
This study was conducted to determine the effects of the waste-rock dump (WRD) of the underground polymetallic Balya Mine on the Kocacay River and eventually on Lake Manyas in Turkey. Data presented in this paper include geochemical characteristics of various kinds of water (mine, surface and groundwater) and of suspended-particle samples in the vicinity of Balya. The more polluted mine waters have low pH and high conductivity, while high concentrations of Zn, Cd, Mn tend to be found in the dry and wet seasons. High concentrations of Pb, As, Cr, Cu and S appear only in the wet season. The sources of the heavy metal concentration within the Kocacay River are leached waste, surface run off, and overflow from the spillway of the WRD. To minimize the formation of acids and dissolved metal, and for the remediation of the harmful effects of extreme contamination conditions, it is recommended that lime or alkali materials and organic carbon be added to simulate the action of sulfate-reducing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号