首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution magnetotelluric (MT) studies of the San Andreas fault (SAF) near Hollister, CA have imaged a zone of high fluid content flanking the San Andreas fault and extending to midcrustal depths. This zone, extending northeastward to the Calaveras fault, is imaged as several focused regions of high conductivity, believed to be the expression of tectonically bound fluid pockets separated by northeast dipping, impermeable fault seals. Furthermore, the spatial relationship between this zone and local seismicity suggests that where present, fluids inhibit seismicity within the upper crust (0–4 km). The correlation of coincident seismic and electromagnetic tomography models is used to sharply delineate geologic and tectonic boundaries. These studies show that the San Andreas fault plane is vertical below 2 km depth, bounding the southwest edge of the imaged fault-zone conductor (FZC). Thus, in the region of study, the San Andreas fault acts both as a conduit for along-strike fluid flow and a barrier for fluid flow across the fault. Combined with previous work, these results suggest that the geologic setting of the San Andreas fault gives rise to the observed distribution of fluids in and surrounding the fault, as well as the observed along-strike variation in seismicity.  相似文献   

2.
Magnesium-rich clayey gouge similar to that comprising the two actively creeping strands of the San Andreas Fault in drill core from the San Andreas Fault Observatory at Depth (SAFOD) has been identified in a nearby outcrop of serpentinite within the fault zone at Nelson Creek. Each occurrence of the gouge consists of porphyroclasts of serpentinite and sedimentary rocks dispersed in a fine-grained, foliated matrix of Mg-rich smectitic clays. The clay minerals in all three gouges are interpreted to be the product of fluid-assisted, shear-enhanced reactions between quartzofeldspathic wall rocks and serpentinite that was tectonically entrained in the fault from a source in the Coast Range Ophiolite. We infer that the gouge at Nelson Creek connects to one or both of the gouge zones in the SAFOD core, and that similar gouge may occur at depths in between. The special significance of the outcrop is that it preserves the early stages of mineral reactions that are greatly advanced at depth, and it confirms the involvement of serpentinite and the Mg-rich phyllosilicate minerals that replace it in promoting creep along the central San Andreas Fault.  相似文献   

3.
The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing.The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2–3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.  相似文献   

4.
The authors recently determined seismic parameters of earthquakes located along a lineation of microearthquakes in the Coast Range Province of northern California (Dehlinger and Bolt, 1984). The lineation closely follows the mapped Bartlett Springs fault zone, which is considered to be the source of seismic activity. This fault strikes N40°W for about 40 km and the mapped fault zone consists of a 2–3 km-wide belt of melange. Earthquake hypocenters indicate that this belt dips steeply to the northeast, with shocks occurring along multiple dislocation planes that together extend downward to depths of about 12 km.Focal mechanisms and associated stress fields were determined for 22 of the best recorded recent shocks along the earthquake lineation. Analyses of these shocks provided a comparison between individually and jointly determined focal mechanisms and of the directions of the corresponding stress axes, for identical shocks along the entire fault length. Thirteen of the shocks exhibited right-lateral, San Andreas type of source motions. Average values of these 13 individually determined focal parameters are within the standard deviation of the same set of jointly determined values. It is thus verified that the probability model algorithm for joint parameters determinations developed by Brillinger et al. (1980) yields reliable values of focal parameters. Moreover, the jointly determined parameters appear to be more reliable than the average-determined ones. The focal mechanisms and associated stress fields along the entire length of the Bartlett Springs fault zone are consistent with shearing motions between the North American and Pacific lithospheric plates that produce displacements along the San Andreas transform fault.  相似文献   

5.
Aseismic slip or fault creep is occurring on many faults in California. Although the creep rates are generally less than 10 mm/yr in most regions, the maximum observed rate along the San Andreas fault between San Juan Bautista and Gold Hill in central California exceeds 30 mm/yr. Changes in slip rates along a 162 km segment of the San Andreas fault in this region have occurred at approximately the same time at up to nine alinement array sites. Rates of creep on the fault near the epicenters of moderate earthquakes (ML 4–6) vary for periods of several years, decreasing before the main shocks and increasing thereafter, in agreement with prior observations based on creepmeter results. The change of surface slip rate is most pronounced within the epicentral region defined by aftershocks, but records from sites at distances up to 100 km show similar variations. Additionally, some variations in rate, also apparently consistent among many sites, have a less obvious relation with seismic activity and have usually taken place over shorter periods. Not all sites exhibit a significant variation in rate at the time of a regional change, and the amplitudes of the change at nearby sites are not consistently related. The time intervals between measurements at the nine array sites during a given period have not always been short with respect to the intervals between surveys at one site; hence, uneven sampling intervals may bias the results slightly. Anomalies in creep rates thus far observed, therefore, have not been demonstrably consistent precursors to moderate earthquakes; and in the cases when an earthquake has followed a long period change of rate, the anomaly has not specified time, place, or magnitude with a high degree of certainty. The consistency of rate changes may represent a large scale phenomenon that occurs along much of the San Andreas transform plate boundary.  相似文献   

6.
The present paper is a continuation of the previous work on modeling the local stress field induced by the San Andreas fault system (Nikonov et al., 1975). This system has been simulated on plane elastic models made of optically sensitive material, the models being under homogeneous uniaxial compression. The photoelastic method has been used to study the redistribution of τmax around the fault system with sides closed under compression.Three main features emerge in the kinematics of fault-system modeling. The first is a peculiar distortion of an originally rectangular grid, reflecting right-lateral movements on the San Andreas fault. This is especially noticeable in its central part. The second is the appearance and spreading of tear breaks near the ends of the zone nearly normal to the strike of the ends of the master fault. The third feature is separation of fault wings in certain sections of the San Andreas fault in the model. All these features are in general correspondence with the phenomena actually observed in the San Andreas fault system.  相似文献   

7.
Detailed geologic mapping of the San Andreas fault zone in Los Angeles County since 1972 has revealed evidence for diverse histories of displacement on branch and secondary faults near Palmdale. The main trace of the San Andreas fault is well defined by a variety of physiographic features. The geologic record supports the concept of many kilometers of lateral displacement on the main trace and on some secondary faults, especially when dealing with pre-Quaternary rocks. However, the distribution of upper Pleistocene rocks along branch and secondary faults suggests a strong vertical component of displacement and, in many locations, Holocene displacement appears to be primarily vertical. The most recent movement on many secondary and some branch faults has been either high-angle (reverse and normal) or thrust. This is in contrast to the abundant evidence for lateral movement seen along the main San Andreas fault. We suggest that this change in the sense of displacement is more common than has been previously recognized.The branch and secondary faults described here have geomorphic features along them that are as fresh as similar features visible along the most recent trace of the San Andreas fault. From this we infer that surface rupture occurred on these faults in 1857, as it did on the main San Andreas fault. Branch faults commonly form “Riedel” and “thrust” shear configurations adjacent to the main San Andreas fault and affect a zone less than a few hundred meters wide. Holocene and upper Pleistocene deposits have been repeatedly offset along faults that also separate contrasting older rocks. Secondary faults are located up to 1500 m on either side of the San Andreas fault and trend subparallel to it. Moreover, our mapping indicates that some portions of these secondary faults appear to have been “inactive” throughout much of Quaternary time, even though Holocene and upper Pleistocene deposits have been repeatedly offset along other parts of these same faults. For example, near 37th Street E. and Barrel Springs Road, a limited stretch of the Nadeau fault has a very fresh normal scarp, in one place as much as 3 m high, which breaks upper Pleistocene or Holocene deposits. This scarp has two bevelled surfaces, the upper surface sloping significantly less than the lower, suggesting at least two periods of recent movement. Other exposures along this fault show undisturbed Quaternary deposits overlying the fault. The Cemetery and Little Rock faults also exhibit selected reactivation of isolated segments separated by “inactive” stretches.Activity on branch and secondary faults, as outlined above, is presumed to be the result of sympathetic movement on limited segments of older faults in response to major movement on the San Andreas fault. The recognition that Holocene activity is possible on faults where much of the evidence suggests prolonged inactivity emphasizes the need for regional, as well as detailed site studies to evaluate adequately the hazard of any fault trace in a major fault zone. Similar problems may be encountered when geodetic or other studies, Which depend on stable sites, are conducted in the vicinity of major faults.  相似文献   

8.
Many bends or step-overs along strike–slip faults may evolve by propagation of the strike–slip fault on one side of the structure and progressive shut-off of the strike–slip fault on the other side. In such a process, new transverse structures form, and the bend or step-over region migrates with respect to materials that were once affected by it. This process is the progressive asymmetric development of a strike–slip duplex. Consequences of this type of step-over evolution include: (1) the amount of structural relief in the restraining step-over or bend region is less than expected; (2) pull-apart basin deposits are left outside of the active basin; and (3) local tectonic inversion occurs that is not linked to regional plate boundary kinematic changes. This type of evolution of step-overs and bends may be common along the dextral San Andreas fault system of California; we present evidence at different scales for the evolution of bends and step-overs along this fault system. Examples of pull-apart basin deposits related to migrating releasing (right) bends or step-overs are the Plio-Pleistocene Merced Formation (tens of km along strike), the Pleistocene Olema Creek Formation (several km along strike) along the San Andreas fault in the San Francisco Bay area, and an inverted colluvial graben exposed in a paleoseismic trench across the Miller Creek fault (meters to tens of meters along strike) in the eastern San Francisco Bay area. Examples of migrating restraining bends or step-overs include the transfer of slip from the Calaveras to Hayward fault, and the Greenville to the Concord fault (ten km or more along strike), the offshore San Gregorio fold and thrust belt (40 km along strike), and the progressive transfer of slip from the eastern faults of the San Andreas system to the migrating Mendocino triple junction (over 150 km along strike). Similar 4D evolution may characterize the evolution of other regions in the world, including the Dead Sea pull-apart, the Gulf of Paria pull-apart basin of northern Venezuela, and the Hanmer and Dagg basins of New Zealand.  相似文献   

9.
Thrusting fault zone in foreland basins are characterized by highly foliated zones generally enriched in phyllosilicates which can play a major role on the mechanical behaviour of the fault. In this context, investigations of synkinematic clay minerals permit to determine the origin of the fluid from which they precipitated as well as the mechanisms of deformation. Our study is focused on clay mineral assemblages (illite and chlorite) in a major thrust fault located in the Monte Perdido massif (southern Pyrenees), a shallow thrust that affects upper cretaceous-paleocene platform carbonates and lower Eocene marls and turbidites. It implied 3?km of displacement of the Monte Perdido thrust unit with respect to the underlying Gavarnie unit. In this area the cleavage development by pressure-solution is linked to the Monte Perdido and Gavarnie thrust activity. The core zone of the fault, about 6?m thick, consists of an interval of intensely deformed clay-bearing rocks bounded by major shear surfaces. The deformed sediment is markedly darker than the protolith. Calcite-quartz shear veins along the shear planes are abundant. Detailed SEM and TEM observations of highly deformed fault zone samples indicate that clay mineral enrichment in the core zone of the fault is not only related to passive increase by pressure-solution mechanism but that dissolution?Crecrystallization of phyllosilicates occurs during deformation. A mineral segregation is observed in the highly deformed zone. Newly formed 2M 1 muscovite is present along the cleavage whereas IIb chlorite crystals fill SV2 shear veins suggesting syntectonic growth of phyllosilicates in the presence of fluids in low-grade metamorphic conditions. These mineralogical reactions act as weakening processes and would favour Monte Perdido fault creeping.  相似文献   

10.
We compare frictional strengths in the temperature range 25–250 °C of fault gouge from SAFOD (CDZ and SDZ) with quartzofeldspathic wall rocks typical of the central creeping section of the San Andreas Fault (Great Valley sequence and Franciscan Complex). The Great Valley and Franciscan samples have coefficients of friction, μ > 0.35 at all experimental conditions. Strength is unchanged between 25° and 150 °C, but μ increases at higher temperatures, exceeding 0.50 at 250 °C. Both samples are velocity strengthening at room temperature but show velocity-weakening behavior beginning at 150 °C and stick-slip motion at 250 °C. These rocks, therefore, have the potential for unstable seismic slip at depth. The CDZ gouge, with a high saponite content, is weak (μ = 0.09–0.17) and velocity strengthening in all experiments, and μ decreases at temperatures above 150 °C. Behavior of the SDZ is intermediate between the CDZ and wall rocks: μ < 0.2 and does not vary with temperature. Although saponite is probably not stable at depths greater than ∼3 km, substitution of the frictionally similar minerals talc and Mg-rich chlorite for saponite at higher temperatures could potentially extend the range of low strength and stable slip down to the base of the seismogenic zone.  相似文献   

11.
《International Geology Review》2012,54(13):1575-1615
Salinia, as originally defined, is a fault-bounded terrane in westcentral California. As defined, Salinia lies between the Nacimiento fault on the west, and the Northern San Andreas fault (NSAF) and the main trace of the dextral SAF system on the east. This allochthonous terrane was translated from the southern part of the Sierra Nevada batholith and adjacent western Mojave Desert region by Neogene-Quaternary displacement along the SAF system. The Salina crystalline basement formed a westward promontory in the SW Cordilleran Cretaceous batholithic belt, relative to the Sierra Nevada batholith to the north and the Peninsular Ranges batholith to the south, making Salinia batholithic rocks susceptible to capture by the Pacific plate when the San Andreas transform system developed. Proper restoration of offsets on all branches of the San Andreas system is a critical factor in understanding the Salinia problem. When cumulative dextral slip of 171 km (106 mi) along the Hosgri–San Simeon–San Gregorio–Pilarcitos fault zone (S–N), or dextral slip of 200 km (124 mi) along the Hosgri–San Simeon–San Gregorio–Pilarcitos–northern San Andreas fault system, is added to the cumulative dextral slip of 315–322 km (196–200 mi) along the main trace of the SAF north of the San Emigdio–Tehachapi mountains, central California, there is a minimum amount of cumulative dextral slip of 486 km (302 mi) or a maximum amount of cumulative dextral slip of 522 km (324 mi) along the entire SAF system north of the Tehachapi Mountains. When these sums are compared with the offset distance (610–675 km or 379–420 mi) between the batholithic rocks associated with the Navarro structural discontinuity (NSD) in northern California, and those in the ‘tail’ of the southern Sierra Nevada granitic rocks in the San Emigdio–Tehachapi mountains, central California, a minimum deficit of from ~100 km (~62 mi) to a maximum deficit of ~189 km (~118 mi) is needed to restore the crystalline rocks associated with the NSD with the crystalline terranes within the San Emigdio and Tehachapi mountains – the enigma of Salinia. Two principal geologic models compete to explain the enigma (i.e. the discrepancy between measured dextral slip along traces of the SAF system and the amount of separation between the Sierra Nevada batholithic rocks near Point Arena in northern California and the Mesozoic and older crystalline rocks in the San Emigdio and Tehachapi mountains in southern California). (i) One model proposes pre-Neogene (>23 Ma), Late Cretaceous or Maastrichtian (<ca. 71 Ma) to early Palaeocene or Danian (ca. 66 Ma) sinistral slip of 500–600 km (311–373 mi) along the Nacimiento fault and of the western flank of Salinia from the eastern flank of the Peninsular Ranges (sinistral slip but in the opposite sense to later Neogene (<23 Ma) dextral slip along and within the SAF system. (ii) A second model proposes that the crystalline rocks of Salinia comprise a series of 100 km- (60 mi-) scale allochthonous (extensional) nappes that rode southwestward above the Rand schist–Sierra de Salinas (SdS) shear zone subduction extrusion channels. The allochthonous nappes are from NW–SE: (i) Farallon Islands–Santa Cruz Mountains–Montara Mountain, and adjacent batholithic fragments that appear to have been derived from the top of the deep-level Sierra Nevada batholith of the western San Emigdio–Tehachapi mountains; (ii) the Logan Quarry–Loma Prieta Peak fragments that appear to have been derived from the top of a buried detachment fault that forms the basement surface beneath the Maricopa sub-basin of the southernmost Great Valley; (iii) The Pastoria plate–Gabilan Range massif that appears to have been derived from the top of the deep-level SE Sierra Nevada batholith; and (iv) the Santa Lucia–SdS massif, which appears to be lower batholithic crust and underlying extruded schist that were breached westwards from the central to western Mojave Desert region. In this model, lower crustal batholithic blocks underwent ductile stretching above the extrusion channel schists, while mid- to upper-crustal level rocks rode southwestwards and westwards along trenchward dipping detachment faults. Salinian basement rocks of the Santa Lucia Range and the Big Sur area record the most complete geologic history of the displaced terrane. The oldest rocks consist of screens of Palaeozoic marine metasedimentary rocks (the Sur Series), including biotite gneiss and schist, quartzite, granulite gneiss, granofels, and marble. The Sur Series was intruded during Cretaceous high-flux batholithic magmatism by granodiorite, diorite, quartz diorite, and at deepest levels, charnockitic tonalite. Local nonconformable remnants of Campanian–Maastrichtian marine strata lie on the deep-level Salinia basement, and record deposition in an extensional setting. These Cretaceous strata are correlated with the middle to upper Campanian Pigeon Point (PiP) Formation south of San Francisco. The Upper Cretaceous strata, belonging to the Great Valley Sequence, include clasts of the basement rocks and felsic volcanic clasts that in Late Cretaceous time were brought to a coastal region by streams and rivers from Mesozoic felsic volcanic rocks in the Mojave Desert. The Rand and SdS schists of southern California were underplated beneath the southern Sierra Nevada batholith and the adjacent Salinia-Mojave region along a shallow segment of the subducting Farallon plate during Late Cretaceous time. The subduction trajectory of these schists concluded with an abrupt extrusion phase. During extrusion, the schists were transported to the SW from deep- to shallow-crustal levels as the low-angle subduction megathrust surface was transformed into a mylonitic low-angle normal fault system (i.e. Rand fault and Salinas shear zone). The upper batholithic plate(s) was(ere) partially coupled to the extrusion flow pattern, which resulted in 100 km-scale westward displacements of the upper plate(s). Structural stacking, temporal and metamorphic facies relations suggest that the Nacimiento (subduction megathrust) fault formed beneath the Rand-SdS extrusion channel. Metamorphic and structural relations in lower plate Franciscan rocks beneath the Nacimiento fault suggest a terminal phase of extrusion as well, during which the overlying Salinia underwent extension and subsidence to marine conditions. Westward extrusion of the subduction-underplated rocks and their upper batholithic plates rendered these Salinia rocks susceptible to subsequent capture by the SAF system. Evidence supporting the conclusion that the Nacimiento fault is principally a megathrust includes: (i) shear planes of the Nacimiento fault zone in the westcentral Coast Ranges locally dip NE at low angles. (ii) Klippen and/or faulted klippen are locally present along the trace of the Nacimiento fault zone from the Big Creek–Vicente Creek region south of Point Sur near Monterey, to east of San Simeon near San Luis Obispo in central California. Allochthonous detachment sheets and windows into their underplated schists comprise a composite Salinia terrane. The nappe complex forming the allochthon of Salinia was translated westward and northwestward ~100 km (~62 mi) above the Nacimiento megathrust or Franciscan subduction megathrust from SE California between ca. 66 and ca. 61 Ma (i.e. latest Cretaceous–earliest Palaeocene time). Much, or all, of the westward breaching of the Salinia batholithic rocks likely occurred above the extrusion channels of the Rand-SdS schists; following this event, the Franciscan Sur-Obispo terrane was thrust beneath the schists, perhaps during the final stages of extrusion in the upper channel. Later, the Sur-Obispo terrane was partially extruded from beneath the Salinia nappe terrane, during which time the upper plate(s) underwent extension and subsidence to marine conditions. Attenuation of the Salinia nappe sequence during the extrusion of the Franciscan Complex thinned the upper crust, making the upper plates susceptible to erosion from the top of the Franciscan Complex near San Simeon, where it is now exposed. In the San Emigdio Mountains, the relatively thin structural thickness of the upper batholithic plates made them susceptible to late Cenozoic flexural folding and disruption by high-angle dip–slip faults. The ~100 km (~62 mi) of westward and northwestward breaching of the Salinia batholithic rocks above the Rand-SdS channels, and the underlying Nacimiento fault followed by ~510 km (~320 mi) of dextral slip from ~23 Ma to Holocene time along the SAF system, allow for the palinspastic restoration of Salinia with the crystalline rocks of the San Emigdio–Tehachapi mountains and the Mojave terrane, resolving the enigma of Salinia.  相似文献   

12.
To characterize the fault-related rocks within the Chelungpu fault, we performed X-ray computed tomography (CT) image analyses and microstructural observations of Hole B core samples from the Taiwan Chelungpu-fault Drilling Project. We identified the slip zone associated with the 1999 Chi-Chi earthquake, within the black gouge zone in the shallowest major fault zone, by comparison with previous reports. The slip zone was characterized by low CT number, cataclastic (or ultracataclastic) texture, and high possibility to have experienced a mechanically fluidized state. Taking these characteristics and previous reports of frictional heating in the slip zone into consideration, we suggested that thermal pressurization was the most likely dynamic weakening mechanism during the earthquake.  相似文献   

13.
The spacing of parallel continental strike‐slip faults can constrain the mechanical properties of the faults and fault‐bounded crust. In the western US, evenly spaced strike‐slip fault domains are observed in the San Andreas (SA) and Walker Lane (WL) fault systems. Comparison of fault spacing (S) vs. seismogenic zone thickness (L) relationships of the SA and WL systems indicates that the SA has a higher S/L ratio (~8 vs. 1, respectively). If a stress‐shadow mechanism guides parallel fault formation, the S/L ratio should be controlled by fault strength, crustal strength, and/or regional stress. This suggests that the SA‐related strike‐slip faults are relatively weaker, with lower fault friction: 0.13–0.19 for the SA vs. 0.20 for WL. The observed mechanical differences between the San Andreas and Walker Lane fault systems may be attributed to variations in the local geology of the fault‐hosting crust and/or the regional boundary conditions (e.g. geothermal gradient or strain rate).  相似文献   

14.
Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore.At Half Moon Bay, right-lateral slip and N—S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace.Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5–3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka.The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200–400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr).Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976).  相似文献   

15.
Microstructural aspects of room-temperature deformation in experimental Westerly granite gouge were studied by a set of velocity stepping rotary-shear experiments at 25 MPa normal stress. The experiments were terminated at: (a) 44 mm, (b) 79 mm, and (c) 387 mm of sliding, all involving variable-amplitude fluctuations in friction. Microstructural attributes of the gouge were studied using scanning (SEM) and scanning transmission electron microscopy (STEM), image processing, and energy dispersive X-ray (EDX) analyses. The gouge was velocity weakening at sliding distances >10 mm as a core of cataclasites along a through-going shear zone developed within a mantle of less deformed gouge in all experiments. Unlike in experiment (a), the cataclasites in experiments (b) and (c) progressively developed a foliation defined by stacks of shear bands. The individual bands showed an asymmetric particle-size grading normal to shearing direction. These microstructures were subsequently disrupted and reworked by high-angle Riedel shears. While the microstructural evolution affected the effective thickness and frictional strength of the gouge, it did not affect its overall velocity dependence behavior. We suggest that the foliation resulted from competing shear localization and frictional slip hardening and that the velocity dependence of natural fault gouge depends upon compositional as well as microstructural evolution of the gouge.  相似文献   

16.
Damage surrounding the core of faults is represented by deformation on a range of scales from microfracturing of the rock matrix to macroscopic fracture networks. The spatial distribution and geometric characterization of damage at various scales can help to predict fault growth processes, subsequent mechanics, bulk hydraulic and seismological properties of a fault zone. Within the excellently exposed Atacama fault system, northern Chile, micro- and macroscale fracture densities and orientation surrounding strike-slip faults with well-constrained displacements ranging over nearly 5 orders of magnitude (0.12 m–5000 m) have been analyzed. Faults have been studied that cut granodiorite and have been passively exhumed from 6 to 10 km depth. This allows direct comparison of the damage surrounding faults of different displacements. The faults consist of a fault core and associated damage zone. Macrofractures in the damage zone are predominantly shear fractures orientated at high angles to the faults studied. They have a reasonably well-defined exponential decrease with distance from the fault core. Microfractures are a combination of open, healed, partially healed and fluid inclusion planes (FIPs). FIPs are the earliest set of fractures and show an exponential decrease in fracture density with perpendicular distance from the fault core. Later microfractures do not show a clear relationship of microfracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement but appear to reach a maximum at a few km displacement. One fault, where damage was characterized on both sides of the fault core shows no damage asymmetry. All faults appear to have a critical microfracture density at the fault core/damage zone boundary that is independent of displacement. An empirical relationship for microfracture density distribution with displacement is presented. Preferred FIP orientations have a high angle to the fault close to the fault core and become more diffuse with distance. Models that predict off-fault damage such as a migrating process zone during fault formation, wear from geometrical irregularities and dynamic rupture are all consistent with our data. We conclude it is very difficult to distinguish between them on the basis of field data alone, at least within the limits of this study.  相似文献   

17.
Zones of transpressional shear deformation accommodate strike-slip and oblique-slip displacements. Field work in a transpressive shear zone, and transpressional analogue clay-box modelling, show that a P-oriented foliation and associated P-shears are preferentially developed over the more common R1 Riedel-shears. The Carboneras fault system (CFS) in SE Spain is a left-lateral transpressional shear zone with an internal geometry characterized by first-order Y-oriented faults and widespread P-oriented second-order faults. The mesoscopic to microscopic gouge fabric reflects the regional architecture of the shear zone being dominated by a pervasive Poriented foliation and discrete Y- and P-shears. Friction experiments carried out to investigate the textural evolution of gouge fabrics showed four textural stages of fabric development, from foliation formation to extreme shear localization resulting in cross-gouge failure. Transpression clay-box models favoured the formation of secondary P-oriented shear fractures and P-oriented shear lenses. Further deformation caused differential shear lens rotation and shear lens orientations closer to the mean displacement direction. Our field studies and laboratory analogue experiments indicate that shear zones dominated by P-shears are diagnostic of a transpressional deformation regime.  相似文献   

18.
To understand the behaviour and deformation mechanisms of serpentinites in the seismogenic zone we study the deformation macro- and microstructures of serpentinites along the Santa Ynez Fault in the San Andreas System. At the outcrop scale, deformation is localized in a gouge zone that shows three different structures: (1) micrometric undeformed fragments (clasts) of the previously serpentinized peridotite, (2) localized shear planes (Y and R) and (3) a penetrative schistosity (S). Observations under SEM and TEM reveal that the schistosity corresponds to serpentine fibres, parallel to each other, and whose orientation varies as they wrap around clasts. TEM micro-textures indicate that these long fibres result from continuous syntectonic growth rather than from reorientation of pre-existing fibres implying a slow transfer process that occurs at short distances. We propose a dissolution–diffusion–crystallization process for the formation of the schistosity that corresponds to a low strain-rate creeping process of deformation that can be effective in aseismic fault segments.  相似文献   

19.
This paper petrologically characterizes cataclastic rocks derived from four sites within the San Andreas fault zone of southern California. In this area, the fault traverses an extensive plutonic and metamorphic terrane and the principal cataclastic rock formed at these upper crustal levels is unindurated gouge derived from a range of crystalline rocks including diorite, tonalite, granite, aplite, and pegmatite.The mineralogical nature of this gouge is decidedly different from the “clay gouge” reported by Wu (1975) for central California and is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote and oxide mineralogy representing the milled-down equivalent of the original rock. Clay development is minor (less than 4 wt. %) to nonexistent and is exclusively kaolinite. Alterations involve hematitic oxidation, chlorite alteration on biotite and amphibole, and local introduction of calcite. Electron microprobe analysis showed that in general the major minerals were not reequilibrated with the pressure—temperature regime imposed during cataclasis.Petrochemically, the form of cataclasis that we have investigated is largely an isochemical process. Some hydration occurs but the maximum amount is less than 2.2% added H2O. Study of a 375 m deep core from a tonalite pluton adjacent to the fault showed that for Si, Al, Ti, Fe, Mg, Mn, K, Na, Li, Rb, and Ba, no leaching and/or enrichment occurred. Several samples experienced a depletion in Sr during cataclasis while lesser number had an enrichment of Ca (result of calcite veining).Texturally, the fault gouge is not dominated by clay-size material but consists largely of silt and fine sand-sized particles. An intriguing aspect of our work on the drill core is a general decrease in particulate size with depth (and confining pressure) with the predominate shifting sequentially from fine sand to silt-size material.The original fabric of these rocks is commonly not disrupted during the cataclasis. It is evident that the gouge development in these primarily igneous crystalline terranes is largely an in situ process with minimal mixing of rock types. Fabric analyses reveal that brecciation (shattering), not shearing, is the major deformational mechanism at these upper crustal levels.  相似文献   

20.
The Maacama fault zone is a north-northwest trending, right-lateral zone of structural weakness in eastern Sonoma and Mendocino Counties, California, and fault-related landforms along its trace suggest that it may well have been active during Holocene time. Urbanization and dam construction in the vicinity of the zone have made it especially desirable to determine the extent and history of such geologically recent movements in order to better understand the seismic capability of faults within the zone.

The Maacama fault zone is a segment of one of two north-northwest trending zones of right-lateral faulting that diverge as major branches from the easterly side of the San Andreas fault zone north of Hollister. These branches extend at least as far north as Eureka and may mark the eastern boundaries of slivers of a separate tectonic plate.

This investigation was conducted to evaluate Holocene activity along the part of the Maacama fault zone in Mendocino County. The investigation shows that this zone comprises discontinuous, subparallel fault strands which extend from points south of the Sonoma—Mendocino county line to points north of Laytonville. Some fault segments are expressed by alignments of topographic features clearly caused by Holocene strike-slip movements. Other topographic features are less distinct and may well represent fault segments with pre-Holocene activity.

The Maacama fault zone creeps at a current rate of possibly as high as 2 mm/yr. The total amounts of Holocene offset are unknown.

Evidence obtained from exploratory trenches indicates that at least two surface rupture events have occurred within the past 16,200 years, that at least one has occurred within the past 8,310 years, and that there probably has been no surface rupturing within the past 1,140 years.

I conclude that surface offsets have occurred along major portions of the Maacama fault zone during Holocene time, and that this fault zone should be regarded as capable of producing a moderate to strong future earthquake with accompanying surface rupture in Mendocino County.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号